Nothing is the bridge between the future and the further future. Nothing is certainty. Nothing is any definition of anything.

— Peter Hammill

NASA

Sols 4246-4247: Next Stop: Fairview Dome

NASA - Breaking News - Tue, 07/16/2024 - 2:37pm

Curiosity Navigation

2 min read

Sols 4246-4247: Next Stop: Fairview Dome This image was taken by Left Navigation Camera onboard NASA’s Mars rover Curiosity on sol 4244 – Martian day 4,244 of the Mars Science Laboratory mission – July 14, 2024, at 21:12:47 UTC. The grooved rock at upper left in the image, in line between the rover and the lighter-colored, rectangular rock, has been nicknamed “Jack Main Canyon” and deemed a compelling science target for Curiosity to study.

Earth planning date: Monday, July 15, 2024

Summer is in full swing in the northern hemisphere here on Earth. Warmer temperatures and fair weather make for prime opportunities for road trips and enjoying the best of the outdoors. Summer is in full swing too for the southern hemisphere of Mars and Gale crater, where Curiosity is continuing its mini (make-your-own) road trip to “Fairview Dome.”

Recent exciting stops saw Curiosity enjoy “ice cream” and take a moment to “vug out” (imagination required as to what vuggin’ out could mean in the sense of a road trip!). The workspace Curiosity presented to the science team today did not leave many options for APXS and MAHLI. The team did ultimately decide on a suitable and compelling target to deploy Curiosity’s arm in the form of “Jack Main Canyon,” located just below and left of the apparently brighter and angular rock in the upper-left of the image.

Today’s plan kicked off with a lengthy DAN passive activity and imaging of the REMS UV sensor with MAHLI. APXS followed with a short measurement on Jack Main Canyon alongside usual imaging support from MAHLI. Morning measurements with APXS, referred to as touch-and-gos (or a hover-and-go in this case, since we did not actually touch Jack Main Canyon with APXS) have become less frequent recently as the summer season’s relatively warmer temperatures hinder APXS’s data quality. Also in the first sol of the plan, ChemCam’s laser analyzed a rock named “Budd Lake,” which was also captured by Mastcam. Mastcam additionally imaged “McGee Creek,” “Granite Park,” “Lamrack Col,” and conducted a sizable 49-image mosaic on “Red Devil Lake” to round out the bulk of the science planned today. Curiosity then completed a drive of about 24 meters (about 79 feet), which is expected to mark its arrival to Fairview Dome.

Written by Scott VanBommel, Planetary Scientist at Washington University

Share

Details

Last Updated

Jul 16, 2024

Related Terms Explore More

3 min read Sols 4243-4245: Exploring Stubblefield Canyon

Article


2 hours ago

2 min read Sols 4241–4242: We Can’t Go Around It…We’ve Got To Go Through It!

Article


4 days ago

2 min read Sols 4239-4240: ‘Vuggin’ Out’

Article


6 days ago

Keep Exploring Discover More Topics From NASA

Mars

Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


All Mars Resources

Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


Rover Basics

Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


Mars Exploration: Science Goals

The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

Categories: NASA

Robotic Assembly and Outfitting for NASA Space Missions

NASA - Breaking News - Tue, 07/16/2024 - 1:28pm

NASA is turning to the 3D modeling experts in the community for ideas and designs to use or enhance the current state of modular robotic construction techniques. Robotic building of structures in space is an active area of research for NASA and might prove to be a path towards sustainable and scalable space exploration. This technology is essential for establishing critical long-term orbital and Lunar surface infrastructure including power/communication towers, research stations, radiation shielding for habitats, and more.

Award: $2,000 in total prizes

Open Date: July 15, 2024

Close Date: September 9, 2024

For more information, visit: https://grabcad.com/challenges/robotic-assembly-and-outfitting-for-nasa-space-missions

Categories: NASA

Sols 4243-4245: Exploring Stubblefield Canyon

NASA - Breaking News - Tue, 07/16/2024 - 1:12pm
Curiosity Navigation

3 min read

Sols 4243-4245: Exploring Stubblefield Canyon This image was taken by Left Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4241 (2024-07-11 20:34:05 UTC).

Earth planning date: Friday, July 12, 2024

Curiosity, now heading uphill from the Mammoth Lakes drill site, has focused on a very interesting exposure of conglomerate rocks, consisting of pebbles cemented together by a fine-grained matrix material. On Earth, conglomerate rock is associated with downhill flows of rock and soil mixtures, often in a water-rich environment, so our science team is excited to find similar rocks on Mars. 

The local exposure of this unusual Martian deposit has been named “Stubblefield Canyon,” honoring the headwaters of the stream forming Rancheria Falls, which tumbles into Yosemite National Park’s Hetch Hetchy reservoir. All targets in this area of Mount Sharp are named after geological features near the town of Bishop, California, which sits at the foot of the Sierra Nevada mountains in the Owens Valley of California. Curiosity’s last drive ended at a detached, rubbly conglomerate slab, dubbed “Wishbone Lake” after a Y-shaped lake in upper Lamarck Lake Canyon near Mono Lake. The image above shows the Wishbone Lake slab of conglomerate rock in the rover workspace. Over the weekend, the team will investigate this target and image the surrounding terrain, collecting evidence about the formation of conglomerate rocks on Mars.

On Wednesday, Curiosity successfully completed its MAHLI imaging of “Donohue Pass” and ChemCam laser spectroscopy of “Negit Island,” followed by a 3-meter drive (about 10 feet) to Wishbone Lake. During the current plan, APXS will analyze two pebbles within the Wishbone Lake slab, “Arrowhead Spire” and “Cattle Creek.” Arrowhead Spire honors a 100-foot vertical spike of granite near Yosemite Point, above Yosemite Valley. Cattle Creek is named for a stream that flows from a hanging valley into the Twin Lakes canyon near Bridgeport, California. MAHLI will image Cattle Creek, then do a 4×1 mosaic from a distance of 25 centimeters (about 10 inches) along the edges of Wishbone Lake, centered on the Arrowhead Spire pebble. ChemCam will take laser spectra of Arrowhead Spire, as well as the “Eocene Peak” matrix material target, named for an 11,500-foot peak in the Sawtooth Ridge along the northeastern boundary of Yosemite National Park.

Using its telescopic RMI camera, ChemCam will image upper Gediz Vallis Ridge and a distant ridgeline along our future drive path. Mastcam will photograph the ChemCam laser targets, as well as interesting portions of the Stubblefield Canyon conglomerate exposure, the Mammoth Lakes drill site as seen from our new location, and an interesting linear ridge. On sol 4244, Curiosity will drive 20 meters (about 66 feet) along our path toward “Fairview Dome,” followed by post-drive imaging and AEGIS observations. Atmospheric studies during the current plan include a Navcam dust devil movie and large dust devil survey, early morning Navcam zenith and suprahorizon cloud movies, Navcam deck imaging, Navcam and Mastcam dust opacity measurements, and a late afternoon Mastcam sky survey. Next week, we expect to explore Fairview Dome, then resume our climb up Mount Sharp.

Written by Deborah Padgett, Curiosity Operations Product Generation Subsystem Task Lead at NASA’s Jet Propulsion Laboratory

Share

Details

Last Updated

Jul 16, 2024

Related Terms Explore More

2 min read Sols 4241–4242: We Can’t Go Around It…We’ve Got To Go Through It!

Article


4 days ago

2 min read Sols 4239-4240: ‘Vuggin’ Out’

Article


6 days ago

2 min read Sols 4236-4238: One More Time… for Contact Science at Mammoth Lakes

Article


1 week ago

Keep Exploring Discover More Topics From NASA

Mars

Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


All Mars Resources

Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


Rover Basics

Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


Mars Exploration: Science Goals

The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

Categories: NASA

A Sagittarius Triplet

APOD - Tue, 07/16/2024 - 8:00am

These three bright nebulae are often featured on telescopic tours of the


Categories: Astronomy, NASA

NASA Johnson to Dedicate Building to Dorothy Vaughan, Women of Apollo

NASA - Breaking News - Mon, 07/15/2024 - 6:21pm
A portrait of Dorothy Vaughan, a mathematician, computer programmer, and NASA’s first Black manager.Credit: NASA

NASA’s Johnson Space Center in Houston will recognize legendary human computer Dorothy Vaughan and the women of Apollo with activities marking their achievements, including a renaming and ribbon-cutting ceremony at the center’s “Building 12,” on Friday, July 19, the eve of the 55th anniversary of the Apollo 11 Moon landing.

At 9 a.m. CDT, NASA Johnson Director Vanessa Wyche will begin with a discussion about the importance of Vaughan and the women of Apollo’s contributions to the agency’s lunar landing program and their significance to today’s Artemis campaign. Other highlights include a poetry reading, a recital by Texas Southern University’s Dr. Thomas F. Freeman Debate Team, and a “Women in Human Spaceflight” panel discussion.

The panel in NASA Johnson’s Teague Auditorium will be moderated by Debbie Korth, the agency’s Orion Program deputy manager, and include:

  • Christina Koch, NASA astronaut
  • Sandy Johnson, Barrios Technology CEO
  • Lara Kearney, NASA Extravehicular Activity and Human Surface Mobility Program manager
  • Andrea Mosie, NASA Lunar Materials Repository Laboratory manager and senior sample processor
  • Dr. Shirley Price, former NASA Equal Opportunity specialist

Following the program, the ribbon-cutting ceremony will begin at Building 12, which will thereafter be named the “Dorothy Vaughan Center in Honor of the Women of Apollo.” The dedication is a tribute to the people who made humanity’s first steps on the Moon possible.

All interested media must request credentials by 12 p.m. Thursday, July 18, by email at jsccommu@mail.nasa.gov or by calling the Johnson newsroom at 281-483-5111. Media should arrive onsite for setup by 8:15 a.m. July 19, at the Teague Auditorium in Building 2 South. U.S. media are invited to attend and will have an opportunity to ask questions during the panel discussion and may request brief interviews with available NASA officials following the ribbon cutting.

Distinguished guests are expected to include local elected officials, NASA senior leadership, members of NASA’s Alumni League, and the families of Dorothy Vaughan and the women of Apollo.

“On behalf of NASA’s Johnson Space Center, we are proud to host this historic event as the agency honors the significant contributions women have made to the space industry, particularly trailblazers who persevered against many challenges of their era,” Wyche said. “As we prepare to return to the Moon for long-term science and exploration, NASA’s Artemis missions will land the first woman and first person of color on the Moon. It’s a privilege to dedicate Johnson’s Building 12 to the innovative women who laid the foundation to our nation’s space program.”

Vaughan’s personal commitment and determination during the Apollo missions advanced the agency’s current diverse workforce and leadership – particularly at Johnson — as human computers transitioned from Langley Research Center in Virginia to Houston, supporting Mission Control from Building 12. She was a steadfast advocate for the women who worked as human computers, and for all the individuals under her leadership.

Learn about the life and legacy of Dorothy Vaughan here:

https://www.nasa.gov/people/dorothy-vaughan/

-end-

Tiernan Doyle
Headquarters, Washington
202-358-1600
tiernan.doyle@nasa.gov

Laura Rochon
Johnson Space Center, Houston
281-483-5111
laura.a.rochon@nasa.gov

Share Details Last Updated Jul 15, 2024 LocationNASA Headquarters Related Terms
Categories: NASA

Telepong

NASA - Breaking News - Mon, 07/15/2024 - 4:22pm

1 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Next Generation Science Standards: Engineering Design (MS-PS4-1, MS-ETS1)

Grades 5+

In this activity, students will create an “antenna” or “receiver” out of re-used materials. After construction is complete, the students test their design by throwing “data” (in this case, ping pong balls) across the room and comparing the message to test the success of their receivers.

Downloads View All Telepong Part 1

Jul 15, 2024

PDF (3.73 MB)

Telepong Part 2

Jul 15, 2024

PDF (1.12 MB)

Telepong Part 3

Jul 15, 2024

PDF (7.84 MB)

Share Details Last Updated Jul 15, 2024 Related Terms Explore More 3 min read NASA Transmits Hip-Hop Song to Deep Space for First Time Article 10 hours ago 1 min read Attention Civil Servant Retirees Article 5 days ago 5 min read Surfing NASA’s Internet of Animals: Satellites Study Ocean Wildlife Article 5 days ago Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

15 Years Ago: STS-127 Delivers Japanese External Platform to Space Station

NASA - Breaking News - Mon, 07/15/2024 - 3:54pm

On July 15, 2009, space shuttle Endeavour began its 23rd trip into space, on the 2JA mission to the International Space Station, the 29th shuttle flight to the orbiting lab. During the 16-day mission, the seven-member STS-127 crew, working with Expedition 20, the first six-person crew aboard the station, completed the primary objectives of the mission. The flight marked the first time 13 people worked about the station at the same time. They added the Exposed Facility (EF) to the Kibo Japanese Experiment Module (JEM), including its first three payloads, and performed a crew exchange of long-duration crew members. The tasks involved five complex space walks and extensive robotic activities using three different manipulator systems during 11 days of docked operations.


Left: The STS-127 crew patch. Middle: Official photograph of the STS-127 crew of David A. Wolf, left, Christopher J. Cassidy, Douglas G. Hurley, Julie Payette of Canada, Mark L. Polansky, Thomas H. Marshburn, and Timothy L. Kopra. Right: The patch for the 2J/A mission.

The seven-person STS-127 crew consisted of Commander Mark L. Polansky, Pilot Douglas G. Hurley, and Mission Specialists David A. Wolf, Christopher J. Cassidy, Julie Payette of the Canadian Space Agency (CSA), Thomas H. Marshburn, and Timothy L. Kopra. Primary objectives of the mission included the addition of the Exposed Facility (EF) to the Kibo Japanese Experiment Module (JEM) and the long-duration crew member exchange of Kopra for Koichi Wakata of the Japan Aerospace Exploration Agency (JAXA), who had been aboard the space station since March 2009 as a member of Expeditions 18, 19, and 20.


Left: The STS-127 crew during their preflight press conference at NASA’s Johnson Space Center in Houston. Middle: The STS-127 payloads in Endeavour’s cargo bay at Launch Pad 39A at NASA’s Kennedy Space Center in Florida. Right: Space shuttle Endeavour on Launch Pad 39A a few days before launch.

Endeavour returned from its previous mission, STS-126, on Nov. 28, 2008. It arrived in the Orbiter Processing Facility at NASA’s Kennedy Space Center (KSC) on Dec. 13, moved to the Vehicle Assembly Building on April 10, 2009, and rolled out to Launch Pad 39B seven days later to serve as the Launch on Need vehicle for STS-125 in May 2009. When that mission flew without issues, on May 31, workers rolled Endeavour around to Pad 39A to begin preparations for STS-127, planned for launch on June 13. A gaseous hydrogen leak scrubbed this first launch attempt. A similar leak halted the second attempt on June 17 and managers reset the launch date to July 11. Managers scrubbed that launch when 11 lightning strikes struck the launch pad area, requiring a review of Endeavour’s and ground systems. With the seven-member crew aboard Endeavour, weather once again halted the launch attempt on July 12. They tried again the next day, but weather conditions led to a fifth scrubbed launch attempt. The charm came on the sixth try.


Liftoff of space shuttle Endeavour on STS-127 carrying the Exposed Facility for the Japanese Kibo module.

On July 15, 2009, at 6:03 p.m. EDT, space shuttle Endeavour lifted off from KSC’s Launch Pad 39A to begin its 23rd trip into space, beginning the 2JA mission to the space station. Eight and a half minutes later, Endeavour and its crew had reached orbit. This marked Wolf’s fourth time in space, Polansky’s third, Payette’s second, while Hurley, Cassidy, Marshburn, and Kopra enjoyed their first taste of true weightlessness.


Left: NASA astronauts Timothy L. Kopra, left, and Thomas H. Marshburn enjoy the first few minutes of weightlessness after Endeavour reached orbit. Middle: On the mission’s second day, the Shuttle Remote Manipulator System (SRMS) uses the Orbiter Boom Sensor System to image Endeavour’s Thermal Protection System (TPS). Right: Canadian Space Agency astronaut Julie Payette operates the SRMS during the TPS inspection.

After reaching orbit, the crew opened the payload bay doors and deployed the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight. The astronauts spent five hours on their second day in space conducting a detailed inspection of Endeavour’s nose cap and wing leading edges, with Payette operating the Shuttle Remote Manipulator System (SRMS), or robotic arm, and the Orbiter Boom Sensor System (OBSS).


Left: NASA astronaut Christopher J. Cassidy uses a laser range finder during Endeavour’s rendezvous with the space station. Middle: Endeavour as seen from the space station during the rendezvous. Right: Close up of the Kibo Japanese Experiment Module – the astronauts attached the Exposed Facility at the left end of the module.

On July 17, the 34th anniversary of the Apollo-Soyuz Test Project docking, Polansky assisted by his crewmates brought Endeavour in for a docking with the space station. During the rendezvous, Polansky stopped the approach at 600 feet and completed the Rendezvous Pitch Maneuver so astronauts aboard the station could photograph Endeavour’s underside to look for any damage to the tiles. Shortly after docking, the crews opened the hatches between the two spacecraft and the six-person station crew welcomed the seven-member shuttle crew. Expedition 20 Commander Gennady I. Padalka of Roscosmos stated, “This is a remarkable event for the whole space program.” Polansky responded, “Thirteen is a big number, but we are thrilled to be here.” After exchanging Soyuz seat liners, Kopra joined the Expedition 20 crew and Wakata the STS-127 crew.


Left: Expedition 20, the space station’s first six-person crew and the first, and so far only, time that each of the five space station partners had crew members on board at the same time. Middle: The first time two Canadians were in space at the same time. Right: A medical convention in space – the first time four medical doctors flew in space at the same time.

STS-127 marked not only the first time that a space shuttle arrived at the station with a six-person crew living aboard, but as it happened, each of the five space station partners had a crew member aboard, a feat not repeated since. The flight also marked the first time that two CSA astronauts worked aboard the space station at the same time. And for the true trivia buffs, the mission marked the first time that four medical doctors worked in space together – an out of this world medical convention!


Left: Transfer of the Exposed Facility from the shuttle to the station. Middle: Timothy L. Kopra, left, and David A. Wolf work on the station’s truss during the mission’s first spacewalk. Right: Douglas G. Hurley, left, and Koichi Wakata of the Japan Aerospace Exploration Agency operate the station’s robotic arm during the first spacewalk.

On July 18, the mission’s fourth day, Hurley and Wakata grappled the JEM-EF using the Space Station Remote Manipulator System (SSRMS) or robotic arm, handed it off temporarily to the SRMS operated by Polansky and Payette, moved the station arm into position to grapple it again, and installed it on the end of the Kibo module. Meanwhile, Wolf, with red stripes on his spacesuit, and Kopra, wearing a suit with no stripes, began the mission’s first spacewalk. During the excursion that lasted 5 hours 32 minutes, Wolf and Kopra prepared the JEM for the EF installation and performed other tasks in the shuttle’s payload bay and on the station.


Left: During the second spacewalk, David A. Wolf, left, and Thomas H. Marshburn transfer spare parts to the space station. Right: NASA astronaut Douglas G. Hurley, left, and Canadian Space Agency astronaut Julie Payette operate the station’s robotic arm during the second spacewalk.

The mission’s fifth day involved internal transfers of equipment from the shuttle to the station and the robotic transfer of the Integrated Cargo Carrier (ICC) from the payload bay to the station truss. The ICC carried spare parts that the next day Wolf and Marshburn, wearing dashed red stripes on his spacesuit, transferred to a stowage platform on the station’s exterior during the mission’s second spacewalk, lasting 6 hours and 53 minutes.


Left: An Apollo 11 Moon rock brought to the station to commemorate the 40th anniversary of the first Moon landing. Middle: Nine of the 13 Expedition 20 and STS-127 crew members share a meal, as NASA astronaut Michael R. Barratt holds the Apollo 11 Moon rock. Right: Transfer of the Kibo Experiment Logistics Module from the shuttle to the station.

The second spacewalk took place on July 20, the 40th anniversary of Apollo 11 landing on the Moon. To commemorate the event, NASA selected a Moon rock returned on that mission and flew it to the space station on STS-119 in March 2009. Expedition 20 astronaut Michael Barratt recorded a video message about the Moon rock, played at a 40th anniversary celebration hosted by the National Air and Space Museum in Washington, D.C., and attended by the Apollo 11 astronauts. The following day, the joint crews continued their work by robotically transferring the JEM Experiment Logistics Module (JEM ELM) and temporarily installing it on the Exposed Facility. Later in the mission, astronauts robotically transferred the three payloads from the ELM to EF.


Left: Christopher J. Cassidy, left, and David A. Wolf during the mission’s third spacewalk. Right: Cassidy, left, and Wolf during a battery changeout.

Flight Day 8 saw the mission’s third spacewalk, with Wolf making his final excursion, this time accompanied by Cassidy, wearing diagonal red stripes on his suit. Prior to the start of the spacewalk, Hurley and Payette used the station’s arm to relocate the ICC to a different workstation for Wolf and Cassidy to transfer the batteries to the station. As their first task, Wolf and Cassidy prepared the JEM EF for the transfer of the three payload the following day. They managed to transfer two of the four batteries before mission managers decided to shorten the spacewalk due to a slight buildup of carbon dioxide in Cassidy’s suit. The excursion lasted 5 hours and 59 minutes.


Left: Installation of one of the payloads onto the Kibo Exposed Facility (EF). Right: Mark J. Polansky, left, and Koichi Wakata of the Japan Aerospace Exploration Agency, one of the three teams that transferred the EF payloads using Kibo’s robotic arm.

On Flight Day 9, Wakata, assisted by Kopra, inaugurated the operational use of the JEM’s robotic arm by transferring the first payload from the ELM to the EF. Three separate two-person teams transferred each of the three payloads.


Left: Christopher J. Cassidy, left, and Thomas H. Marshburn exchange space station batteries during the mission’s fourth spacewalk. Right: Canadian Space Agency astronaut Julie Payette, left, and NASA astronaut Douglas G. Hurley operate the station’s robotic arm during the fourth spacewalk.

On Flight Day 10, Marshburn and Cassidy transferred the remaining four batteries and completed other tasks during the mission’s fourth spacewalk, lasting 7 hours and 12 minutes. Following the battery transfers, Hurley and Payette used the station’s arm to transfer the ICC to Polansky and Hurley operating the shuttle arm, who then stowed it in Endeavour’s payload bay.


Left: The Seattle-Tacoma area. Middle left: The central Florida coast including NASA’s Kennedy Space Center. Middle right: Sicily with Mt. Etna, left, and the “toe” of Italy at right. Right: Istanbul straddling Europe, left, and Asia.

With Flight Day 11 given as a crew off duty day, many of the astronauts took part in a favorite activity: looking at and photographing the Earth. They also used the time to catch up on other activities.


Left: Return of the empty Exposed Logistics Module to Endeavour’s payload bay. Middle: Fisheye view of Christopher J. Cassidy, left, and Thomas H. Marshburn in the U.S. Airlock preparing for the mission’s fifth and final spacewalk. Right: Marshburn, left, and Cassidy install cameras on the Kibo Exposed Facility during the fifth and final spacewalk.

First thing on Flight Day 12, Payette and Polansky returned the now empty ELM to Endeavour’s payload bay, using the station and shuttle robotic arms. The next day, Marshburn and Cassidy teamed up again for the flight’s fifth and final spacewalk. During the 4-hour 54-minute excursion, they installed a pair of cameras on the Kibo module to help guide future H-II Transfer Vehicle (HTV) cargo spacecraft, the first planned to arrive in September 2009. They also completed a few get ahead tasks. Their excursion brought the total spacewalking time for the mission to 30 hours 30 minutes and marked only the second time that a shuttle mission to the space station completed five spacewalks.


Left: The 13 members of Expedition 20 and STS-127 pose for a final photograph before saying their farewells. Middle: The crew members exchange farewells, with Koichi Wakata of the Japan Aerospace Exploration Agency, left, appearing a little reluctant to leave after spending 133 days aboard the space station. Right: Photograph of the newly installed Exposed Facility on the Kibo Japanese Experiment Module.

On July 28, the mission’s 14th day, the 13-member joint crew held a brief farewell ceremony, parted company, and closed the hatches between the two spacecraft. With Hurley at the controls, Endeavour undocked from the space station, having spent nearly 11 days as a single spacecraft. Hurley completed a flyaround  of the station, with the astronauts photographing it to document its condition. A final separation burn sent Endeavour on its way.


The International Space Station, with the newly added Exposed Facility and its first payloads, as seen from Endeavour during the departure flyaround. Endeavour casts its shadow on the solar arrays.


Left: The shuttle’s robotic arm grapples the Orbiter Boom Sensor System for the late inspection of Endeavour’s heat shield. Middle: Deploy of the DRAGONSAT microsatellite. Right: Deploy of the ANDE microsatellites.

The next day, Polansky, Payette, and Hurley used the shuttle’s arm to pick up the OBSS and perform a late inspection of Endeavour’s thermal protection system. On Flight Day 16, the astronauts deployed two satellites. The first, called Dual RF Astrodynamic GPS Orbital Navigation Satellite, or DRAGONSAT, designed by students at the University of Texas, Austin, and Texas A&M University, College Station, consisted of a pair of picosatellites to look at independent rendezvous of spacecraft using GPS. The second, called Atmospheric Neutral Density Experiment-2, or ANDE-2, consisted of a set of Department of Defense microsatellites to look at the density and composition of the atmosphere 200 miles above the Earth. Polansky and Hurley tested Endeavour’s reaction control system thrusters and flight control surfaces in preparation for the next day’s entry and landing. The entire crew busied themselves with stowing all unneeded equipment.


Left: Endeavour touches down on the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Right: The welcome home ceremony for the STS-127 crew at Ellington Field in Houston.

On July 31, the astronauts closed Endeavour’s payload bay doors, donned their launch and entry suits, and strapped themselves into their seats, a special recumbent seat for Wakata who had spent the last four months in weightlessness. Polansky fired Endeavour’s two Orbital Maneuvering System engines to bring them out of orbit and heading for a landing half an orbit later. He guided Endeavour to a smooth touchdown at KSC’s Shuttle Landing Facility, capping off a very successful STS-127 mission of 15 days, 16 hours, 45 minutes. They orbited the planet 248 times. Wakata spent 137 days, 15 hours, 4 minutes in space, completing 2,166 orbits of the Earth. Workers at KSC began preparing Endeavour for its next flight, STS-130 in February 2010.

Enjoy the crew narrate a video about the STS-127 mission.

Explore More 9 min read 45 Years Ago: Skylab Reenters Earth’s Atmosphere Article 4 days ago 8 min read 30 Years Ago: STS-65, the Second International Microgravity Lab Mission Article 6 days ago 11 min read Fourth of July Holidays in Space Article 2 weeks ago
Categories: NASA

Tech Today: NASA’s Moonshot Launched Commercial Fuel Cell Industry 

NASA - Breaking News - Mon, 07/15/2024 - 3:39pm

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) HyAxiom’s 440-kilowatt phosphoric acid fuel cell is now its flagship product, and it still builds on technical know-how developed under the Apollo and space shuttle programs.Credit: HyAxiom Inc.

NASA’s investment in fuel cells dates to the 1960s when most of the world was still reliant on fossil fuels. A fuel cell generates electricity and heat when hydrogen and oxygen bond through an electrolyte. Because its only by-product is water, it’s an environmentally friendly power source. 

The agency’s interest in fuel cells came when NASA needed to fuel missions to the Moon. Engineers at NASA’s Johnson Space Center in Houston looked to fuel cells because they could provide more energy per pound than batteries could over the course of a long mission. At that time, fuel cells were just a concept that had never been put to practical use. 

NASA funded development of the first practical fuel cells because they were necessary to cut weight from the Apollo spacecraft for Moon missions. Three fuel cells in the Apollo service module provided electricity for the capsule containing the astronauts. The division of Pratt & Whitney that made the fuel cells later became UTC Power, now a subsidiary of Doosan Group known as HyAxiom Inc.Credit: NASA

NASA funded three companies, including a portion of Pratt & Whitney, to develop prototypes. For Apollo mission fuel cells, NASA selected the Pratt & Whitney group, which soon became UTC Power, as the supplier of all the space shuttle fuel cells. With the agency funding and shaping its technology development, UTC Power eventually started offering commercial fuel cells. The company is now known as HyAxiom Inc. and operates from the same plant in South Windsor, Connecticut, that produced fuel cells for the agency. 

The company released its first commercial fuel cell in the mid-1990s and introduced its current product line about a decade later. 

“The models they built for these products we use today had a lot of the electrochemistry understanding from the space program,” said Sridhar Kanuri, HyAxiom’s chief technology officer. 

HyAxiom now produces around 120 units per year but expects to ramp up as government investments in fuel cells increase. The U.S. government plans to use fuel cells to store energy from renewable sources. 

Today’s commercial fuel cell companies received much of their knowledge base from NASA. John Scott, NASA’s principal technologist for power and energy storage said, “All these companies trace their intellectual property heritage, their corporate heritage, even the generations of personnel to those companies NASA funded back in the early 1960s.” 

Read More Share Details Last Updated Jul 15, 2024 Related Terms Explore More 2 min read Sky High Sustainability: NASA Johnson’s Pocket Prairie Flourishes Atop Building 12 Article 15 hours ago 6 min read Voyagers of Mars: The First CHAPEA Crew’s Yearlong Journey  Article 5 days ago 5 min read From Polar Peaks to Celestial Heights: Christy Hansen’s Unique Path to Leading NASA’s Commercial Low Earth Orbit Development Program  Article 7 days ago Keep Exploring Discover Related Topics

The Apollo Program

Technology Transfer & Spinoffs

Exploring the Moon

Technology

Categories: NASA

NASA, Universities Take Learning Out of Classroom

NASA - Breaking News - Mon, 07/15/2024 - 3:36pm
From left, team members Annie Meier, Malay Shah, and Jamie Toro assemble the flight hardware for NASA’s Orbital Syngas Commodity Augmentation Reactor, or OSCAR, on Oct. 10, 2019, in the Space Station Processing Facility at the agency’s Kennedy Space Center in Florida. OSCAR began as an Early Career Initiative project at the spaceport that studies technology to convert trash and human waste into useful gasses such as methane, hydrogen, and carbon dioxide. NASA/Cory Huston

There’s no “I” in team, and that holds true for NASA and its partners as the agency ramps up efforts to recruit tenured professors to research science for a semester at the agency’s Kennedy Space Center in Florida. The tenured teachers work for up to a year in an area where the agency needs specific expertise.

NASA often finds tenured professors – someone who has been guaranteed a job with their university until they retire – through seminars or publications. Assignments must be mutually beneficial to the agency and organizations involved.

“At NASA, we want researchers who are doing something that could help us, that could be synergistic, and to not reinvent the wheel,” said Dr. Jose Nuñez, University Partnerships and Small Sat Capabilities manager at NASA Kennedy. “The goal is to find professors who can benefit the agency in an area that needs more research.”

The U.S. government’s Intergovernmental Personnel Act Mobility Program allows the temporary assignment of personnel between the federal, state, local governments, colleges and universities, Indian tribal governments, federally funded research and development centers, and other eligible organizations.

Dr. Reza Toufiq, an associate professor of chemical engineering at Florida Institute of Technology in Melbourne, Florida, is the first professor to leverage school funds to spend a semester at NASA Kennedy and work on projects dealing with waste and resource recovery.

Toufiq specializes in how to convert everyday trash into energy, including the ash or char left behind from thermally treated trash. He worked with Dr. Annie Meier, who leads a team that converts astronauts’ trash into gasses that can be used for fuel.

Flight hardware for NASA’s Orbital Syngas Commodity Augmentation Reactor, or OSCAR, is inside the Applied Physics Lab inside the Neil Armstrong Operations and Checkout Facility at the agency’s Kennedy Space Center in Florida on July 21, 2022. By processing small pieces of trash in a high-temperature reactor, OSCAR is advancing new and innovative technology for managing waste in space. NASA/Kim Shiflett

“I wanted to learn on the terrestrial side how we can infuse some of our technology, and he wanted to learn from us to grow into the space sector, so it was a really cool match,” said Meier, technical lead for situ resource utilization and waste management resource recovery systems at NASA Kennedy.   

Although Toufiq’s sabbatical with NASA is over, his work is not. Meier just received approval for a project through a Space Act Agreement, which allows a research sponsor to use NASA scientists and facilities to benefit both parties. Meier and other researchers at NASA will give Toufiq information on space waste products and lunar regolith stimulants; in turn, he will do the testing, and provide data to the agency because some of that information is currently unknown.

“He’s learning a lot about the fundamentals of different things with waste that we aren’t really doing, so we lean on academia to get some of that information and offer a fresh perspective,” Meier said.

An intergovernmental assignment is generally approved for up to two years, but it can extend for up to six years with authorization. The length of the appointment also depends on the agency’s needs and university’s sabbatical guidelines, which could pay for one or more semesters.

The University Partnerships team now is working to bring on two professors to NASA Kennedy next semester.

“There are many tenured professors and universities who would like to come here, but we are careful to use due diligence to make sure what they’re doing is something that aligns with our research and technology interests,” Nuñez said.

To learn more about the wide range of research happening at the Florida spaceport, click here.

Categories: NASA

NASA Transmits Hip-Hop Song to Deep Space for First Time

NASA - Breaking News - Mon, 07/15/2024 - 3:03pm

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) This illustration of the large Quetzalpetlatl Corona located in Venus’ southern hemisphere depicts active volcanism and a subduction zone, where the foreground crust plunges into the planet’s interior. A new study suggests coronae reveal locations where active geology is shaping Venus’ surface.

The stars above and on Earth aligned as an inspirational message and lyrics from the song “The Rain (Supa Dupa Fly)” by hip-hop artist Missy Elliott were beamed to Venus via NASA’s DSN (Deep Space Network). The agency’s Jet Propulsion Laboratory in Southern California sent the transmission at 10:05 a.m. PDT on Friday, July 12.

As the largest and most sensitive telecommunication service of NASA’s Space Communications and Navigation (SCaN) program, DSN has an array of giant radio antennas that allow missions to track, send commands, and receive scientific data from spacecraft venturing to the Moon and beyond. To date, the system has transmitted only one other song into space, making the transmission of Elliott’s song a first for hip-hop and NASA.

“Both space exploration and Missy Elliott’s art have been about pushing boundaries,” said Brittany Brown, director, Digital and Technology Division, Office of Communications at NASA Headquarters in Washington, who initially pitched ideas to Missy’s team to collaborate with the agency. “Missy has a track record of infusing space-centric storytelling and futuristic visuals in her music videos so the opportunity to collaborate on something out of this world is truly fitting.”

The song traveled about 158 million miles (254 million kilometers) from Earth to Venus — the artist’s favorite planet. Transmitted at the speed of light, the radio frequency signal took nearly 14 minutes to reach the planet. The transmission was made by the 34-meter (112-foot) wide Deep Space Station 13 (DSS-13) radio dish antenna, located at the DSN’s Goldstone Deep Space Communications Complex, near Barstow in California. Coincidentally, the DSS-13 also is nicknamed Venus.

Elliott’s music career started more than 30 years ago, and the DSN has been communicating with spacecraft for over 60 years. Now, thanks to the network, Elliott’s music has traveled far beyond her Earth-bound fans to a different world.  

“I still can’t believe I’m going out of this world with NASA through the Deep Space Network when “The Rain” (Supa Dupa Fly) becomes the first ever hip-hop song to transmit to space!,” said Elliott. “I chose Venus because it symbolizes strength, beauty, and empowerment and I am so humbled to have the opportunity to share my art and my message with the universe!”

Two NASA missions, selected in 2021, will explore Venus and send data back to Earth using the DSN. DAVINCI (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging), led out of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is slated to launch no earlier than 2029. The VERITAS (Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy), launching no earlier than 2031, is lead out of NASA’s Jet Propulsion Laboratory in Southern California. NASA and the DSN are also partnering with the European Space Agency’s Venus mission, Envision. A team at JPL is developing the spacecraft’s Venus Synthetic Aperture Radar (VenSAR).

In continuous operations since 1963, NASA SCaN’s DSN is composed of three complexes spaced equidistant from each other — approximately 120 degrees apart in longitude — around the planet. The ground stations are in Goldstone in California, Madrid, and Canberra in Australia.

The Deep Space Network is managed by JPL for the SCaN program within the Space Operations Mission Directorate, based at NASA Headquarters.  

For more information about NASA’s Deep Space Network, visit:

https://www.nasa.gov/communicating-with-missions/dsn/

Share Details Last Updated Jul 15, 2024 Related Terms Explore More 1 min read Telepong Article 9 hours ago 1 min read Attention Civil Servant Retirees Article 5 days ago 5 min read Surfing NASA’s Internet of Animals: Satellites Study Ocean Wildlife Article 5 days ago Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

NASA Meatball Painting on Kennedy's VAB

NASA Image of the Day - Mon, 07/15/2024 - 2:49pm
Painting of the NASA logo, also called the meatball, continued on the 525-foot-tall Vehicle Assembly Building at the agency’s Kennedy Space Center in Florida on May 29, 2020.
Categories: Astronomy, NASA

“The Meatball’ Turns 65

NASA - Breaking News - Mon, 07/15/2024 - 2:47pm
Painters work on the official NASA insignia, nicknamed “the meatball,” on the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on May 29, 2020.NASA/Kim Shiflett

NASA’s official logo, nicknamed the “meatball,” turned 65 on July 15, 2024. The insignia dates back to 1959, when the National Advisory Committee on Aeronautics (NACA) metamorphosed into an agency that would advance both space and aeronautics: the National Aeronautics and Space Administration. After a NASA Lewis (now Glenn) Research Center illustrator’s design was chosen for the new agency’s official seal, the head of Lewis’ Research Reports Division, James Modarelli, was asked by the executive secretary of NACA to design a logo that could be used for less formal purposes.

In the design, the sphere represents a planet, the stars represent space, the red chevron is a wing representing aeronautics (the latest design in hypersonic wings at the time the logo was developed), and then there is an orbiting spacecraft going around the wing. The red, white, and blue design, which includes elements representing NASA’s space and aeronautics missions, became the official logo of the United States’ new space agency in 1959.

Image Credit: NASA/Kim Shiflett

Categories: NASA

NASA’s Webb Investigates Eternal Sunrises, Sunsets on Distant World

NASA - Breaking News - Mon, 07/15/2024 - 11:00am
6 Min Read NASA’s Webb Investigates Eternal Sunrises, Sunsets on Distant World

Artists concept of WASP-39 b (full image below).

Near-infrared spectral analysis of terminator confirms differences in morning and evening atmosphere

Researchers using NASA’s James Webb Space Telescope have finally confirmed what models have previously predicted: An exoplanet has differences between its eternal morning and eternal evening atmosphere. WASP-39 b, a giant planet with a diameter 1.3 times greater than Jupiter, but similar mass to Saturn that orbits a star about 700 light-years away from Earth, is tidally locked to its parent star. This means it has a constant dayside and a constant nightside—one side of the planet is always exposed to its star, while the other is always shrouded in darkness.

Using Webb’s NIRSpec (Near-Infrared Spectrograph), astronomers confirmed a temperature difference between the eternal morning and eternal evening on WASP-39 b, with the evening appearing hotter by roughly 300 Fahrenheit degrees (about 200 Celsius degrees). They also found evidence for different cloud cover, with the forever morning portion of the planet being likely cloudier than the evening.

Image A: Artist Concept WASP-39 b This artist’s concept shows what the exoplanet WASP-39 b could look like based on indirect transit observations from NASA’s James Webb Space Telescope as well as other space- and ground-based telescopes. Data collected by Webb’s NIRSpec (Near-Infrared Spectrograph) show variations between the eternal morning and evening atmosphere of the planet.

Astronomers analyzed the 2- to 5-micron transmission spectrum of WASP-39 b, a technique that studies the exoplanet’s terminator, the boundary that separates the planet’s dayside and nightside. A transmission spectrum is made by comparing starlight filtered through a planet’s atmosphere as it moves in front of the star, to the unfiltered starlight detected when the planet is beside the star. When making that comparison, researchers can get information about the temperature, composition, and other properties of the planet’s atmosphere.

“WASP-39 b has become a sort of benchmark planet in studying the atmosphere of exoplanets with Webb,” said Néstor Espinoza, an exoplanet researcher at the Space Telescope Science Institute and lead author on the study. “It has an inflated, puffy atmosphere, so the signal coming from starlight filtered through the planet’s atmosphere is quite strong.”

Previously published Webb spectra of WASP-39b’s atmosphere, which revealed the presence of carbon dioxide, sulfur dioxide, water vapor, and sodium, represent the entire day/night boundary – there was no detailed attempt to differentiate between one side and the other.

Now, the new analysis builds two different spectra from the terminator region, essentially splitting the day/night boundary into two semicircles, one from the evening, and the other from the morning. Data reveals the evening as significantly hotter, a searing 1,450 degrees Fahrenheit (800 degrees Celsius), and the morning a relatively cooler 1,150 degrees Fahrenheit (600 degrees Celsius).

Image B: Transmission Spectra

“It’s really stunning that we are able to parse this small difference out, and it’s only possible due Webb’s sensitivity across near-infrared wavelengths and its extremely stable photometric sensors,” said Espinoza. “Any tiny movement in the instrument or with the observatory while collecting data would have severely limited our ability to make this detection. It must be extraordinarily precise, and Webb is just that.”

Extensive modeling of the data obtained also allows researchers to investigate the structure of WASP-39 b’s atmosphere, the cloud cover, and why the evening is hotter. While future work by the team will study how the cloud cover may affect temperature, and vice versa, astronomers confirmed gas circulation around the planet as the main culprit of the temperature difference on WASP-39 b.

On a highly irradiated exoplanet like WASP-39 b that orbits relatively close to its star, researchers generally expect the gas to be moving as the planet rotates around its star: Hotter gas from the dayside should move through the evening to the nightside via a powerful equatorial jet stream. Since the temperature difference is so extreme, the air pressure difference would also be significant, which in turn would cause high wind speeds.

Image C: Transit Light Curve

Using General Circulation Models, 3-dimensional models similar to the ones used to predict weather patterns on Earth, researchers found that on WASP-39 b the prevailing winds are likely moving from the night side across the morning terminator, around the dayside, across the evening terminator and then around the nightside. As a result, the morning side of the terminator is cooler than the evening side. In other words, the morning side gets slammed with winds of air that have been cooled on the nightside, while the evening is hit by winds of air heated on the dayside. Research suggests the wind speeds on WASP-39 b can reach thousands of miles an hour!

“This analysis is also particularly interesting because you’re getting 3D information on the planet that you weren’t getting before,” added Espinoza. “Because we can tell that the evening edge is hotter, that means it’s a little puffier. So, theoretically, there is a small swell at the terminator approaching the nightside of the planet.”

The team’s results have been published in Nature.

The researchers will now look to use the same method of analysis to study atmospheric differences of other tidally locked hot Jupiters, as part of  Webb Cycle 2 General Observers Program 3969.

WASP-39 b was among the first targets analyzed by Webb as it began regular science operations in 2022. The data in this study was collected under Early Release Science program 1366, designed to help scientists quickly learn how to use the telescope’s instruments and realize its full science potential.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

Downloads

Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.

View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.

The research results have been published in Nature.

Media Contacts

Rob Gutrorob.gutro@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Hannah Braun hbraun@stsci.edu Christine Pulliamcpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.

Related Information

ARTICLE: What is an Exoplanet?

VIDEO: How do we learn about a planet’s Atmosphere?

VIDEO: Reading the Rainbow of Light from an Exoplanet’s Atmosphere

VIDEO: Science Snippets – Exoplanets

BLOG: Reconnaissance of Potentially Habitable Worlds with NASA’s Webb

More Webb News – https://science.nasa.gov/mission/webb/latestnews/

More Webb Images – https://science.nasa.gov/mission/webb/multimedia/images/

Webb Mission Page – https://science.nasa.gov/mission/webb/

Related For Kids

What is a exoplanet?

What is the Webb Telescope?

SpacePlace for Kids

En Español

Para Niños : Qué es una exoplaneta?

Ciencia de la NASA

NASA en español 

Space Place para niños

Keep Exploring Related Topics

James Webb Space Telescope

Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


Exoplanets


Exoplanet Stories


Universe

Share

Details

Last Updated

Jul 15, 2024

Editor Stephen Sabia

Related Terms
Categories: NASA

Sky High Sustainability: NASA Johnson’s Pocket Prairie Flourishes Atop Building 12

NASA - Breaking News - Mon, 07/15/2024 - 9:50am

Buzzing with bees, baby birds, and wildflowers, the rooftop garden atop building 12 at Johnson Space Center in Houston reflects NASA’s commitment to environmental stewardship. Originally constructed in 1963, the facility was transformed in 2012, incorporating energy-efficient features that earned it LEED Gold certification. The certification is a globally recognized symbol of sustainability achievement and leadership. Today, the building serves as a testament to NASA’s commitment to ecological innovation.  

Nestled between the Mission Control Center and building 16, this hidden gem is part of a series of pioneering efforts at Johnson to demonstrate how even the most unexpected locations can become vibrant ecosystems. 

Aerial views of Johnson Space Center’s rooftop garden. NASA/Bill Stafford

Initiated by Joel Walker, director of Center Operations, and designed alongside NASA engineers, the rooftop garden exemplifies green architecture with integrated solar panels, an underfloor air distribution system, and wind turbines.  

“It was something of an experiment to see what worked well and what we might use in future projects,” said Walker. 

Native Texas Bluebonnet atop building 12 at NASA’s Johnson Space Center in Houston.

The Center Operations team leads sustainability efforts at Johnson, working across multiple directorates and teams. Together, they manage Johnson’s 1,600 acres, which host a diverse array of plants and wildlife.

Building 12’s green roof provides benefits such as reduced potable water and energy usage, better stormwater management, protection from UV rays, and increased stability in high winds. This unique space provides an ideal environment for nesting birds and visiting pollinators and boasts a projected lifespan of 50 years, significantly longer than the 20 to 25 years typical of a conventional roof.  

“I was genuinely surprised by the variety of native species thriving in our rooftop garden,” said Johnson’s wildlife biologist Strausser. “We’ve observed far more species than we ever anticipated, which is both fascinating and encouraging for our conservation efforts.” 

Johnson team members meet on the building 12 rooftop to assess and monitor the plants.

Initially, the project started with non-native ornamental plants that failed in the harsh Houston climate. Replanting the garden yielded mixed results until the team hand-scattered a blend of native grass seed and wildflowers. This method proved to be a successful, at a fraction of the cost estimated for professional planting. 

“Sometimes the easiest way is the best!” said Walker. “It looks great now and is much more durable too.” 

Categories: NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Mon, 07/15/2024 - 4:00am


Categories: Astronomy, NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Sun, 07/14/2024 - 12:00am

Do other stars have planets like our Sun?


Categories: Astronomy, NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Sun, 07/14/2024 - 12:00am

Why are these clouds multi-colored?


Categories: Astronomy, NASA

NASA Cloud-Based Platform Could Help Streamline, Improve Air Traffic

NASA - Breaking News - Fri, 07/12/2024 - 9:07pm

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) This image shows an aviation version of a smartphone navigation app that makes suggestions for an aircraft to fly an alternate, more efficient route. The new trajectories are based on information available from NASA’s Digital Information Platform and processed by the Collaborative Departure Digital Rerouting tool.NASA

Just like your smartphone navigation app can instantly analyze information from many sources to suggest the best route to follow, a NASA-developed resource is now making data available to help the aviation industry do the same thing.

To assist air traffic managers in keeping airplanes moving efficiently through the skies, information about weather, potential delays, and more is being gathered and processed to support decision making tools for a variety of aviation applications.

Appropriately named the Digital Information Platform (DIP), this living database hosts key data gathered by flight participants such as airlines or drone operators. It will help power additional tools that, among other benefits, can save you travel time.

Ultimately, the aviation industry… and even the flying public, will benefit from what we develop.

Swati Saxena

NASA Aerospace Engineer

“Through DIP we’re also demonstrating how to deliver digital services for aviation users via a modern cloud-based, service-oriented architecture,” said Swati Saxena, DIP project manager at NASA’s Ames Research Center in California.

The intent is not to compete with others. Instead, the hope is that industry will see DIP as a reference they can use in developing and implementing their own platforms and digital services.

“Ultimately, the aviation industry – the Federal Aviation Administration, commercial airlines, flight operators, and even the flying public – will benefit from what we develop,” Saxena said.

The platform and digital services have even more benefits than just saving some time on a journey.

For example, NASA recently collaborated with airlines to demonstrate a traffic management tool that improved traffic flow at select airports, saving thousands of pounds of jet fuel and significantly reducing carbon emissions.

Now, much of the data gathered in collaboration with airlines and integrated on the platform is publicly available. Users who qualify can create a guest account and access DIP data at a new website created by the project.

It’s all part of NASA’s vision for 21st century aviation involving revolutionary next-generation future airspace and safety tools.

Managing Future Air Traffic

During the 2030s and beyond, the skies above the United States are expected to become much busier.

Facing this rising demand, the current National Airspace System – the network of U.S. aviation infrastructure including airports, air navigation facilities, and communications – will be challenged to keep up. DIP represents a key piece of solving that challenge.

NASA’s vision for future airspace and safety involves new technology to create a highly automated, safe, and scalable environment.

What this vision looks like is a flight environment where many types of vehicles and their pilots, as well as air traffic managers, use state-of-the-art automated tools and systems that provide highly detailed and curated information.

These tools leverage new capabilities like machine learning and artificial intelligence to streamline efficiency and handle the increase in traffic expected in the coming decades.

Digital Services Ecosystem in Action

To begin implementing this new vision, our aeronautical innovators are evaluating their platform, DIP, and services at several airports in Texas. This initial stage is a building block for larger such demonstrations in the future.

“These digital services are being used in the live operational environment by our airline partners to improve efficiency of the current airspace operations,” Saxena said. “The tools are currently in use in the Dallas/Fort Worth area and will be deployed in the Houston airspace in 2025.”

The results from these digital tools are already making a difference.

Proven Air Traffic Results

During 2022, a NASA machine learning-based tool named Collaborative Digital Departure Rerouting, designed to improve the flow of air traffic and prevent flight delays, saved more than 24,000 lbs. (10,886 kg.) of fuel by streamlining air traffic in the Dallas area.

If such tools were used across the entire country, the improvements made in efficiency, safety, and sustainability would make a notable difference to the flying public and industry.

“Continued agreements with airlines and the aviation industry led to the creation and expansion of this partnership ecosystem,” Saxena said. “There have been benefits across the board.”

DIP was developed under NASA’s Airspace Operations and Safety Program.

Learn about NASA’s Collaborative Digital Departure Rerouting tool and how it uses information from the Digital Information Platform to provide airlines with routing options similar to how drivers navigate using cellphone apps. About the AuthorJohn GouldAeronautics Research Mission Directorate

John Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.

Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 7 min read ARMD Solicitations Article 2 weeks ago 2 min read NASA Prepares for Air Taxi Passenger Comfort Studies Article 3 weeks ago 2 min read Hypersonic Technology Project Overview Article 3 weeks ago Keep Exploring Discover More Topics From NASA

Missions

Artemis

Aeronautics STEM

Explore NASA’s History

Share Details Last Updated Jul 12, 2024 EditorJim BankeContactJim Bankejim.banke@nasa.gov Related Terms
Categories: NASA

NGC 7789: Caroline s Rose

APOD - Fri, 07/12/2024 - 8:00pm

Found among the rich starfields of the Milky Way,


Categories: Astronomy, NASA

Sols 4241–4242: We Can’t Go Around It…We’ve Got To Go Through It!

NASA - Breaking News - Fri, 07/12/2024 - 5:57pm
Curiosity Navigation

2 min read

Sols 4241–4242: We Can’t Go Around It…We’ve Got To Go Through It! This image was taken by the Front Hazard Avoidance Camera (Front Hazcam) aboard NASA’s Mars rover Curiosity on Sol 4237 – Martian day 4,237 of the Mars Science Laboratory mission – on July 7, 2024 at 14:46:38 UTC.

Earth planning date: Wednesday, July 10, 2024

Curiosity is currently trekking across Gediz Vallis channel because, as my nephew’s favorite book says, if we can’t go around it… we’ve got to go through it! Recently we’ve been parked for a while on the channel to drill “Mammoth Lakes,” (https://science.nasa.gov/blogs/sols-4222-4224-a-particularly-prickly-power-puzzle/) and are now on the move once again exploring the rubbly rocks. Today the science team planned two sols of activity for Curiosity as we venture on through and across Gediz Vallis channel.

On the first sol we undertake nearly two hours of planned science. This includes Navcam deck monitoring and a Mastcam tau, to measure dust in the atmosphere as part of our atmospheric and environmental activities, alongside some geology-focused observations. MAHLI is taking a close up image of “Donohue Pass” that we targeted with ChemCam LIBS and Mastcam imagery in the previous plan (https://science.nasa.gov/blogs/sols-4239-4240-vuggin-out/). ChemCam will take a LIBS on a rock named “Negit Island” that caught the team’s eye with a lighter base and a darker upper section. ChemCam will also take two RMIs of Gediz Vallis, one to document the wall of Gediz Vallis channel that we can see up ahead of us, and one looking at the rocks that sit within the channel. Mastcam is also taking a look at the wall of Gediz Vallis, as well as continuing a mega-mosaic started in the last plan that took 54 images of “Stubblefield Canyon.” Today we planned another 48 images to document the rest of this area named “Echo Ridge.”

ChemCam will take a passive observation of an interesting rubbly target in this region called “Wishbone Lake,” prior to a five-meter drive (about 16 feet) over to this feature. Once we have arrived, Curiosity will take some post-drive Navcam imaging and a MARDI image of our left-front wheel. After a well-deserved sleep, on the second sol of this plan Curiosity will automatically choose a LIBS target in our new workspace, before taking a dust-devil and suprahorizon movie to round off this plan.

Written by Emma Harris, Graduate Student at Natural History Museum, London

Share

Details

Last Updated

Jul 12, 2024

Related Terms Explore More

2 min read Sols 4239-4240: ‘Vuggin’ Out’

Article


2 days ago

2 min read Sols 4236-4238: One More Time… for Contact Science at Mammoth Lakes

Article


6 days ago

2 min read Sols 4234-4235: And That’s (Nearly) a Wrap on Mammoth Lakes!

Article


1 week ago

Keep Exploring Discover More Topics From NASA

Mars

Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


All Mars Resources

Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


Rover Basics

Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


Mars Exploration: Science Goals

The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

Categories: NASA