NASA
Sols 4357–4358: Turning West
- Curiosity Home
- Science
- News and Features
- Multimedia
- Mars Missions
- The Solar System
4 min read
Sols 4357–4358: Turning West NASA’s Mars rover Curiosity acquired this image of its middle and right-rear wheels, using its Left Navigation Camera (Navcam). The difference in elevation between these two wheels at this location caused the drive planned on Monday, Nov. 4, 2024, to end early. Curiosity captured the image on Nov. 5, 2024, on sol 4355 — Martian day 4,355 of the Mars Science Laboratory mission — at 23:35:56 UTC. NASA/JPL-CaltechEarth planning date: Wednesday, Nov. 6, 2024
Sols 4357–4358: Turning West
If you’ve ever driven down a road that’s in need of repaving, you’ll know that it can be an uncomfortable experience. The same is true on Mars: even at our carefully slow driving speed, the rough, rocky terrain that we’ve found ourselves in since entering Gediz Vallis many months ago continues to present challenges for our intrepid rover.
Planning today began with the news that Curiosity only made it about halfway to its intended destination from Monday. The drive terminated early after the rover exceeded one of its “suspension limits.” This refers to our “rocker-bogie” suspension system, which allows the rover to drive over obstacles while minimizing the motion experienced by the rover body. In this case, our right middle wheel is down in a trough while the right rear wheel is perched on a rock, causing the angle of the “bogie” connecting the two wheels to exceed the maximum allowed value (Those maximums are set with a healthy amount of safety margin, so we’re not in any danger!). You can see the state of the bogie in the image above. On top of that, ending the drive early also meant that we didn’t have the images that we usually use to determine if the rover is stable enough to unstow the arm, so some creative work was necessary to determine whether or not we could. Unsurprisingly, the verdict was that we shouldn’t do so while in this awkward-looking position.
As always, the team was quick to pivot to a remote sensing plan. The focus today was on getting any last-minute remote observations of the Gediz Vallis channel. This was because we decided that, rather than continuing to drive north, we would be starting our western turn toward the exit out of Gediz Vallis.
The first sol of today’s plan contains a hefty two hours of science activities. These include LIBS observations of a bedrock target “North Dome” and a pair of ChemCam passive rasters of “Jewelry Lake” and “Merced River,” two smaller rocks near the rover, the latter of which appears to have been broken open as the rover drove over it. Mastcam will then take a documentation image of North Dome, as well as a mosaic of some more bedrock at “Earthquake Dome.” This first sol also includes a set of environmental science observations, including a lengthy 30-minute dust devil movie, just over 10 minutes of Navcam cloud movies, and some Navcam monitoring of dust and sand on the rover deck. We also sneak in a Navcam line-of-sight mosaic of the north crater rim, to measure the amount of dust in the air after our drive.
The second sol is a fairly typical post-drive sol, beginning with a standard ChemCam AEGIS activity to let the rover autonomously select a LIBS target. The rest of the science time this sol is dedicated to environmental monitoring, including a Mastcam tau observation to monitor dust, some more Navcam deck monitoring, another Navcam cloud movie, and a 360-degree Navcam dust devil survey. No arm activities means the second sol also includes a Navcam shunt prevention activity (SPENDI) to burn off some extra power while also looking for clouds and dust devils. As always, REMS, RAD, and DAN will continue their standard activities throughout this plan.
When I joined the mission back in 2020, I would occasionally look at Gediz Vallis on our HiRISE maps and imagine what the view would be like between those tall, steep channel walls. So it seems almost unbelievable that we will soon be leaving Gediz Vallis behind us as we continue our trek up Mount Sharp. It will probably still be a few more weeks before we can say that we’ve officially exited Gediz Vallis, but I don’t think anyone will be saying they were disappointed with what we accomplished during this long-anticipated phase of the mission.
Onwards and upwards!
Written by Conor Hayes, graduate student at York University
Share Details Last Updated Nov 08, 2024 Related Terms Explore More 2 min read Mars 2020 Perseverance Joins NASA’s Here to Observe ProgramThe Mars 2020 Perseverance mission has recently joined the NASA Here to Observe (H2O) program,…
Article
2 days ago
3 min read Sols 4355-4356: Weekend Success Brings Monday Best
Article
3 days ago
3 min read Sols 4352-4354: Halloween Fright Night on Mars
Article
4 days ago
Keep Exploring Discover More Topics From NASA Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
NASA Ames Astrogram – September/October 2024
In October, the Advanced Composite Solar Sail System a project managed at NASA Ames, was recognized by TIME Magazine as a “Top Invention of 2024”! TIME Magazine also recognized two other NASA missions this year: Europa Clipper, and the Deep Space Optical Communications experiment.
The Advanced Composite Solar Sail System is a demonstration of technologies that enable spacecraft to “sail on sunlight,” using solar radiation for propulsion. Results from this mission could provide an alternative to chemical and electric propulsion systems and guide the design of future larger-scale spacecraft for space weather early warning satellites, near-Earth asteroid reconnaissance missions, or communications relays for crewed exploration missions at the Moon and Mars.
The Advanced Composite Solar Sail System a project managed at NASA Ames, was recognized by TIME Magazine as a “Top Invention of 2024.”NASAThis twelve-unit (12U) CubeSat features a reflective sail held taut by composite booms made from flexible polymer and carbon fiber materials that are stiffer and lighter than previous designs. The square-shaped solar sail measures approximately 80 square meters, but the new boom technology could support future missions for solar sails up to 500 square meters.
The mission launched on April 23 via a Rocket Lab Electron rocket and met its primary objective in August by deploying the boom and sail system in space. Next, the team will attempt to demonstrate maneuverability in orbit using the sail.
Congratulations to the Advanced Composite Solar Sail System team and the Small Spacecraft Technology program office, based at Ames, for this well-earned recognition. Their contributions continue to push the boundaries of what we can achieve at NASA, and this acknowledgment highlights the capabilities and vision of our center.
Representative Anna Eshoo Recognized for 32 Years of Distinguished Public ServiceOn Oct. 29, Ames hosted a recognition event for Representative Anna Eshoo to honor her 32 years of public service and to thank her for her enduring support for NASA and our center. Representative Eshoo announced her retirement from Congress in 2023.
On Oct. 29, Ames Center Director Dr. Eugene Tu presented the Pioneer Plaque to Congresswoman Anna Eshoo in the ballroom of Building 3 at NASA Research Park.NASA photo by Brandon TorresRepresentative Zoe Lofgren, public officials from across the Bay Area, and colleagues from around the center were in attendance to celebrate Representative Eshoo’s decades of tireless support. During the formal program, Ames Center Director Dr. Eugene Tu presented her with a replica of a Pioneer Plaque (photo above) as a token of appreciation for her many years as a champion for NASA Ames – from Hangar One, to the USGS Building, and the Moffett Field Museum.
Congresswoman Anna Eshoo gives remarks to the audience during the unveiling of her commemorative plaque at the Moffett Field Museum, in NASA Research Park, on Oct. 29.NASA photo by Brandon Torres Safety Day Organizational Silence Town Hall HeldOn Oct. 1, a Safety Day Organizational Silence Town Hall was held that focused on employee feedback and insights from prior Safety Culture, Federal Employee Viewpoint, and DEIA Organizational Climate surveys.
Fostering a psychologically safe culture of open communication at NASA and Ames is imperative for the safety of our team and for the collective success of our missions. This is a topic of particular interest and concern to Ames center leadership.
Acting Director of the NASA Safety Center Bob Conway speaks during the Oct. 1 Safety Day Organization Silence Town Hall.NASA photo by Don RIcheyActing Director of the NASA Safety Center, Bob Conway, presented in person at Ames to conduct the hybrid town hall event in the N201 auditorium on Organizational Silence. In addition to valuable insights and tactics, there was the opportunity for employees to ask questions via a Conference I/O channel and in person during the event.
Following the main presentation, Associate Center Director Amir Deylami, at the podium, leads a question-and-answer session with the town hall audience and online attendees of the Safety Day: Organizational Silence town hall, with (seated left to right) Acting Director of the NASA Safety Center Bob Conway, Deputy Center Director David Korsmeyer, Director of Safety and Mission Assurance Directorate Drew Demo, and Director of Center Operations Directorate Aga Goodsell.NASA photo by Don RIchey Deputy Administrator Pam Melroy Visits Ames, Attends Roundtable Discussions NASA Deputy Administrator Pam Melroy speaks with NASA 2040 participants in the lobby of N232, during her visit to Ames on Sept. 16.NASA photo by Brandon TorresOn Sept. 16, Ames welcomed NASA Deputy Administrator Pam Melroy to the center. Having toured the facilities at Ames on past visits, Melroy visited the center to engage in several roundtable discussions with employees focused on procurement, NASA 2040, and leadership. She also greeted a delegation from the American Chamber of Commerce in Australia, with Australia being among the original eight international partners to sign on to the Artemis Accords in 2020. Across all of her conversations, Melroy voiced her appreciation for the Ames workforce for their steadfast dedication. She also consistently expressed her admiration for the diverse array of foundational work being done at Ames to advance NASA’s mission.
President of Latvia, Edgars Rinkēvičs Visits AmesThe President of Latvia Edgars Rinkēvičs visited Ames on Sept. 18 to learn about our aeronautics research and some of the center’s technical capabilities. Accompanied by a delegation of Latvian business representatives, the president visited the Airspace Operations Lab and FutureFlight Central.
President of Latvia Edgars Rinkēvičs, right, chats with Ames Center Director Dr. Eugene Tu, second from right, while in FutureFlight Central.NASA photo by Brandon TorresDuring the visit, he was briefed on the center’s air traffic management simulation capabilities aimed at solving the challenges – present and emerging – of the nation’s air traffic management system. Center experts discussed innovative work in airspace management, including commercial and public safety drone operations that extend from local incidents to large-scale disaster response. Through these international visits, we are showcasing NASA to the world.
Discussions, Lightning Pitches Presented at Ames’ Aeronautics Innovation ForumThe 2024 Aeronautics Innovation Forum was held Sept. 17 – 19, supporting aeronautics research and innovation. A panel discussion, “Aeronautics & Space Economy” was held the first day with Dr. Parimal Kopardekar, Director of the NASA Aeronautics Research Institute (NARI) acting as the moderator. Panelists were Dr. Alex MacDonald, Chief Economist, NASA; Peter Shannon, Radius Capital, AAM Investor; Julia Black, Director of Range Operations, Stoke Space; and Dr. Yewon Kim, Professor, Stanford Graduate School of Business. Facility tours were also given during the forum. Lightning pitches were presented, along with an All Hands meeting, an aeronautics taco fiesta picnic and games at the Ames Park, and an ice cream social and Aeronautics Innovation Center (AIC) discussion.
Director of NASA’s Aeronautics Research Institute (NARI) Parimal Kopardekar (PK) moderates a panel session “Aeronautics & Space Economy” during the 2024 Ames Aeronautics Innovation Forum in the Syvertson Auditorium.NASA photo by Don Richey Nelson Iwai gives attendees of the 2024 Ames Aeronautics INNOVATION Forum a tour of the Aerospace Cognitive Engineering Lab Rapid Automation Test Environment (ACEL-RATE) in N262.NASA photo by Don Richey Don Durston gives his lightening pitch on day three of the 2024 Ames Aeronautics Innovation Forum in the Syvertson Auditorium.NASA photo by Don Richey Following the 2024 Ames Aeronautics Innovation Forum, attendees met in Mega-Bytes for an ice cream social and to discuss the Aeronautics Innovation Center.NASA photo by Don Richey NASA and Partners Scaling to New Heights in Air Traffic Managementby Hillary Smith
NASA, in partnership with AeroVironment and Aerostar, recently demonstrated a first-of-its-kind air traffic management concept that could pave the way for aircraft to safely operate at higher altitudes.
This work seeks to open the door for increased internet coverage, improved disaster response, expanded scientific missions, and even supersonic flight. The concept is referred to as an Upper-Class E traffic management, or ETM. There is currently no traffic management system or set of regulations in place for aircraft operating 60,000 feet and above. There hasn’t been a need for a robust traffic management system in this airspace until recently. That’s because commercial aircraft couldn’t function at such high altitudes due to engine constraints.
NASA and partners from Aerostar and AeroVironment discuss a simulation of a high-altitude air traffic management system in the Airspace Operations Lab at NASA Ames.NASA photo by Don RicheyHowever, recent advancements in aircraft design, power, and propulsion systems are making it possible for high- altitude, long-endurance vehicles — such as balloons, airships, and solar aircraft — to coast miles above our heads, providing radio relay for disaster response, collecting atmospheric data, and more.
But before these aircraft can regularly take to the skies, operators must find a way to manage their operations without overburdening air traffic infrastructure and personnel.
“We are working to safely expand high-altitude missions far beyond what is currently possible,” said Kenneth Freeman, a subproject manager for this effort at NASA’s Ames Research Center in California’s Silicon Valley. “With routine, remotely piloted high-altitude operations, we have the opportunity to improve our understanding of the planet through more detailed tracking of climate change, provide internet coverage in underserved areas, advance supersonic flight research, and more.”
Current high-altitude traffic management is processed manually and on a case-by-case basis. Operators must contact air traffic control to gain access to a portion of the Class E airspace. During these operations, no other aircraft can enter this high-altitude airspace. This method will not accommodate the growing demand for high-altitude missions, according to NASA researchers.
To address this challenge, NASA and its partners have developed an ETM traffic management system that allows aircraft to autonomously share location and flight plans, enabling aircraft to stay safely separated.
During the recent traffic management simulation in the Airspace Operations Laboratory at Ames, data from multiple air vehicles was displayed across dozens of traffic control monitors and shared with partner computers off site.
This included aircraft location, health, flight plans and more. Researchers studied interactions between a slow fixed-wing vehicle from AeroVironment and a high-altitude balloon from Aerostar operating at stratospheric heights.
Each aircraft, connected to the ETM traffic management system for high altitude, shared location and flight plans with surrounding aircraft.
This digital information sharing allowed Aerostar and AeroVironment high-altitude vehicle operators to coordinate and deconflict with each other in the same simulated airspace, without having to gain approval from air traffic control.
Because of this, aircraft operators were able to achieve their objectives, including wireless communication relay.
This simulation represents the first time a traffic management system was able to safely manage a diverse set of high-altitude aircraft operations in the same simulated airspace.
Next, NASA researchers will work with partners to further validate this system through a variety of real flight tests with high-altitude aircraft in a shared airspace.
The Upper-Class E traffic management concept was developed in coordination with the Federal Aviation Administration and high-altitude platform industry partners, under NASA’s National Airspace System Exploratory Concepts and Technologies subproject led out of Ames.
Starship Super Heavy Breezes Through Wind Tunnel Testing at NASA Amesby Lee Mohon
NASA and its industry partners continue to make progress toward Artemis III and beyond, the first crewed lunar landing missions under the agency’s Artemis campaign. SpaceX, the commercial Human Landing System (HLS) provider for Artemis III and Artemis IV, recently tested a 1.2% scale model of the Super Heavy rocket, or booster, in the transonic Unitary Plan Wind Tunnel at NASA Ames. The Super Heavy rocket will launch the Starship human landing system to the Moon as part of Artemis.
A 1.2% scale model of the Super Heavy rocket that will launch the Starship human landing system to the Moon for future crewed Artemis missions was recently tested at NASA Ames’ transonic wind tunnel, providing valuable information on vehicle stability when re-entering Earth’s atmosphere.NASADuring the tests, the wind tunnel forced an air stream at the Super Heavy scale model at high speeds, mimicking the air resistance and flow the booster experiences during flight. The wind tunnel subjected the Super Heavy model, affixed with pressure-measuring sensors, to wind speeds ranging from Mach .7, or about 537 miles per hour, to Mach 1.4, or about 1,074 miles per hour. Mach 1 is the speed that sound waves travel, or 761 miles per hour, at sea level.
Engineers then measured how Super Heavy model responded to the simulated flight conditions, observing its stability, aerodynamic performance, and more. Engineers used the data to update flight software for flight 3 of Super Heavy and Starship and to refine the exterior design of future versions of the booster. The testing lasted about two weeks and took place earlier in 2024.
After Super Heavy completes its ascent and separation from Starship HLS on its journey to the Moon, SpaceX plans to have the booster return to the launch site for catch and reuse. The Starship HLS will continue on a trajectory to the Moon.
To get to the Moon for the Artemis missions, astronauts will launch in NASA’s Orion spacecraft aboard the SLS (Space Launch System) rocket from the agency’s Kennedy Space Center in Florida. Once in lunar orbit, Orion will dock with the Starship HLS or with Gateway. Once the spacecraft are docked, the astronauts will move from Orion or Gateway to the Starship HLS, which will bring them to the surface of the Moon. After surface activities are complete, Starship will return the astronauts to Orion or Gateway waiting in lunar orbit. The astronauts will transfer to Orion for the return trip to Earth.
With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of the Red Planet. NASA’s SLS, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
2024 NASA SmallSat In-Person LEARN Forum Held Audience members participate in a discussion during the 2024 NASA SmallSat Learning from Experience, Achievements, and Resolution, Navigation LEARN forum held Sept. 24 in the ballroom of Building 3 at NASA Research Park.NASA NASA Conjunction Assessment Program Officer Lauri Newman speaks at the 2024 NASA SmallSat Learning from Experience, Achievements, and Resolution, Navigation LEARN forum in the ballroom of Building 3 at NASA Research Park.NASA Attendees of the 2024 NASA SmallSat Learning from Experience, Achievements, and Resolution, Navigation LEARN forum read about other projects during the poster session in the ballroom of Building 3 at NASA Research Park.NASA NASA Astronauts, Leadership Visit Children’s Hospital, Cancer Moonshot EventNASA astronauts, scientists, and researchers, and leadership from the University of California, San Francisco (UCSF) met with cancer patients and gathered in a discussion about potential research opportunities and collaborations as part of President Biden and First Lady Jill Biden’s Cancer Moonshot initiative on Oct. 4.
Roundtable discussions centered conversation around the five hazards of human spaceflight: space radiation, isolation and confinement, distance from Earth, gravity, and closed or hostile environments. Many of these hazards have direct correlations to a cancer patient’s lived experience, like the isolation of a hospital room and long-term effects of radiation.
NASA astronaut Yvonne Cagle and former astronaut Kenneth Cockrell pose with Eli Toribio and Rhydian Daniels at the University of California, San Francisco Bakar Cancer Hospital. Patients gathered to meet the astronauts and learn more about human spaceflight and NASA’s cancer research efforts.NASA photo by Brandon TorresDuring the visit with patients at the UCSF Benioff Children’s Hospital San Francisco, NASA astronaut Yvonne Cagle and former astronaut Kenneth Cockrell answered questions about spaceflight and life in space.
Patients also received a video message from NASA astronauts Suni Williams and Butch Wilmore from the International Space Station, and met with the Director of NASA’s Johnson Space Center in Houston Vanessa Wyche, Ames Center Director Dr. Eugene Tu, and other agency leaders.
Leadership from NASA and the University of California, San Francisco gathered for an informal luncheon before a collaborative roundtable discussion of research opportunities. From left to right, Alan Ashworth, president of the UCSF Helen Diller Family Comprehensive Cancer Center, Dr. Eugene Tu, director NASA Ames, Dr. David Korsmeyer, deputy director NASA Ames, Sam Hawgood, chancellor of UCSF, and Vanessa Wyche, director NASA’s Johnson Space Center in Houston.NASA photo by Brandon TorresBy connecting the dots between human space research and cancer research, NASA and the University of California hope to open doors to innovative new research opportunities. NASA is working with researchers, institutions, and agencies across the federal government to help cut the nation’s cancer death rate by at least 50% in the next 25 years, a goal of the Cancer Moonshot Initiative.
Learn more about the Cancer Moonshot at: https://www.whitehouse.gov/cancermoonshot
NASA Begins New Deployable Solar Array Tech Demo on Pathfinder Spacecraftby Gianine Figliozzi
NASA recently evaluated initial flight data and imagery from Pathfinder Technology Demonstrator-4 (PTD-4), confirming proper checkout of the spacecraft’s systems including its on-board electronics as well as the payload’s support systems such as the small onboard camera. Shown below is a test image of Earth taken by the payload camera, shortly after PTD-4 reached orbit. This camera will continue photographing the technology demonstration during the mission.
Payload operations are now underway for the primary objective of the PTD-4 mission – the demonstration of a new power and communications technology for future spacecraft. The payload, a deployable solar array with an integrated antenna called the Lightweight Integrated Solar Array and anTenna, or LISA-T, has initiated deployment of its central boom structure. The boom supports four solar power and communication arrays, also called petals. Releasing the central boom pushes the still-stowed petals nearly three feet (one meter) away from the spacecraft bus. The mission team currently is working through an initial challenge to get LISA-T’s central boom to fully extend before unfolding the petals and beginning its power generation and communication operations.
A test image of Earth taken by NASA’s Pathfinder Technology Demonstrator-4’s onboard camera. The camera will capture images of the Lightweight Integrated Solar Array and anTenna upon deployment.NASASmall spacecraft on deep space missions require more electrical power than what is currently offered by existing technology. The four-petal solar array of LISA-T is a thin-film solar array that offers lower mass, lower stowed volume, and three times more power per mass and volume allocation than current solar arrays. The in-orbit technology demonstration includes deployment, operation, and environmental survivability of the thin-film solar array.
“The LISA-T experiment is an opportunity for NASA and the small spacecraft community to advance the packaging, deployment, and operation of thin-film, fully flexible solar and antenna arrays in space. The thin-film arrays will vastly improve power generation and communication capabilities throughout many different mission applications,” said Dr. John Carr, deputy center chief technologist at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “These capabilities are critical for achieving higher value science alongside the exploration of deep space with small spacecraft.”
The Pathfinder Technology Demonstration series of missions leverages a commercial platform which serves to test innovative technologies to increase the capability of small spacecraft. Deploying LISA-T’s thin solar array in the harsh environment of space presents inherent challenges such as deploying large highly flexible non-metallic structures with high area to mass ratios. Performing experiments such as LISA-T on a smaller, lower-cost spacecraft allows NASA the opportunity to take manageable risk with high probability of great return. The LISA-T experiment aims to enable future deep space missions with the ability to acquire and communicate data through improved power generation and communication capabilities on the same integrated array.
The PTD-4 small spacecraft is hosting the in-orbit technology demonstration called LISA-T. The PTD-4 spacecraft deployed into low Earth orbit from SpaceX’s Transporter-11 rocket which launched from Space Launch Complex 4E at Vandenberg Space Force Base in California on Aug. 16. NASA’s Marshall Space Flight Center in Huntsville, Alabama designed and built the LISA-T technology as well as LISA-T’s supporting avionics system. NASA’s Small Spacecraft Technology program, based at NASA’s Ames Research Center in California’s Silicon Valley and led by the agency’s Space Technology Mission Directorate, funds and manages the PTD-4 mission as well as the overall Pathfinder Technology Demonstration mission series. Terran Orbital Corporation of Irvine, California, developed and built the PTD-4 spacecraft bus, named Triumph.
2024 Silver Snoopy Awards Presented by Astronaut Nicole MannOn Oct. 24, Astronaut Nicole Mann presented the Silver Snoopy Awards in the Syvertson Auditorium at the center. The Silver Snoopy best symbolizes the intent and spirit of Space Flight Awareness. An astronaut always presents the Silver Snoopy because it is the astronauts’ own award for outstanding performance, contributing to flight safety and mission success. Fewer than one percent of the aerospace program workforce receive it annually, making it a special honor to receive this award.
Silver Snoopy Award recipient Tomomi Oishi (holding award) and Astronaut Nicole Mann with colleagues in the Syvertson Auditorium during the award ceremony on Oct. 24.NASA photo by Brandon Torres Silver Snoopy Award presented to Ali Guarneros Luna, center, by Center Director Dr. Eugene Tu, left, and Astronaut Nicole Mann in the Syvertson Auditorium on Oct. 24.NASA photo by Brandon Torres Jordan Kam Receives a Society of Hispanic Professional Engineers (SHPE) Undergraduate Research Competition Awardby Maria C. Lopez
Jordan Kam, a rising star at NASA Ames and a dedicated member of the Ames Hispanic Advisory Committee for Employees (HACE), recently received the prestigious Society of Hispanic Professional Engineers (SHPE) Undergraduate Research Competition Award at the SHPE 50th National Convention held in Anaheim, California.
Left to right, at the SHPE 50th National Convention award ceremony: Oscar Dubón, professor of Materials Science & Engineering (MSE) and associate dean of Students in the College of Engineering at UC Berkeley; Jordan Kam, recipient of the SHPE Undergraduate Research Competition Award; and Marvin Lopez, director of Student Programs, College of Engineering at UC Berkeley.Currently pursuing an engineering degree at UC Berkeley, Jordan also is interning at NASA Ames through the Volunteer Internship Program, supporting the Intelligent Systems Division. Jordan’s award-winning research, entitled “Development of The Wireless Prototype ‘STAMPS’ for Data Acquisition, Analysis, and Visualization,” focuses on the System for Telemetry Amalgamation of Multimodal Prognostics. This innovative project plays a crucial role in diagnostics and prognostics for the Earth Independent Operations (EIO) Domain, which is essential for NASA’s Mars Campaign efforts.
The SHPE National Convention is the largest annual gathering of Hispanic STEM students and professionals, with more than 15,000 members dedicated to promoting Hispanic leadership in STEM fields. Jordan’s achievement is not only a testament to hard work and dedication but also an inspiration to all of us.
Celebrating Hispanic Heritage Month: Ignacio Lopez-Francos Featured in Newsweek En Españolby Maria C. Lopez
In honor of Hispanic Heritage Month, Newsweek En Español has released a special October/November edition that highlights Hispanics around the globe who are making significant contributions to the field of artificial intelligence. NASA Ames’ very own Ignacio Lopez-Francos has been featured in this prestigious publication!
Ignacio Lopez-Francos, a principal research engineer with the Intelligent Systems Division at NASA Ames has been featured in this Newsweek En Español.Ignacio is a principal research engineer with the Intelligent Systems Division at NASA Ames, working through the KBR Wyle Services, LLC contract. Ignacio’s groundbreaking research focuses on applied AI for robot autonomy, encompassing core areas such as vision-based navigation, 3D scene reconstruction, geospatial mapping, edge computing, and foundation models. In addition to Ignacio’s impressive technical work, Ignacio is an active member of the Ames Hispanic Advisory Committee for Employees (HACE), further demonstrating his commitment to community and representation.
Congratulations, Ignacio! Your pioneering efforts in AI are not only advancing technology but also making a global impact. It is inspiring to see you representing the NASA workforce and serving as a role model for future generations. We celebrate your passion and dedication!
Congratulations to Major Crystal A. Armendariz on her Promotion to Army Major!by Maria C. Lopez
On Sept. 16, the Ames Veterans Committee (AVC) proudly celebrated the promotion of Crystal A. Armendariz to the rank of United States Army Major during a ceremony at NASA Ames. This momentous occasion was organized by AVC and the Asian American Pacific Islander Advisory Group (AAPIAG), bringing together colleagues and friends to honor Major Armendariz’s exceptional service and dedication.
Major Crystal Armendariz 397th Engineer Battalion Executive Officer (center) wears her new Major rank, standing alongside her daughter Maya Karp and guest David Chavez during the September 16 ceremony.Major Armendariz is a distinguished military graduate of California State University-Sacramento, where she earned a degree in Health Science with a focus on Community Health Education, as well as her commission in the United States Army. After completing the Army Military Intelligence Basic Officer Leader Course, she began her career with the 25th Combat Aviation Brigade at Wheeler Army Airfield in Hawaii, quickly deploying to Afghanistan as the Brigade Assistant Intelligence Officer in support of Operation Enduring Freedom. Her career has since seen her take on key leadership roles, including Battalion Intelligence Officer in Charge and Company Executive Officer, where she demonstrated remarkable skill and commitment to her missions.
Following her completion of the Army Military Intelligence Captain’s Career Course, Major Armendariz served at Fort Carson, Colorado, and took part in Operation Atlantic Resolve in Germany. Her leadership extended to managing complex security programs and providing critical intelligence support in joint operational environments. In 2021, she served as the Battalion Security Officer for the 25th Infantry Division at Schofield Barracks, ensuring safety compliance and advising command on security matters across multiple operational theaters.
In 2023, Major Armendariz transitioned to the 397th Reserve Engineer Battalion in Marina, California, as the Battalion S2. Shortly thereafter, she was selected as the Battalion Executive Officer and promoted to Major, overseeing staff operations and ensuring effective communication and planning. Her impressive accolades include the Knowlton Award, Joint Service Commendation Medal, and several other commendations that highlight her unwavering commitment to excellence in military service. Congratulations Major Crystal Armendariz on a well-deserved promotion and remarkable achievements!
Faces of NASA – Ames’ Dr. Donald Mendoza, Chief Engineer“From my earliest childhood, flight had always captivated me. I lived out in the boonies and the farmlands, so I didn’t have neighbors to go and play with. If I wasn’t working, I was left to my own devices, and often, I would just be captivated by the wildlife and in particular, the birds of prey that I would see.
Dr. Donald Menodoza, Chief Engineer, NASA Engineering and Safety Center at Ames.NASA photo by Dominic Hart“To me, they represented a freedom of some kind or another. These birds and the view they have — they can take in so much. So, from that point on, I knew I wanted to be involved in flight and aviation.
“I [enjoyed] all things flight, all things spaceflight. I couldn’t get enough of it. I became an avid reader, whereas before, I wasn’t much of a reader. I couldn’t get enough material to read about my heroes from flight and space. They became my role models and the path that they took involved, at some point or another, a pretty rigorous education and dedication to doing well academically, physically, or athletically. So, I threw myself into that entire sort of mindset.
“When I was working for the Air Force, I was able to fly and work on aircraft that I would dream about, looking at in the magazines Aviation Week and Space Technology. Here they are, right in front of me.
“… So, my career has been as close as possible to that of a flight test engineer. And then, right on the heels of being captivated by atmospheric flight, working in human spaceflight has put me over the Moon.”
—Dr. Donald Mendoza, Chief Engineer, NASA Engineering & Safety Center, NASA’s Ames Research Center
Check out some of our other Faces of NASA.
Cybersecurity Specialist Jonathan Kaldani Inspires Students at CSU East BayOn Oct. 29, Jonathan Kaldani, a cybersecurity specialist on the Cybersecurity Posture Assessment Services (CPAS) team within the Cybersecurity and Privacy Division (CSPD) at NASA Ames, spoke to students in Professor Ahmed Banafa’s Computer Network class at CSU East Bay in Hayward, California.
Jonathan Kaldani, a cybersecurity specialist on the Cybersecurity Posture Assessment Services (CPAS) team at NASA Ames, giving his “Fly Me to the Moon” presentation to a Computer Network class at CSU East Bay in Hayward, California.The insightful session, “Fly Me to the Moon” delved into NASA’s mission and it’s future, and cybersecurity. It provided students with valuable career insights, including information about jobs and internships at NASA. The engagement was exceptional with students actively participating, and showcasing a high level of interest through numerous questions that extended beyond the scheduled class time.
For all NASA Ames employees, if you are interested in sharing the NASA mission with others in your community, you are encouraged to take time to participate in NASA Engages speaking events!
We Are All Made of Cells: Space and the Immune Systemby Rachel Hoover
Malcolm O’Malley and his mom sat nervously in the doctor’s office awaiting the results of his bloodwork. This was no ordinary check-up. In fact, this appointment was more urgent and important than the SATs the seventeen-year-old, college hopeful had spent months preparing for and was now missing in order to understand his symptoms.
But when the doctor shared the results – he had off-the-charts levels of antibodies making him deathly allergic to shellfish – O’Malley realized he had more questions than answers. Like: Why is my immune system doing this? How is it working? Why is it reacting so severely and so suddenly (he’d enjoyed shrimp less than a year ago)? And why does the only treatment – an injection of epinephrine – have nothing to do with the immune system, when allergies appear to be an immune system problem? Years later, O’Malley would look to answer some of these questions while interning in the Space Biosciences Research Branch at NASA’s Ames Research Center in California’s Silicon Valley.
Bone cells NASA/Eduardo Almeida and Cassie Juran“Anaphylaxis is super deadly and the only treatment for it is epinephrine; and I remember thinking, ‘how is this the best we have?’ because epinephrine does not actually treat the immune system at all – it’s just adrenaline,” said O’Malley, who recently returned to his studies as a Ph.D. student of Biomedical Engineering at the University of Virginia (UVA) in Charlottesville. “And there’s a thousand side effects, like heart attacks and stroke – I remember thinking ‘these are worse than the allergy!’”
O’Malley’s curiosity and desire to better understand the mechanisms and connections between what triggers different immune system reactions combined with his interest in integrating datasets into biological insights inspired him to shift his major from computer science to biomedical engineering as an undergraduate student. With his recent allergy diagnosis and a lifelong connection to his aunt who worked at the UVA Heart and Vascular Center, O’Malley began to build a bridge between the immune system and heart health. By the time he was a senior in college, he had joined the Cardiac Systems Biology Lab, and had chosen to focus his capstone project on better understanding the role of neutrophils, a specific type of immune cell making up 50 to 70% of the immune system, that are involved in cardiac inflammation in high blood pressure and after heart attacks.
“The immune system is involved in everything,” O’Malley says. “Anytime there’s an injury – a paper cut, a heart attack, you’re sick – the immune system is going to be the first to respond; and neutrophils are the first responders.”
jA preflight image of beating cardiac spheroid composed of iPSC-derived cardiomyocytes (CMs), endothelial cells (ECs), and cardiac fibroblasts (CFs). These cells are incubated and put under the microscope in space as part of the Effect of Microgravity on Drug Responses Using Heart Organoids (Cardinal Heart 2.0) investigation.Image credit: courtesy of Drs. Joseph Wu, Dilip Thomas and Xu Cao, Stanford Cardiovascular Institute
O’Malley’s work to determine what regulates the immune system’s interrelated responses – like how one cell could affect other cells or immune processes downstream – provided a unique opportunity for him to support multiple interdisciplinary NASA biological and physical sciences research projects during his 10-week internship at NASA Ames over the summer of 2024. O’Malley applied machine learning techniques to the large datasets the researchers were using from experiments and specimens collected over many years to help identify possible causes of inflammation seen in the heart, brain, and blood, as well as changes seen in bones, metabolism, the immune system, and more when humans or other model organisms are exposed to decreased gravity, social isolation, and increased radiation. These areas are of keen interest to NASA due to the risks to human health inherent in space exploration and the agency’s plans to send humans on long-duration missions to the Moon, Mars, and beyond.
“It’s exciting that we just never know what’s going to happen, how the immune system is going to react until it’s already been activated or challenged in some way,” said O’Malley. “I’m particularly interested in the adaptive immune system because it’s always evolving to meet new challenges; whether it’s a pandemic-level virus, bacteria or something on a mission to Mars, our bodies are going to have some kind of adaptive immune response.”
During his NASA internship, O’Malley applied a statistical analysis techniques to plot and make more sense of the massive amounts of life sciences data. From there, researchers could find out which proteins, out of hundreds, or attributes – like differences in sex – are related to which behaviors or outcomes. For example, through O’Malley’s analysis, researchers were able to better pinpoint the proteins involved in inflammation of the brain that may play a protective role in spatial memory and motor control during and after exposure to radiation – and how we might be able to prevent or mitigate those impacts during future space missions and even here on Earth.
“I had this moment where I realized that since my internship supports NASA’s Human Research Program that means the work I’m doing directly applies to Artemis, which is sending the first woman and person of color to the Moon,” reflected O’Malley. “As someone who’s both black and white, representation is important to me. It’s inspiring to think there will be people like me on the Moon – and that I’m playing a role in making this happen.”
When O’Malley wasn’t exploring the mysteries of the immune system for the benefit of all at NASA Ames, he taught himself how to ride a bike and started to surf in the nearby waters of the Pacific Ocean. O’Malley considers Palmyra, Virginia, his hometown and he enjoys playing sports – especially volleyball, water polo, and tennis – reading science fiction and giving guest lectures to local high school students hoping to spark their curiosity.
O’Malley’s vision for the future of biomedical engineering reflects his passion for innovation. “I believe that by harnessing the unique immune properties of other species, we can achieve groundbreaking advancements in limb regeneration, revolutionize cancer therapy, and develop potent antimicrobials that are considered science fiction today,” he said.
Wildly Popular 21st Annual Chili Cook-Off and Car Show HeldThe Ames Exchange sponsored its 21st annual Chili Cook-Off on Oct. 30 behind Building 3. The theme for this year’s event was “Halloween Night,” which led to some really creative costumes. Attendees, both from Ames and the NASA Research Park, sampled chili and voted on their favorites. See below for photos of some of the spooky entries. A car and motorcycle show was also held in conjunction with the chili cook-off.
The 21st Annual Chili Cook-off held Oct. 30 with Hanger One in the background.NASA photos by Don Richey The NASA Ames Fire Department won the Judge’s Choice award for best chili. The classic car collection at the recent Chili Cook-off. One of the collector’s cars at the Chili Cook-off. Classic bike collection at the Chili Cook-off. Employees Participate in the October Fun Run/Walk & RollRunners begin the 2-mile Fun Run/Walk & Roll, sponsored by the Ames Fitness Center. The course covers a 2-mile stretch starting on Durand Road, runs up DeFrance Road to North Perimeter Road and back. The Ames Fitness Center is committed to fostering an inclusive community and encourages everyone, regardless of fitness level, experience, or capability, to participate in these events. Invite your colleagues and come join the fun at future Fun Run/Walk & Roll events! Contact Marco or Orion at the Fitness Center 650-604-5804 or visit https://q.arc.nasa.gov/content/fitness-center for more information about these events and other Fitness Center classes and programs.
Runners begin the October 2-mile Fun Run/Walk & Roll, sponsored by the Ames Fitness Center. NASA photo by Don Richey Runners and organizers of the 2-mile Fun Run/Walk & Roll, sponsored by the Ames Fitness Center. Eric Yee front row left, David King, Nicholas Wogan, Sarah Nickerson, Jose Ignacio de Alvear Cardenas, Lara Lash, Bob Windhorst, Jon Hill, and Marco Santoyo front row right. Orion Spellman back row left, Marton Mester, Alejandro Serrano Borlaff, Evan Crowe, Jackson Donaldson, Jonathan Kaldani, Clayton Elder, and Collin Payne back row right.NASA photo by Don RIchey In Memoriam … Laura Lewis, Science Directorate Project Manager, DiesLaura Lewis passed away on Sept. 24 after a three-year fight against cancer. Laura spent her entire 34-year career at NASA. She was a member of the Science Directorate at Ames. Laura launched her career at Kennedy Space Center. She then moved to Headquarters to work in the Space Life Sciences Office. She joined the Ames community in 1995.
Laura LewisLaura is survived by her husband and fellow Ames colleague, Bruce Yost, three children, and their three German Shepards.
A passionate animal lover, Laura found ways throughout her life to care for and advocate for animals. In lieu of flowers, the family suggests donations be sent to animal shelters or animal rescue organizations such as the San Jose Humane Society or Sunshine Canyon Dog Rescue.
Laura was a valued member of the NASA community. We extend our condolences to her family, friends, and colleagues.
Former Technology Partnerships Manager Robin Orans Passes Away Robin OransRobin Orans passed away on Sept. 27. She was the technology partnership manager at Ames for 27 years. Prior to that role, she served as the software release authority for the center. She retired from NASA in 2015.
Throughout Robin’s career at Ames she received numerous awards including NASA Ames Total Award for pivotal efforts in organizing the Technical SUPPORT Paper Contest for Woman and serving as the Technical Committee Paper Contest Committee in 1992; NASA Ames 2001 Technical Support Honor Award; NASA Ames 2015 Administrative Professional Honor Award; and NASA Ames 2016 Exceptional Service Medal.
We value the many years Robin dedicated to the NASA mission and send our condolences to her family, friends, and colleagues.
Joseph (Jay) Skiles, Senior Research Scientist, DiesDr. Joseph (Jay) W. Skiles III passed away at home on October 22. He had a long and varied career studying, teaching, and lecturing about environmental sciences. He received a B.S. in biology from the University of Redlands, an M.S. in Botany from the University of Idaho, and a Ph.D. in Ecology and Evolutionary Biology from the University of California, Irvine.
Joseph (Jay) SkilesJay worked with a number of organizations, including SETI, Johnson Controls, and NASA Ames. While at Ames, he sponsored and tutored select groups of students, lectured internationally, evaluated various projects from schools and agencies, and initiated and developed scientific investigative projects on his own. He has worked modeling the effects of elevated atmospheric CO2 on ecosystems and modeling perturbations of Arctic ecosystems. He studied terrestrial plant responses to increased ultraviolet radiation in the polar regions of Earth and the effects of low intensity microwave fields on vascular plants. He used supercomputers to do ecosystem modeling.
While not at work, Jay volunteered with the Mountain View Police Department and played golf. He was active with the local Masonic lodge and was a pretty fair clarinetist. Jay was born in Bakersfield, California, to Rev. Joseph W. Skiles II and Genevieve Eola Moody Skiles. He is survived by his brother Stephen, his sister Elizabeth, and eight nieces and nephews.
Private service arrangements are pending.
NASA Named one of America’s Best Employers for Veterans
NASA is one of America’s Best Employers for Veterans, according to Forbes and Statista. Statista surveyed more than 24,000 military veterans – having served in the United States Armed Forces – working for companies with a minimum of 1,000 employees. Veterans were asked to share opinions about their employer on factors such as working conditions, salary and pay, and topics of interest to the veteran community.
This is the fourth consecutive year NASA has earned this recognition.
“NASA has a long history of collaboration and commitment to the military community,” said Deborah Sweet, NASA Veterans Employment Program Manager. “In addition to the many military members who have been part of our Astronaut program, many of our civil servants are Veterans who chose to continue serving by supporting NASA’s mission after they hung up the uniform.”
Across the agency, veterans deliver subject matter expertise, years of on-the-job training, and advanced skills in everything from information technology to transportation logistics and from supply-chain management to public relations.
NASA continues to increase efforts to bring veterans into its ranks. The agency recently expanded its SkillBridge Fellowship Program which provides transitioning members a chance to gain valuable work experience while learning about NASA.
Veterans who served on active duty and separated under honorable conditions may also be eligible for special hiring authorities such as veterans’ preference, as well as other veteran specific hiring options when applying for full time roles at NASA.
For more information about the NASA SkillBridge Program, visit : https://www.nasa.gov/careers/skillbridge/
For more information about NASA hiring paths for Veterans and Military Spouses, visit: https://www.nasa.gov/careers/veterans-and-military-spouses/
Hubble Captures a Galaxy with Many Lights
Hubble Captures a Galaxy with Many Lights
This NASA/ESA Hubble Space Telescope image features NGC 1672, a barred spiral galaxy located 49 million light-years from Earth in the constellation Dorado. This galaxy is a multi-talented light show, showing off an impressive array of different celestial lights. Like any spiral galaxy, shining stars fill its disk, giving the galaxy a beautiful glow. Along its two large arms, bubbles of hydrogen gas shine in a striking red light fueled by radiation from infant stars shrouded within. Near the galaxy’s center are some particularly spectacular stars embedded within a ring of hot gas. These newly formed and extremely hot stars emit powerful X-rays. Closer in, at the galaxy’s very center, sits an even brighter source of X-rays, an active galactic nucleus. This X-ray powerhouse makes NGC 1672 a Seyfert galaxy. It forms as a result of heated matter swirling in the accretion disk around NGC 1672’s supermassive black hole.
Image credit: ESA/Hubble & NASA, O. Fox, L. Jenkins, S. Van Dyk, A. Filippenko, J. Lee and the PHANGS-HST Team, D. de Martin (ESA/Hubble), M. Zamani (ESA/Hubble)
Math, Mentorship, Motherhood: Behind the Scenes with NASA Engineers
Editor’s note: This article was originally published on February 22, 2024.
Engineering is a huge field with endless applications. From aerospace to ergonomics, engineers play an important role in designing, building, and testing technologies all around us.
We asked three engineers at NASA’s Ames Research Center in California’s Silicon Valley to share their experiences, from early challenges they faced in their careers to the day-to-day of being a working engineer.
Give us a look behind the curtain – what is it like being an engineer at NASA? In her early days at NASA, Diana Acosta visited her aeronautics research and development team during her maternity leave and her daughter got her first introduction to flight simulation technology. NASA/Diana AcostaDiana Acosta: I remember working on my first simulations. We were developing new aircraft with higher efficiency that could operate in new places, such as shorter runways. My team was putting together control techniques and introducing new algorithms to help pilots fly these new aircraft in a safer way. We were creating models and testing, then changing things and testing again.
We had a simulator that worked on my laptop, and we had a lab with a pilot seat and controls. Every week, I made it my goal to finish my modeling or controls work and put that into the lab environment so that I could fly the aircraft. Every Friday afternoon, I would fly the aircraft in simulation and try out the changes I’d made to see if we were going in a good direction. We’d later integrate that into the Vertical Motion Simulator at Ames (which was used to train all the original space shuttle pilots) so that we could do a full motion test with a collection of pilots to get feedback.
When simulation time came around, it was during my maternity leave and my team had to take the project to simulation without me. It’s hard to get out of the house with a newborn, but sometimes I’d come by with my daughter and bring brownies to the team. I have two daughters now, and they’ve both been in simulators since a young age.
Diana Acosta is Chief of the Aerospace Simulation and Development Branch at NASA’s Ames Research Center. She has worked at NASA for 17 years.
What’s a challenge you’ve overcome to become an engineer? Savvy Verma (standing) reviews simulation activity with Gus Guerra in the Terminal Tactical Separation Assured Flight Environment at NASA’s Ames Research Center in California’s Silicon Valley. NASA/Dominic HartSavvy Verma: One of the biggest challenges when I started working was that I was sometimes the only woman in a group of men, and I was also much younger. It was sometimes a challenge to get my voice through, or to be heard. I had mentors who taught me to speak up and say things the way I saw them, and that’s what helped me. A good mentor will back you up and support you when you’re in big meetings or giving presentations. They’ll stand up and corroborate you when you’re right, and that goes a long way toward establishing your credibility. It also helped build my confidence, it made me feel like I was on the right track and not out of line. I had both male and female mentors. The female mentor I had always encouraged me to speak my mind. She said the integrity of the experimental result is more important than trying to change things because someone doesn’t like it or doesn’t want to express it a certain way.
I have a lot more women coworkers now, things have changed a lot. In my group there are four women and three men.
Savvy Verma is an aerospace engineer at NASA’s Ames Research Center. She has worked at NASA for 22 years.
Can you become an engineer if you struggle with math in school? Dorcas Kaweesa speaks at the 2024 Ames Aeronautics Forum.NASA/Donald RicheyDorcas Kaweesa: When I introduce myself as an engineer, people always say, “You must be good at math,” and I say, “Oh, I work at it.”
When you want to become an engineer, you must remain adaptable, hardworking, and always willing to learn something new. We’re constantly learning, critically thinking, and problem solving. Most of the time we apply mathematical concepts to the engineering problems we’re solving and not every problem is the same. If you struggle with math, my advice is to maintain the passion for learning, especially learning from your mistakes. It comes down to practicing and challenging yourself to think beyond the immediate struggle. There are so many types of math problems and if you’re not good at one, maybe you’re good at another. Maybe it’s just a hiccup. Also, seek help when you need it, there are instructors and peers out there willing to support you.
Personally, I sought help from my instructors, peers, and mentors, in the math and engineering classes that I found challenging. I also practiced a great deal to improve my problem solving and critical thinking skills. In my current role, I am constantly learning new things based on the task at hand. Learning never ends! If you’re struggling with a math concept, don’t give up. Keep trying, keep accepting the challenge, and keep practicing, you’ll steadily make progress.
Dorcas Kaweesa is mechanical engineer and structures analyst at NASA’s Ames Research Center. She has worked at NASA for over 2 years.
I Am Artemis: Joe Vermette
While some stand on the sidelines and witness history, others are destined to play a part in it. And then there are those who document it, bringing the people, the action, the images, the words, and the personalities to the world. U. S. Navy Reservist Public Affairs Officer and program strategic communicator for NASA’s HLS (Human Landing System) Joe Vermette stands at the nexus of all three.
Spurred to action to serve his country by the events of September 11, 2001; veteran of numerous overseas deployments with the Navy, and responsible for communicating NASA’s return to the Moon through the Artemis campaign, Vermette has played a part in history while he communicates humanity’s greatest endeavors to the world.
Vermette joined NASA in August 2020 during the COVID-19 pandemic, coming from the Federal Emergency Management Agency (FEMA), where he was a regional communications director. Right off the bat, he rose to the challenge of learning about space exploration, Artemis, and communicating the new way the HLS Program would work with commercial providers for Moon landing services, rather than specifying spacecraft to be built.
“I was used to being right in the middle of the action,” Vermette said. “The pandemic challenged me to work in a new way. At the same time, NASA and HLS were working in a new way, having just brought on our first commercial provider, SpaceX,” he said. In May 2023, the HLS Program brought on a second commercial provider, Blue Origin, for human landing services.
After earning a degree in military history with a minor in communications from Florida State University, Vermette worked as a video journalist and spot writer for CNN. But it was the terrorist attacks of September 11, 2001, that really shaped his career in government service. “Three weeks later, I went down to the recruiting office and began the process of joining the military. I saw an opportunity to help the country in the best capacity I could,” Vermette said.
Since then, his career has been dotted by active deployments, from the Middle East to Europe to stateside; onboard Navy ships, at U.S. Central Command, at U. S. Special Operations Command, and more.
NASA’s HLS Program and Artemis have benefitted from Vermette’s experience and steady hand helping guide strategic communications since 2020. He recently answered the call to active duty again but intends to return to NASA once his military obligations are fulfilled.
“NASA is a different world than the military or disaster response. But I’ve been fortunate enough to see – and communicate about – government success stories in all three arenas, Vermette said. “Seeing NASA put astronauts on the Moon again will be the best ‘mission complete’ I could have.”
With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of the Red Planet. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
For more on HLS, visit:
https://www.nasa.gov/humans-in-space/human-landing-system
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256.544.0034
corinne.m.beckinger@nasa.gov
Powerful New US-Indian Satellite Will Track Earth’s Changing Surface
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) The NISAR mission will help researchers get a better understanding of how Earth’s surface changes over time, including in the lead-up to volcanic eruptions like the one pictured, at Mount Redoubt in southern Alaska in April 2009.R.G. McGimsey/AVO/USGSData from NISAR will improve our understanding of such phenomena as earthquakes, volcanoes, and landslides, as well as damage to infrastructure.
We don’t always notice it, but much of Earth’s surface is in constant motion. Scientists have used satellites and ground-based instruments to track land movement associated with volcanoes, earthquakes, landslides, and other phenomena. But a new satellite from NASA and the Indian Space Research Organisation (ISRO) aims to improve what we know and, potentially, help us prepare for and recover from natural and human-caused disasters.
The NISAR (NASA-ISRO Synthetic Aperture Radar) mission will measure the motion of nearly all of the planet’s land and ice-covered surfaces twice every 12 days. The pace of NISAR’s data collection will give researchers a fuller picture of how Earth’s surface changes over time. “This kind of regular observation allows us to look at how Earth’s surface moves across nearly the entire planet,” said Cathleen Jones, NISAR applications lead at NASA’s Jet Propulsion Laboratory in Southern California.
Together with complementary measurements from other satellites and instruments, NISAR’s data will provide a more complete picture of how Earth’s surface moves horizontally and vertically. The information will be crucial to better understanding everything from the mechanics of Earth’s crust to which parts of the world are prone to earthquakes and volcanic eruptions. It could even help resolve whether sections of a levee are damaged or if a hillside is starting to move in a landslide.
The NISAR mission will measure the motion of Earth’s surface — data that can be used to monitor critical infrastructure such as airport runways, dams, and levees. NASA/JPL-Caltech What Lies BeneathTargeting an early 2025 launch from India, the mission will be able to detect surface motions down to fractions of an inch. In addition to monitoring changes to Earth’s surface, the satellite will be able to track the motion of ice sheets, glaciers, and sea ice, and map changes to vegetation.
The source of that remarkable detail is a pair of radar instruments that operate at long wavelengths: an L-band system built by JPL and an S-band system built by ISRO. The NISAR satellite is the first to carry both. Each instrument can collect measurements day and night and see through clouds that can obstruct the view of optical instruments. The L-band instrument will also be able to penetrate dense vegetation to measure ground motion. This capability will be especially useful in areas surrounding volcanoes or faults that are obscured by vegetation.
“The NISAR satellite won’t tell us when earthquakes will happen. Instead, it will help us better understand which areas of the world are most susceptible to significant earthquakes,” said Mark Simons, the U.S. solid Earth science lead for the mission at Caltech in Pasadena, California.
Data from the satellite will give researchers insight into which parts of a fault slowly move without producing earthquakes and which sections are locked together and might suddenly slip. In relatively well-monitored areas like California, researchers can use NISAR to focus on specific regions that could produce an earthquake. But in parts of the world that aren’t as well monitored, NISAR measurements could reveal new earthquake-prone areas. And when earthquakes do occur, data from the satellite will help researchers understand what happened on the faults that ruptured.
“From the ISRO perspective, we are particularly interested in the Himalayan plate boundary,” said Sreejith K M, the ISRO solid Earth science lead for NISAR at the Space Applications Center in Ahmedabad, India. “The area has produced great magnitude earthquakes in the past, and NISAR will give us unprecedented information on the seismic hazards of the Himalaya.”
Surface motion is also important for volcano researchers, who need data collected regularly over time to detect land movements that may be precursors to an eruption. As magma shifts below Earth’s surface, the land can bulge or sink. The NISAR satellite will help provide a fuller picture for why a volcano deforms and whether that movement signals an eruption.
Finding NormalWhen it comes to infrastructure such as levees, aqueducts, and dams, NISAR’s ability to provide continuous measurements over years will help to establish the usual state of the structures and surrounding land. Then, if something changes, resource managers may be able to pinpoint specific areas to examine. “Instead of going out and surveying an entire aqueduct every five years, you can target your surveys to problem areas,” said Jones.
The data could be equally valuable for showing that a dam hasn’t changed after a disaster like an earthquake. For instance, if a large earthquake struck San Francisco, liquefaction — where loosely packed or waterlogged sediment loses its stability after severe ground shaking — could pose a problem for dams and levees along the Sacramento-San Joaquin River Delta.
“There’s over a thousand miles of levees,” said Jones. “You’d need an army to go out and look at them all.” The NISAR mission would help authorities survey them from space and identify damaged areas. “Then you can save your time and only go out to inspect areas that have changed. That could save a lot of money on repairs after a disaster.”
More About NISARThe NISAR mission is an equal collaboration between NASA and ISRO and marks the first time the two agencies have cooperated on hardware development for an Earth-observing mission. Managed for the agency by Caltech, JPL leads the U.S. component of the project and is providing the mission’s L-band SAR. NASA is also providing the radar reflector antenna, the deployable boom, a high-rate communication subsystem for science data, GPS receivers, a solid-state recorder, and payload data subsystem. The U R Rao Satellite Centre in Bengaluru, India, which leads the ISRO component of the mission, is providing the spacecraft bus, the launch vehicle, and associated launch services and satellite mission operations. The ISRO Space Applications Centre in Ahmedabad is providing the S-band SAR electronics.
To learn more about NISAR, visit:
News Media ContactsJane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
2024-155
Share Details Last Updated Nov 08, 2024 Related Terms Explore More 2 min read Hurricane Helene’s Gravity Waves Revealed by NASA’s AWEOn Sept. 26, 2024, Hurricane Helene slammed into the Gulf Coast of Florida, inducing storm…
Article 3 days ago 3 min read Integrating Relevant Science Investigations into Migrant Children EducationFor three weeks in August, over 100 migrant children (ages 3-15) got to engage in…
Article 4 days ago 5 min read NASA, Bhutan Conclude Five Years of Teamwork on STEM, Sustainability Article 6 days ago Keep Exploring Discover Related TopicsMissions
Humans in Space
Climate Change
Solar System
NASA Kennedy’s Applied Chemistry Lab Achieves Agency First
NASA’s Kennedy Space Center in Florida has a long record of achievements in sustainability and recently added another to the list when the spaceport’s Applied Chemistry Lab became the first in the agency to be certified for its environmentally conscious practices.
The My Green Lab Certification recognizes sustainability best practices in research facilities around the world. The certification program run by My Green Lab, a non-profit dedicated to creating a culture of sustainability through science, is considered a key measure of progress towards a zero-carbon future by the United Nations Race to Zero campaign.
“When I heard our lab achieved certification, I was so happy,” said Dr. Annie Meier, one of the laboratory’s chemical engineers. “It meant we could now make a conscious effort to share these green practices with all who work in our lab. We even added them to our training materials for new and incoming members in the lab.”
The lab performs research and technology development for a wide range of chemistry and engineering-related applications to solve the unique operational needs of NASA and outside partners. The lab primarily focuses on in-situ resource utilization and addressing technology gaps related to lunar and Martian sustainability. The lab’s scientists also provide expertise in the fields of logistics reduction, plasma science, hypergolic fuels, analytical instrumentation, and gas analysis.
While sustainability has long been a focus of the lab, the journey to the certification began when Riley Yager, a doctoral student from University of Alabama at Birmingham – where Meier was a technical monitor – shared her knowledge of the program after pursuing green lab practices at her university.
“I work as a sustainability ambassador at my university, so I knew of this program,” Yager said. “Sustainable practices are something woven into my everyday life, so naturally I wanted to bring those practices into my lab environments.”
After learning about the program from Yager and discovering the many other academic institutions and companies certified globally, Meier submitted a proposal to NASA and obtained funding to pursue certification for the Applied Chemistry Lab.
After a kickoff event hosted by My Green Lab in April 2023, the lab’s path to certification began with a self-assessment survey, in which members of the lab answered a series of questions about their practices in areas such as cold storage, green chemistry, infrastructure energy, resource management, waste reduction, and water. My Green Lab collected and analyzed the answers, providing a baseline assessment and recommendations to improve the lab’s sustainable practices.
“We took their initial survey and learned we had lots of room for improvements as a lab,” Meier said. “Then I worked with a few interns over the summer to spearhead the ‘green team’ to implement changes and get momentum from the entire lab.”
The lab began with minimizing purchases by improving efficiencies during the inventory process. The team also performed a waste audit of all seven of its laboratories. They adopted nitrile glove and pipette tip box recycling, reviewed the “12 principles of green chemistry” with the lab members, and installed stickers and signage about what can and cannot be unplugged to save energy. Additionally, they installed low-flow aerators on the lab tap sinks to reduce flow, and the lab now uses a recycling sink to save on water or solvents for cleaning parts.
As luck would have it, Yager ended up working at the Applied Chemistry Lab on a NASA fellowship and became a member of the green team.
“It was really fun to see that come full circle,” Meier said. “Almost all members of the lab, from our fellows to most senior members, used their self-motivation to get on the sustainability train.”
The green team continued to grow as the lab implemented changes to become more sustainable. Just over six months after the kickoff event, they completed another assessment survey. With possible certification levels of bronze, silver, gold, platinum, and green – the level that adheres closest to My Green Lab’s highest standards – the ACL was certified green, marking the first time any NASA center obtained a My Green Lab Certification.
“Our lab is looking to sustain these green practices and achieve the same status when we are reassessed in the future,” Meier said. “This effort could be a wonderful catalyst to inspire other work groups to lean towards more ‘green’ practices at the frontline in our laboratories.”
The NASA Kennedy lab joined over 2,500 labs in a range of sectors that received the My Green Lab certification. Maintaining the distinction will require recertification every two years.
40 Years Ago: STS-51A – “The Ace Repo Company”
Successfully deployed from the space shuttle Challenger during the February 1984 STS-41B mission, the Westar 6 and Palapa B2 communications satellites ended up in incorrect orbits due to failures of their upper stage rockets. During STS-51A in November 1984, Discovery’s second trip into space, the crew of Commander Frederick H. “Rick” Hauck, Pilot David M. Walker, and Mission Specialists Joseph P. Allen, Anna L. Fisher, and Dale A. Gardner worked as a team to not only deploy two new satellites but also to retrieve the two wayward but otherwise healthy satellites for return to Earth. Hauck and Walker piloted Discovery to rendezvous with each satellite in turn, Allen and Gardner retrieved them during two spacewalks, and Fisher grappled and placed them in the payload bay for return to Earth. After refurbishment, both satellites returned to space.
Left: The STS-51A crew of Dale A. Gardner, left, David M. Walker, Anna L. Fisher, Frederick “Rick” H. Hauck, and Joseph P. Allen. Right: The STS-51A crew patch.
NASA originally designated Hauck, Walker, Allen, Fisher, and Gardner as a crew in November 1983 and assigned them to STS-41H, a mission aboard Challenger planned for late September 1984 to either deploy the second Tracking and Data Relay Satellite (TDRS) or fly a classified payload for the Department of Defense. Due to ongoing problems with the Inertial Upper Stage that failed to put the first TDRS satellite in its correct orbit during STS-6, NASA canceled STS-41H and shifted Hauck’s crew to STS-51A. In February 1984, an agreement between NASA and the Canadian government added an as-yet unnamed Canadian payload specialist to the STS-51A crew. Managers later named the Canadian as Marc Garneau and reassigned him to STS-41G.
A shuffling of payloads following the STS-41D launch abort resulted in STS-51A now deploying the Anik D2 satellite for Canada and Leasat 1 (also known as Syncom IV-1) for the U.S. Navy. By early August, the launch date had slipped to Nov. 2, with NASA considering the possibility of retrieving the two wayward satellites from STS-41B, officially adding that task on Aug. 13. NASA selected Allen in 1967 as one of 11 scientist-astronauts, while the rest of the crew hail from the Class of 1978. Hauck, on his second mission after serving as pilot on STS-7, has the distinction as the first from his class to command a shuttle mission. Allen and Gardner had each flown one previous mission, STS-5 and STS-8, respectively, while for Walker and Fisher STS-51A represented their first flight. Fisher has the distinction as the first mother in space.
Left: After its arrival from the Orbiter Processing Facility, workers in the Vehicle Assembly Building (VAB) prepare to lift Discovery for mating with an External Tank (ET) and Solid Rocket Boosters (SRBs). Middle: Workers lift Discovery to stack it with the ET and SRBs. Right: The completed stack prepares to leave the VAB for the rollout to Launch Pad 39A.
Discovery arrived back at NASA’s Kennedy Space Center (KSC) in Florida on Sept. 10, returning from Edwards Air Force Base in California following the STS-41D mission. Workers towed it to the Orbiter Processing Facility (OPF) the next day to begin the process of refurbishing it for STS-51A. On Oct. 18, they rolled it over to the Vehicle Assembly Building (VAB), for stacking with an External Tank and twin Solid Rocket Boosters.
At NASA’s Kennedy Space Center in Florida, space shuttle Discovery rolls out to Launch Pad 39A, with the Saturn V rocket on display in the foreground.
The completed stack rolled out to Launch Pad 39A on Oct. 23. Two days later, the five-member STS-51A crew participated in the Terminal Countdown Demonstration Test, essentially a dress rehearsal for the actual countdown to launch. The crew returned to KSC on Nov. 5, the day the countdown began for a planned Nov. 7 launch. High upper-level winds that day forced a one-day delay.
Left: STS-51A astronaut Dale A. Gardner trains for the capture of a satellite using the Apogee Kick Motor Capture Device. Middle: Astronaut Anna L. Fisher trains to use the Canadian-built Remote Manipulator System, or robotic arm. Right: As part of the Terminal Countdown Demonstration Test, the STS-51A astronauts practice rapid evacuation from the launch pad.
Following deployment from Challenger during STS-41B, the upper stages of both the Westar 6 and Palapa B2 satellites malfunctioned, leaving them in non-useable 160-by-600-mile-high orbits instead of the intended 22,300-mile-high geostationary orbits required for their normal operations. While both satellites remained healthy, their own thrusters could not boost them to the proper orbits. NASA devised a plan to have astronauts retrieve the satellites during spacewalks using the jetpack known as the Manned Maneuvering Unit (MMU), after which the shuttle’s Canadian-built Remote Manipulator System (RMS) or robot arm would grapple them and place them into the cargo bay for return to Earth. Astronauts had demonstrated the capability of the MMU during the STS-41C Solar Max satellite repair mission in April 1984 and NASA felt confident of its ability to capture and return Westar and Palapa.
In the weeks prior to STS-51A, ground controllers lowered the orbits of both satellites and reduced their spin rates from 50 to 1 rpm to enable capture by the shuttle astronauts. Engineers at NASA’s Johnson Space Center in Houston developed the Apogee Kick Motor Capture Device (ACD), otherwise known as the stinger due to its appearance, to allow an astronaut to capture the satellites while flying the MMU. Once relocated over the payload bay, a second astronaut would remove the satellite’s omnidirectional antenna with pruning shears and install an Antenna Bridge Structure (ABS) with a grapple fixture over the satellite’s main antenna dish. Allen would fly the MMU to capture Palapa, then he would switch roles with Gardner who would capture Westar. Fisher would use the RMS to grapple the satellites by this second fixture and lower them into specially built cradles to secure them into the payload bay.
Left: The STS-51A crew leaves crew quarters on their way to Launch Pad 39A. Middle: Liftoff of Discovery on the STS-51A mission. Right: View inside Discovery’s payload bay shortly after orbital insertion – the top of Anik D2 is visible, with Leasat 1 hidden behind it.
Space shuttle Discovery roared off KSC’s Launch Pad 39A on Nov. 8, 1984, to begin the STS-51A mission and mark the orbiter’s first return to space. For Gardner, launch day coincided with his 36th birthday. The launch took place just 26 days after the landing of the previous mission, STS-41G, a then record-breaking turnaround time between shuttle flights. Eight and a half minutes after liftoff, Discovery and its five-member crew reached space and shortly thereafter settled into a 182-by-172-mile-high initial orbit. As their first order of business, the crew checked out the RMS to ensure its functionality for the satellite captures later in the mission. They also performed the first rendezvous burn to begin the approach to the Palapa satellite. The crew then settled down for its first night’s sleep in orbit.
Left: Nighttime deploy of the Anik D2 satellite. Middle: Deploy of the Leasat 1 satellite. Right: Leasat 1 as it departs from Discovery.
The primary activity of the second flight day involved Allen deploying the 2,727-pound Anik D2 satellite via a spring ejection mechanism, occurring on time and with no issues. The crew also circularized the shuttle’s orbit at 186 miles. The next day, Gardner deployed the 17,000-pound Leasat 1 using the Frisbee style mechanism used to deploy the first Leasat during STS-41D two months earlier. With the satellite deployments complete, the crew began to focus on the rendezvous maneuvers to bring them close to the Palapa B2 satellite while Allen and Gardner verified the functionality of their spacesuits. On flight day 4, the astronauts reduced the pressure inside the shuttle from 14.7 pounds per square inch (psi) to 10.2 psi in order to prevent the spacewalking astronauts from developing the bends inside the spacesuits that operated at 4.3 psi.
Left: During the first spacewalk, Jospeh P. Allen captures the Palapa B2 satellite. Middle: Anna L. Fisher grasps Allen and Palapa with the Remote Manipulator System, or robotic arm. Right: Allen, left, and Dale A. Gardner prepare to place Palapa in its cradle in the payload bay.
On the fifth mission day, after Hauck and Walker piloted Discovery to within 35 feet of Palapa, Allen and Gardner exited the airlock to begin the spacewalk portion of the satellite capture. Allen donned the MMU mounted on the side wall of the cargo bay, attached the stinger to its arms, and flew out to Palapa. Once there, he inserted the stinger into the satellite’s Apogee Kick Motor bell and using the MMU’s attitude control system stopped Palapa’s spin.
Fisher then steered the RMS to capture a grapple fixture mounted on the stinger between Allen and the satellite. She then maneuvered them over the payload bay where Gardner waited to remove its omnidirectional antenna and install the bridge structure. However, Gardner could not attach the ABS to the satellite due to an unexpected clearance issue on the satellite. Using a backup plan, Allen undocked from the stinger, leaving it attached to the satellite as well as the RMS, and stowed the MMU in the payload bay. With Allen now holding the satellite by its antenna, Gardner attached an adaptor to the bottom end of the satellite to secure it in its cradle in the payload bay. This plan worked and Allen and Gardner completed the spacewalk in exactly six hours.
Left: Dale A. Gardner flies the Manned Maneuvering Unit to capture Westar 6 during the second spacewalk. Middle: Anna L. Fisher operates the Remote Manipulator System from Discovery’s aft flight deck. Right: Gardner, left, and Joseph P. Allen maneuver Westar prior to placing it in its cradle in the payload bay.
Between the two spacewalk days, the crew serviced the spacesuits, conducted routine maintenance on the shuttle, and prepared for the second rendezvous, this time to retrieve Westar. Allen and Gardner switched roles for the second spacewalk on flight day seven, with Gardner flying the MMU to capture Westar. The astronauts repeated the procedure from the first spacewalk, except for not removing the omni antenna so they could use it as a handhold. With Westar secured in the payload bay, Gardner and Allen completed the second spacewalk in 5 hours and 42 minutes.
Left: Dale A. Gardner, left, and Joseph P. Allen pose at the end of the Remote Manipulator System controlled by Anna L. Fisher, holding a For Sale sign above the two retrieved satellites secured in Discovery’s payload bay. Middle: Inflight photo of the STS-51A crew after the successful satellite retrievals. Right: View inside Discovery’s payload bay shortly before the deorbit burn, with Westar 6 in the foreground and Palapa B2 behind it.
During their final full day in space, Discovery’s crew repressurized the shuttle’s cabin to 14.7 psi and tidied the cabin in preparation for reentry. On Nov. 16, the astronauts closed the payload bay doors and fired the Orbital Maneuvering System engines to begin the descent back to Earth. Hauck guided Discovery to a smooth landing at KSC, completing a flight of 7 days, 23 hours, and 45 minutes. The crew had traveled nearly 3.3 million miles and completed 127 orbits around the Earth. The next day, workers towed Discovery to the OPF to begin preparing it for its next flight, STS-51C in January 1985.
Left: Discovery streaks over Houston on its way to land at NASA’s Kennedy Space Center (KSC) in Florida. Middle: Discovery moments before touchdown at KSC. Right: NASA officials greet the STS-51A astronauts as they exit Discovery.
As a postscript, STS-51A marked the last flight to use the MMUs, and the last untethered spacewalks until 1994 when STS-64 astronauts tested the Simplified Aid for EVA Rescue (SAFER). All subsequent spacewalks on the space shuttle and the International Space Station used safety tethers, with the SAFER as a backup in case a crew member disconnects from the vehicle.
Left: In the Orbiter Processing Facility at NASA’s Kennedy Space Center in Florida, workers inspect the Westar 6, left, and Palapa B2 satellites in Discovery’s payload bay. Right: The STS-51A crew, with Lloyd’s of London representative Stephen Merritt, sitting at right, during their visit to London.
On Dec. 7, 1984, in a ceremony at the White House, President Ronald W. Reagan presented the STS-51A crew with the Lloyd’s of London – the company had insured the two satellites they returned to Earth – Silver Medal for Meritorious Salvage Operations. Fisher has the distinction as only the second woman to receive that award. In February 1985, Lloyd’s flew the crew to London on the Concorde for a week of activities, including addressing the Lloyd’s underwriters and tea with Prince Charles at Kensington Palace.
Hong Kong-based AsiaSat purchased the Westar 6 satellite, refurbished it, and relaunched it as AsiaSat 1 on April 7, 1990, on a Chinese CZ-3 rocket. Title to the Palapa B2 satellite returned to Indonesia after its relaunch as Palapa B2R on April 13, 1990, aboard a Delta rocket.
Read recollections of the STS-51A mission by Hauck, Allen, and Fisher in their oral histories with the JSC History Office. Enjoy the crew’s narration of a video about the STS-51A mission.
Explore More 1 min read Oral History with Jon A. McBride, 1943 – 2024 Article 3 days ago 9 min read 30 Years Ago: STS-66, the ATLAS-3 Mission to Study the Earth’s Atmosphere Article 6 days ago 3 min read Halloween on the International Space Station Article 1 week agoHubble Captures a Galaxy with Many Lights
- Hubble Home
- Overview
- Impact & Benefits
- Science
- Observatory
- Team
- News
- Multimedia
- More
2 min read
Hubble Captures a Galaxy with Many Lights This NASA/ESA Hubble Space Telescope image captures the spiral galaxy NGC 1672 with a supernova.ESA/Hubble & NASA, O. Fox, L. Jenkins, S. Van Dyk, A. Filippenko, J. Lee and the PHANGS-HST Team, D. de Martin (ESA/Hubble), M. Zamani (ESA/Hubble) Download this imageThis NASA/ESA Hubble Space Telescope image features NGC 1672, a barred spiral galaxy located 49 million light-years from Earth in the constellation Dorado. This galaxy is a multi-talented light show, showing off an impressive array of different celestial lights. Like any spiral galaxy, shining stars fill its disk, giving the galaxy a beautiful glow. Along its two large arms, bubbles of hydrogen gas shine in a striking red light fueled by radiation from infant stars shrouded within. Near the galaxy’s center are some particularly spectacular stars embedded within a ring of hot gas. These newly formed and extremely hot stars emit powerful X-rays. Closer in, at the galaxy’s very center, sits an even brighter source of X-rays, an active galactic nucleus. This X-ray powerhouse makes NGC 1672 a Seyfert galaxy. It forms as a result of heated matter swirling in the accretion disk around NGC 1672’s supermassive black hole.
Image Before/AfterAlong with its bright young stars and X-ray core, a highlight of this image is the most fleeting and temporary of lights: a supernova, visible in just one of the six Hubble images that make up this composite. Supernova SN 2017GAX was a Type I supernova caused by the core-collapse and subsequent explosion of a giant star that went from invisible to a new light in the sky in just a matter of days. In the image above, the supernova is already fading and is visible as a small green dot just below the crook of the spiral arm on the right side. Astronomers wanted to look for any companion star that the supernova progenitor may have had — something impossible to spot beside a live supernova — so they purposefully captured this image of the fading supernova.
Recently, NGC 1672 was also among a crop of galaxies imaged with the NASA/ESA/CSA James Webb Space Telescope, showing the ring of gas and the structure of dust in its spiral arms. The image below compares the Webb image with Hubble’s image.
Image Before/After Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubbleMedia Contact:
Claire Andreoli
NASA’s Goddard Space Flight Center, Greenbelt, MD
claire.andreoli@nasa.gov
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble’s Galaxies
Hubble Focus: Galaxies through Space and TimeHubble Focus: Galaxies through Space and Time
Hubble’s Partners in Science
Oral History with Stephen G. Jurczyk, 1962 – 2023
Steve Jurczyk’s NASA career began in 1988 at Langley Research Center as an engineer in the Electronic Systems Branch. During his time at Langley, he served in other roles, including director of engineering and director of research and technology. Jurczyk was named as director of Langley in 2014, then in 2015 he left Langley to serve as the associate administrator for the Space Technology Mission Directorate at NASA Headquarters. He quickly rose to the rank of associate administrator in 2018, and in January 2021 was named the agency’s acting administrator
Read more about Steve Jurczyk- NASA Oral History, September 22, 1921
- NASA Honors Steve Jurczyk
The transcripts available on this site are created from audio-recorded oral history interviews. To preserve the integrity of the audio record, the transcripts are presented with limited revisions and thus reflect the candid conversational style of the oral history format. Brackets and ellipses indicate where the text has been annotated or edited for clarity. Any personal opinions expressed in the interviews should not be considered the official views or opinions of NASA, the NASA History Office, NASA historians, or staff members.
Oral History with Mary L. Cleave, 1947 – 2023
A veteran of two space flights, Dr. Cleave served as a mission specialist on STS-61B and STS-30. She went on to join NASA’s Goddard Space Flight Center and worked in the Laboratory for Hydrospheric Processes as the Project Manager for SeaWiFS, an ocean color sensor which is monitoring vegetation globally. Dr. Cleave next served as Deputy Associate Administrator, Office of Earth Science, NASA Headquarters, until her retirement in 2007.
Read more about Dr. Mary L. Cleave- NASA Oral History, March 5, 2002
- NASA Biography
- NASA Remembers Trailblazing Astronaut, Scientist Mary Cleave
- In Memoriam: Mary Cleave
The transcripts available on this site are created from audio-recorded oral history interviews. To preserve the integrity of the audio record, the transcripts are presented with limited revisions and thus reflect the candid conversational style of the oral history format. Brackets and ellipses indicate where the text has been annotated or edited for clarity. Any personal opinions expressed in the interviews should not be considered the official views or opinions of NASA, the NASA History Office, NASA historians, or staff members.
The Cast and Crew of “Ain’t Too Proud” Visit NASA Langley
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) Members of the cast and crew of “Ain’t Too Proud – The Life and Times of the Temptations” pose for a photo inside of the 8-foot high-temperature tunnel at NASA’s Langley Research Center in Hampton, Virginia. NASA/David C. BowmanGet Ready! Members of the cast and crew of the Broadway national touring production of “Ain’t Too Proud – The Life and Times of The Temptations,” visited NASA’s Langley Research Center in Hampton, Virginia on Nov. 6, where they learned more about the center’s work in air, space, and science. The show was in the area performing at the Ferguson Center for the Arts in Newport News.
The group met with center leadership and members of Langley’s workforce and toured Langley’s historic hangar, 8-Foot High-Temperature Tunnel, Inflatable Habitats, and the ISAAC (Integrated Structural Assembly of Advanced Composites) robot.
Ames Research Center
Vertical Motion Simulator
NASA Ames Unitary Plan Wind Tunnel
Ames Media Resources
NASA Shares Space Food Insight with Commercial Food Industry
NASA recently welcomed more than 50 commercial food and commercial space companies to learn about the evolving space food system supporting NASA missions, including unique requirements for spaceflight, menu development, and food provisioning – essential elements for human spaceflight and sustainable living in space.
The event, held at the agency’s Johnson Space Center in Houston, brought together private industry leaders, NASA astronauts, and NASA’s space food team to discuss creative solutions for nourishing government and private astronauts on future commercial space stations.
“The commercial food industry is the leader in how to produce safe and nutritious food for the consumer, and with knowledge passed on from NASA regarding the unique needs for space food safety and human health, this community is poised to support this new market of commercial low Earth orbit consumers,” said Kimberlee Prokhorov, deputy chief for the Human Systems Engineering and Integration Division at Johnson, which encompasses food systems work.
Experts from NASA’s Space Food Systems Laboratory shared the unique requirements and conditions surrounding the formulation, production, packaging, and logistics of space food for enabling the success of commercial low Earth orbit missions. Attendees heard astronaut perspectives on the importance of space food, challenges they encounter, and potential areas of improvement. They also tasted real space food and learned about the nutritional requirements critical for maintaining human health and performance in space.
“By bringing together key players in the commercial food and space industries, we were able to provide a collaborative opportunity to share fresh ideas and explore future collaborations,” said Angela Hart, manager for NASA’s Commercial Low Earth Orbit Development Program at Johnson. “Space food is a unique challenge, and it is one that NASA is excited to bring commercial companies into. Working with our commercial partners allows us to advance in ways that benefit not only astronauts but also food systems on Earth.”
As NASA expands opportunities in low Earth orbit, it’s essential for the commercial sector to take on the support of space food production, allowing the agency to focus its resources on developing food systems for longer duration human space exploration missions.
NASA will continue providing best practices and offer additional opportunities to interested commercial partners to share knowledge that will enable a successful commercial space ecosystem.
The agency’s commercial strategy for low Earth orbit will provide the government with reliable and safe services at a lower cost and enable the agency to focus on Artemis missions to the Moon in preparation for Mars, while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
Learn more about NASA’s commercial space strategy at:
https://www.nasa.gov/humans-in-space/commercial-space/
Oral History with Jon A. McBride, 1943 – 2024
Selected as an astronaut in 1978, Jon A. McBride served as the pilot for STS 41-G, launched October 5, 1984, the first shuttle mission to carry a full crew of seven. His other NASA assignments included lead chase pilot for the maiden voyage of Columbia and CAPCOM for three early shuttle flights.
Read more about Jon McBride- Jon A. McBride Oral History, 4/17/12
- NASA Biography
- More NASA Oral Histories
The transcripts available on this site are created from audio-recorded oral history interviews. To preserve the integrity of the audio record, the transcripts are presented with limited revisions and thus reflect the candid conversational style of the oral history format. Brackets and ellipses indicate where the text has been annotated or edited for clarity. Any personal opinions expressed in the interviews should not be considered the official views or opinions of NASA, the NASA History Office, NASA historians, or staff members.
Earth Below
Earth Below
Earth’s city lights streak by in this long-exposure photo taken by NASA astronaut Don Pettit on Oct. 24, 2024. The green glow of Earth’s atmosphere is also visible on the horizon.
Since the station became operational in November 2000, crew members have produced hundreds of thousands of images like this one through Crew Earth Observations. Their photographs of Earth record how the planet changes over time due to human activity and natural events, allowing scientists to monitor disasters and direct response on the ground and study phenomena.
Image credit: NASA/Don Pettit