I can calculate the motions of the heavenly bodies, but not the madness of people

— Sir Isaac Newton

NASA

Artemis II Core Stage on the Move

NASA - Breaking News - Thu, 07/18/2024 - 1:13pm
NASA/Eric Bordelon & Michael DeMocker

On July 16, 2024, the first core stage of NASA’s SLS (Space Launch System) rocket for the agency’s Artemis II mission began a journey from NASA’s Michoud Assembly Facility in New Orleans. The core stage was moved onto the agency’s Pegasus barge, where it will be ferried 900 miles to NASA’s Kennedy Space Center in Florida. Once at Kennedy, engineers will prepare it in the Vehicle Assembly Building for attachment to other rocket and Orion spacecraft elements.

The SLS rocket’s core stage is the largest NASA has ever produced. At 212 feet tall, it consists of five major elements, including two huge propellant tanks that collectively hold more than 733,000 gallons of super-chilled liquid propellant to feed four RS-25 engines. During launch and flight, the stage will operate for just over eight minutes, producing more than 2 million pounds of thrust to propel four astronauts inside NASA’s Orion spacecraft toward the Moon.

Watch a timelapse video of the SLS core stage rollout.

Image credit: NASA/Eric Bordelon & Michael DeMocker

Categories: NASA

Registration Opens for the 2024 NASA International Space Apps Challenge

NASA - Breaking News - Thu, 07/18/2024 - 1:02pm
Earth (ESD)

NASA invites a global community of innovators, technologists, storytellers, and problem solvers to register for the 2024 NASA Space Apps Challenge, the largest annual global hackathon. The annual event,  held this year on October 5-6, fosters innovation through international collaboration by providing an opportunity for participants to utilize NASA’s free and open data and space-based data from space agency partners.

“It takes a variety of skills and perspectives to launch a mission into space, and NASA’s Space Apps Challenge brings people together across cultures and borders toward solving real world problems on Earth and in space,” said Nicky Fox, associate administrator for the Science Mission Directorate at NASA Headquarters in Washington. “I am excited that this year’s NASA Space Apps Challenge participants will join in our global Heliophysics Big Year celebration. I look forward to seeing all the innovative ideas that our future generation puts forth.”

This year, the NASA Space Apps Challenge welcomes 15 international space agency partners, including two new agencies: the Communications, Space & Technology Commission of Saudi Arabia and the Spanish Space Agency. NASA Space Apps also welcomes back the Australian Space Agency, Brazilian Space Agency, Canadian Space Agency, European Space Agency, Indian Space Research Organization, Italian Space Agency, Japan Aerospace Exploration Agency, Mexican Space Agency, National Space Activities Commission of Argentina, National Space Science Agency of Bahrain, Paraguayan Space Agency, South African National Space Agency, and the Turkish Space Agency.

During the NASA Space Apps Challenge, participants around the world gather at hundreds of simultaneous in-person and virtual local events to address challenges submitted by subject matter experts across NASA divisions. These challenges range in complexity and topic, tasking participants with everything from creating artistic visualizations of NASA data to conceptualizing and developing informational apps and software programs.

In keeping with this year’s theme, “The Sun Touches Everything,” NASA Space Apps invites participants to consider the far-reaching influence of the Sun on Earth and space science. The theme connects participants with NASA’s Heliophysics Division’s celebration of the Helio Big Year.

After the hackathon, project submissions are judged by space agency experts. Winners are selected for one of 10 global awards and invited to an in-person celebration with NASA leadership and subject matter experts.

NASA Space Apps is funded by NASA’s Earth Science Division through a contract with Booz Allen Hamilton, Mindgrub, and SecondMuse. The theme for the 2024 NASA Space Apps Challenge is funded by NASA Heliophysics Division.

We invite you to register for the 2024 NASA Space Apps Challenge and choose a virtual or in-person local event near you at:

 spaceappschallenge.org

Stay up to date with #SpaceApps by following these accounts:

X: @SpaceApps

Instagram: @nasa_spaceapps

Facebook: @spaceappschallenge

YouTube: @NASASpaceAppsChallenge

Categories: NASA

NASA Ames Welcomes New Zealand Prime Minister, Celebrates Partnership 

NASA - Breaking News - Thu, 07/18/2024 - 12:54pm

1 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Ames Center Director Eugene Tu, left, and New Zealand Prime Minister Christopher Luxon, left, pose in front of the NASA Advanced Supercomputing facility hyperwall as it displays New Zealand and Earth’s ocean currents.NASA/ Brandon Torres Navarrete

As one of eight nations that helped to develop the Artemis Accords, New Zealand is a valuable NASA partner. On July 12, New Zealand Prime Minister Christopher Luxon visited NASA’s Ames Research Center in California’s Silicon Valley to learn more about how Ames supports efforts to return humans to the Moon and the ongoing collaboration between NASA and New Zealand to observe and study Earth’s interconnected systems. 

Share Details Last Updated Jul 18, 2024 Related Terms Explore More 4 min read July 2024 Transformer of the Month: Brooke Weborg Article 10 hours ago 5 min read Experience the Launch of NASA’s SpaceX Crew-9 Mission Article 1 day ago 1 min read Robotic Assembly and Outfitting for NASA Space Missions Article 2 days ago Keep Exploring Discover Related Topics

Ames Research Center

Artemis Accords

SOFIA

The Flying Observatory SOFIA, the Stratospheric Observatory for Infrared Astronomy, was a Boeing 747SP aircraft modified to carry a 2.7-meter…

6 Things to Know About Supercomputing at NASA

Categories: NASA

The Marshall Star for July 17, 2024

NASA - Breaking News - Wed, 07/17/2024 - 4:46pm
15 Min Read The Marshall Star for July 17, 2024 NASA Ships Moon Rocket Stage Ahead of First Crewed Artemis Flight

NASA rolled out the SLS (Space Launch System) rocket’s core stage for the Artemis II test flight from its Michoud Assembly Facility on Tuesday for shipment to the agency’s Kennedy Space Center. The rollout is key progress on the path to NASA’s first crewed mission to the Moon under the Artemis campaign.

Using highly specialized transporters, engineers maneuvered the giant core stage from inside Michoud to NASA’s Pegasus barge. The barge will ferry the stage more than 900 miles to Kennedy, where engineers will prepare it in the Vehicle Assembly Building for attachment to other rocket and Orion spacecraft elements.

Move teams with NASA and Boeing, the SLS core stage lead contractor, position the massive rocket stage for NASA’s SLS rocket on special transporters to strategically guide the flight hardware the 1.3-mile distance from the factory floor onto the agency’s Pegasus barge on July 16. The core stage will be ferried to NASA’s Kennedy Space Center in Florida, where it will be integrated with other parts of the rocket that will power NASA’s Artemis II mission. Pegasus is maintained at NASA’s Michoud Assembly Facility.Credit: NASA

“With Artemis, we’ve set our sights on doing something big and incredibly complex that will inspire a new generation, advance our scientific endeavors, and move U.S. competitiveness forward,” said Catherine Koerner, associate administrator for NASA’s Exploration Systems Development Mission Directorate at NASA Headquarters. “The SLS rocket is a key component of our efforts to develop a long-term presence at the Moon.”

Technicians moved the SLS rocket stage from inside Michoud on the 55th anniversary of the launch of Apollo 11 on July 16, 1969. The move of the rocket stage for Artemis marks the first time since the Apollo Program that a fully assembled Moon rocket stage for a crewed mission rolled out from Michoud.

The NASA Michoud Assembly Facility workforce and with other agency team members take a “family photo” with the SLS (Space Launch System) core stage for Artemis II in the background on July 16 at Michoud. The core stage will help launch the first crewed flight of NASA’s SLS rocket for the agency’s Artemis II mission. NASA

The SLS rocket’s core stage is the largest NASA has ever produced. At 212 feet tall, it consists of five major elements, including two huge propellant tanks that collectively hold more than 733,000 gallons of super-chilled liquid propellant to feed four RS-25 engines. During launch and flight, the stage will operate for just over eight minutes, producing more than 2 million pounds of thrust to propel four astronauts inside NASA’s Orion spacecraft toward the Moon.

“The delivery of the SLS core stage for Artemis II to Kennedy Space Center signals a shift from manufacturing to launch readiness as teams continue to make progress on hardware for all major elements for future SLS rockets,” said John Honeycutt, SLS program manager at NASA’s Marshall Space Flight Center. “We are motivated by the success of Artemis I and focused on working toward the first crewed flight under Artemis.”

Team members on July 16 move the first core stage that will help launch the first crewed flight of NASA’s SLS (Space Launch System) rocket for the agency’s Artemis II mission. The move marked the first time a fully assembled Moon rocket stage for a crewed mission has rolled out from NASA’s Michoud Assembly Facility in New Orleans since the Apollo Program. NASA

After arrival at Kennedy, the stage will undergo additional outfitting inside the Vehicle Assembly Building. Engineers then will join it with the segments that form the rocket’s twin solid rocket boosters. Adapters for the Moon rocket that connect it to the Orion spacecraft will be shipped to Kennedy this fall, where the interim cryogenic propulsion stage is already. Engineers at Kennedy continue to prepare Orion and exploration ground systems for launch and flight.

All major structures for every SLS core stage are fully manufactured at Michoud. Inside the factory, core stages and future exploration upper stages for the next evolution of SLS, called the Block 1B configuration, currently are in various phases of production for Artemis III, IV, and V. Beginning with Artemis III, to better optimize space at Michoud, Boeing – the SLS core stage prime contractor – will use space at Kennedy for final assembly and outfitting activities.

Team members at Michoud Assembly Facility load the first core stage that will help launch the first crewed flight of NASA’s SLS (Space Launch System) rocket for the agency’s Artemis II mission onto the Pegasus barge on July 16. The barge will ferry the core stage on a 900-mile journey from the agency’s Michoud Assembly Facility in New Orleans to its Kennedy Space Center in Florida. NASA

Building, assembling, and transporting the SLS core stage is a collaborative effort for NASA, Boeing, and lead RS-25 engines contractor Aerojet Rocketdyne, an L3Harris Technologies company. All 10 NASA centers contribute to its development with more than 1,100 companies across the United States contributing to its production. 

NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.

› Back to Top

NASA Barge Preparations for Artemis II Rocket Stage Delivery

Team members installed pedestals aboard NASA’s Pegasus barge to hold and secure the massive core stage of NASA’s SLS (Space Launch System) rocket, preparing NASA barge crews for their first delivery to support the Artemis II test flight around the Moon. The barge ferried the core stage on a 900-mile journey from the agency’s Michoud Assembly Facility to its Kennedy Space Center.

Team members at NASA’s Michoud Assembly Facility install pedestals aboard the Pegasus barge to hold and secure the massive core stage of NASA’s SLS (Space Launch System) rocket ahead.NASA/Eric Bordelon

The Pegasus crew began installing the pedestals July 10. The barge, which previously was used to ferry space shuttle external tanks, was modified and refurbished to compensate for the much larger and heavier core stage for the SLS rocket. Measuring 212 feet in length and 27.6 feet in diameter, the core stage is the largest rocket stage NASA has ever built and the longest item ever shipped by a NASA barge.

Pegasus now measures 310 feet in length and 50 feet in width, with three 200-kilowatt generators on board for power. Tugboats and towing vessels moved the barge and core stage from Michoud to Kennedy, where the core stage will be integrated with other elements of the rocket and prepared for launch. Pegasus is maintained at NASA Michoud.

NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.

NASA’s Marshall Space Flight Center manages the SLS Program and Michoud.

› Back to Top

Michoud Marks Artemis II Milestone with Employee Event Featuring NASA Astronaut Victor Glover

Moon to Mars Program Deputy Associate Administrator Amit Kshatriya, left, and NASA astronaut Victor Glover, right, speak to Michoud Assembly Facility team members on July 15 as part of a Space Flight Awareness event marking Artemis II’s core stage completion. The core stage was rolled out of Michoud’s rocket factory on July 16 for transportation to NASA’s Kennedy Space Center, where it will be integrated with the Orion spacecraft and the remaining components of the SLS (Space Launch System) rocket. (NASA)

› Back to Top

Tawnya Laughinghouse Named Director of Marshall’s Materials and Processes Laboratory

Tawnya Plummer Laughinghouse has been named to the Senior Executive Service position of director of the Materials and Processes Laboratory in the Engineering Directorate at NASA’s Marshall Space Flight Center, effective July 7.

Tawnya Plummer Laughinghouse has been named to the Senior Executive Service position of director of the Materials and Processes Laboratory in the Engineering Directorate at NASA’s Marshall Space Flight Center.NASA

The Materials and Processes Laboratory provides science, technology, and engineering support in materials, processes, and products for use in space vehicle applications, including related ground facilities, test articles and support equipment. As director, Laughinghouse will oversee a workforce of science and engineering experts, as well as several research and development efforts in world-class facilities, including the National Center for Advanced Manufacturing.

Laughinghouse has more than 20 years of experience at NASA holding various technical leadership, supervisory, and programmatic positions. Since October 2018, she has been manager of the Technology Demonstration Missions (TDM) Program for the Agency, managing the implementation of a diverse portfolio of advanced space technology projects led by NASA Centers and industry partners across the nation with a goal to rapidly develop, demonstrate, and infuse revolutionary, high-payoff technologies. Under her leadership, the program helped expand the boundaries of the aerospace enterprise with the launch of 10 advanced technologies to space between 2018 and 2024. In January 2017, she was competitively selected as deputy manager of the TDM Level 2 Program Office within Marshall’s Science and Technology Office.

In 2014, she was selected as a member of the NASA Mid-Level Leadership Program. During that time, she completed a detail at NASA Headquarters supporting an Office of Chief Engineer/Office of Chief Technologist joint study on NASA’s Technology Readiness Assessment (TRA) Process.

Laughinghouse began her NASA career at Marshall in 2004 in the Materials and Processes Laboratory as lead materials engineer for the Space Shuttle Reusable Solid Rocket Motor (RSRM) Booster Separation Motor aft closure assembly. In this role, she also provided technical expertise in advanced materials for high temperature applications and thermal protection systems for solid and liquid rocket propulsion systems. Over the next 12 years, she served the lab in various capacities, including technical lead of the Ceramics & Ablatives team from 2010 to 2016, and developmental assignments such as assistant chief of the Space and Environmental Effects Branch, and chief of the Nonmetallic Materials Branch. Prior to joining Marshall, Laughinghouse spent six years in the U.S. manufacturing industry as a process chemist and product engineer.

Laughinghouse has been awarded the NASA Exceptional Achievement Medal, the NASA Exceptional Service Medal, and a host of group achievement and external awards, including the distinguished Merit Award from the National Alumnae Association of Spelman College in 2021. She has been recognized extensively in the community for her advocacy for women in STEM and mentoring.

A federally certified senior/expert program and project manager, Laughinghouse is a graduate of several leadership programs, including the Office of Personnel Management Federal Executive Institute’s Leadership for a Democratic Society. She is a May 2024 graduate of Leadership Greater Huntsville’s Connect-26 Class.

A native of Columbus, Ohio, Laughinghouse was raised in Huntsville and graduated salutatorian of her class at Sparkman High School in Toney, Alabama. After completing a NASA Summer High School Apprenticeship Research Program (SHARP) internship at Marshall, she applied for the NASA Women in Science and Engineering (WISE) dual-degree program and went on to earn a bachelor’s degree in chemistry and a bachelor’s degree in chemical engineering from Spelman College and the Georgia Institute of Technology, respectively. She also holds a Master of Science in management (concentration in management of technology) from the University of Alabama in Huntsville.

› Back to Top

Marshall Engineers Unveil Versatile, Low-cost Hybrid Engine Testbed

By Rick Smith

In June, engineers at NASA’s Marshall Space Flight Center unveiled an innovative, 11-inch hybrid rocket motor testbed.

The new hybrid testbed, which features variable flow capability and a 20-second continuous burn duration, is designed to provide a low-cost, quick-turnaround solution for conducting hot-fire tests of advanced nozzles and other rocket engine hardware, composite materials, and propellants.

Paul Dumbacher, right, lead test engineer for the Propulsion Test Branch at NASA’s Marshall Space Flight Center, confers with Meredith Patterson, solid propulsion systems engineer, as they install the 11-inch hybrid rocket motor testbed into its cradle in Marshall’s East Test Stand.NASA/Charles Beason

Solid rocket propulsion remains a competitive, reliable technology for various compact and heavy-lift rockets as well as in-space missions, offering low propulsion element mass, high energy density, resilience in extreme environments, and reliable performance.

“It’s time consuming and costly to put a new solid rocket motor through its paces – identifying how materials perform in extreme temperatures and under severe structural and dynamic loads,” said Benjamin Davis, branch chief of the Solid Propulsion and Pyrotechnic Devices Branch of Marshall’s Engineering Directorate. “In today’s fast-paced, competitive environment, we wanted to find a way to condense that schedule. The hybrid testbed offers an exciting, low-cost solution.”

Initiated in 2020, the project stemmed from NASA’s work to develop new composite materials, additively manufactured – or 3D-printed – nozzles, and other components with proven benefits across the spacefaring spectrum, from rockets to planetary landers.

After analyzing future industry requirements, and with feedback from NASA’s aerospace partners, the Marshall team recognized that their existing 24-inch rocket motor testbed – a subscale version of the Space Launch System booster – could prove too costly for small startups. Additionally, conventional, six-inch test motors limited flexible configuration and required multiple tests to achieve all customer goals. The team realized what industry needed most was an efficient, versatile third option.

“The 11-inch hybrid motor testbed offers the instrumentation, configurability, and cost-efficiency our government, industry, and academic partners need,” said Chloe Bower, subscale solid rocket motor manufacturing lead at Marshall. “It can accomplish multiple test objectives simultaneously – including different nozzle configurations, new instrumentation or internal insulation, and various propellants or flight environments.”

Assessing components of the 11-inch hybrid rocket motor testbed in the wake of successful testing are, from left, Chloe Bower, Marshall’s subscale solid rocket motor manufacturing lead; Jacobs manufacturing engineer Shelby Westrich; and Precious Mitchell, Marshall’s solid propulsion design lead.NASA/Benjamin Davis

“That quicker pace can reduce test time from months to weeks or days,” said Precious Mitchell, solid propulsion design lead for the project.

Another feature of great interest is the on/off switch. “That’s one of the big advantages to a hybrid testbed,” Mitchell said. “With a solid propulsion system, once it’s ignited, it will burn until the fuel is spent. But because there’s no oxidizer in hybrid fuel, we can simply turn it off at any point if we see anomalies or need to fine-tune a test element, yielding more accurate test results that precisely meet customer needs.”

The team expects to deliver to NASA leadership final test data later this summer. For now, Davis congratulates the Marshall propulsion designers, analysts, chemists, materials engineers, safety personnel, and test engineers who collaborated on the new testbed.

“We’re not just supporting the aerospace industry in broad terms,” he said. “We’re also giving young NASA engineers a chance to get their hands dirty in a practical test environment solving problems. This work helps educate new generations who will carry on NASA’s mission in the decades to come.”

For nearly 65 years, Marshall teams have led development of the U.S. space program’s most powerful rocket engines and spacecraft, from the Apollo-era Saturn V rocket and the space shuttle to today’s cutting-edge propulsion systems, including NASA’s newest rocket, the Space Launch System. NASA technology testbeds designed and built by Marshall engineers and their partners have shaped the reliable technologies of spaceflight and continue to enable discovery, testing, and certification of advanced rocket engine materials and manufacturing techniques. 

Smith, an Aeyon/MTS employee, supports the Marshall Office of Communications.

› Back to Top

NASA Honors 25 Years of Chandra at July National Space Club Breakfast

Andrew Schnell, acting manager of the Chandra X-ray Observatory at NASA’s Marshall Space Flight Center, honored 25 years of the project’s mission success at National Space Club – Huntsville’s breakfast event on July 16.

Schnell provided insight into Chandra’s history – sharing photos and stories from the project’s initial development, launch, first light images, and some of the most iconic images captured by the telescope to date.

Chandra launched on STS-93 Shuttle Columbia July 23, 1999. Originally designed as a five-year mission, the telescope’s prolonged success is a testament to the agency’s engineering capabilities.

“One of the things that excites me about working with Chandra is that are we not only changing our understanding of the universe today, but the data we collect now may help answer questions astrophysicists haven’t even asked yet.” Schnell said. “One day, an astrophysicist – maybe one that hasn’t been born yet – will have a theory, and our data will be there to help them test that theory.” (Photo Credit: Face to Face Marketing)

› Back to Top

Take a Summer Cosmic Road Trip with NASA’s Chandra and Webb

It’s time to take a cosmic road trip using light as the highway and visit four stunning destinations across space. The vehicles for this space get-away are NASA’s Chandra X-ray Observatory and James Webb Space Telescope.

The first stop on this tour is the closest, Rho Ophiuchi, at a distance of about 390 light-years from Earth. Rho Ophiuchi is a cloud complex filled with gas and stars of different sizes and ages. Being one of the closest star-forming regions, Rho Ophiuchi is a great place for astronomers to study stars. In this image, X-rays from Chandra are purple revealing infant stars that violently flare and produce X-rays. Infrared data from Webb are red, yellow, cyan, light blue and darker blue and provide views of the spectacular regions of gas and dust.

The first stop on this tour is the closest, Rho Ophiuchi, at a distance of about 390 light-years from Earth.X-ray: NASA/CXC/MIT/C. Canizares; IR: NASA/ESA/CSA/STScI/K. Pontoppidan; Image Processing: NASA/ESA/STScI/Alyssa Pagan, NASA/CXC/SAO/L. Frattare and J. Major

The next destination is the Orion Nebula. Still located in the Milky Way galaxy, this region is a little bit farther from our home planet at about 1,500 light-years away. If you look just below the middle of the three stars that make up the “belt” in the constellation of Orion, you may be able to see this nebula through a small telescope. With Chandra and Webb, however, we get to see so much more. Chandra reveals young stars that glow brightly in X-rays, colored in red, green, and blue, while Webb shows the gas and dust in darker red that will help build the next generation of stars here.

The Orion Nebula.X-ray: NASA/CXC/Penn State/E.Fei

It’s time to leave our galaxy and visit another. Like the Milky Way, NGC 3627 is a spiral galaxy that we see at a slight angle. NGC 3627 is known as a “barred” spiral galaxy because of the rectangular shape of its central region. From our vantage point, we can also see two distinct spiral arms that appear as arcs. X-rays from Chandra in purple show evidence for a supermassive black hole in its center while Webb finds the dust, gas, and stars throughout the galaxy in red, green, and blue. This image also contains optical data from the Hubble Space Telescope in red, green, and blue.

Spiral galaxy NGC 3627.X-ray: NASA/CXC/SAO; Optical: NASA/ESO/STScI, ESO/WFI; Infrared: NASA/ESA/CSA/STScI/JWST; Image Processing:/NASA/CXC/SAO/J. Major

Our final landing place on this trip is the farthest and the biggest. MACS J0416 is a galaxy cluster, which are among the largest objects in the Universe held together by gravity. Galaxy clusters like this can contain hundreds or even thousands of individual galaxies all immersed in massive amounts of superheated gas that Chandra can detect. In this view, Chandra’s X-rays in purple show this reservoir of hot gas while Hubble and Webb pick up the individual galaxies in red, green, and blue.

ACS J0416 galaxy cluster.X-ray: NASA/CXC/SAO/G. Ogrean et al.; Optical/Infrared: (Hubble) NASA/ESA/STScI; IR: (JWST) NASA/ESA/CSA/STScI/Jose M. Diego (IFCA), Jordan C. J. D’Silva (UWA), Anton M. Koekemoer (STScI), Jake Summers (ASU), Rogier Windhorst (ASU), Haojing Yan (University of Missouri)

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts.

› Back to Top

Categories: NASA

NASA Ends VIPER Project, Continues Moon Exploration

NASA - Breaking News - Wed, 07/17/2024 - 3:51pm
NASA’s VIPER – short for the Volatiles Investigating Polar Exploration Rover – sits assembled inside the cleanroom at the agency’s Johnson Space Center.Credit: NASA

Following a comprehensive internal review, NASA announced Wednesday its intent to discontinue development of its VIPER (Volatiles Investigating Polar Exploration Rover) project.

NASA stated cost increases, delays to the launch date, and the risks of future cost growth as the reasons to stand down on the mission. The rover was originally planned to launch in late 2023, but in 2022, NASA requested a launch delay to late 2024 to provide more time for preflight testing of the Astrobotic lander. Since that time, additional schedule and supply chain delays pushed VIPER’s readiness date to September 2025, and independently its CLPS (Commercial Lunar Payload Services) launch aboard Astrobotic’s Griffin lander also has been delayed to a similar time. Continuation of VIPER would result in an increased cost that threatens cancellation or disruption to other CLPS missions. NASA has notified Congress of the agency’s intent.

“We are committed to studying and exploring the Moon for the benefit of humanity through the CLPS program,” said Nicola Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington. “The agency has an array of missions planned to look for ice and other resources on the Moon over the next five years. Our path forward will make maximum use of the technology and work that went into VIPER, while preserving critical funds to support our robust lunar portfolio.”

Moving forward, NASA is planning to disassemble and reuse VIPER’s instruments and components for future Moon missions. Prior to disassembly, NASA will consider expressions of interest from U.S. industry and international partners by Thursday, Aug. 1, for use of the existing VIPER rover system at no cost to the government. Interested parties should contact HQ-CLPS-Payload@mail.nasa.gov after 10 a.m. EDT on Thursday, July 18. The project will conduct an orderly close out through spring 2025.

Astrobotic will continue its Griffin Mission One within its contract with NASA, working toward a launch scheduled for no earlier than fall 2025. The landing without VIPER will provide a flight demonstration of the Griffin lander and its engines.

NASA will pursue alternative methods to accomplish many of VIPER’s goals and verify the presence of ice at the lunar South Pole. A future CLPS delivery – the Polar Resources Ice Mining Experiment-1 (PRIME-1) — scheduled to land at the South Pole during the fourth quarter of 2024, will search for water ice and carry out a resource utilization demonstration using a drill and mass spectrometer to measure the volatile content of subsurface materials.

Additionally, future instruments as part of NASA’s crewed missions – for example, the Lunar Terrain Vehicle — will allow for mobile observations of volatiles across the south polar region, as well as provide access for astronauts to the Moon’s permanently shadowed regions for dedicated sample return campaigns. The agency will also use copies of three of VIPER’s four instruments for future Moon landings on separate flights.

The VIPER rover was designed to search Earth’s Moon for ice and other potential resources – in support of NASA’s commitment to study the Moon and help unravel some of the greatest mysteries of our solar system. Through NASA’s lunar initiatives, including Artemis human missions and CLPS, NASA is exploring more of the Moon than ever before using highly trained astronauts, advanced robotics, U.S. commercial providers, and international partners.

For more information about VIPER, visit:

https://www.nasa.gov/viper

-end-

Karen Fox / Erin Morton
Headquarters, Washington
202-358-1600 / 202-805-9393
karen.c.fox@nasa.gov / erin.morton@nasa.gov

Share Details Last Updated Jul 17, 2024 LocationNASA Headquarters Related Terms
Categories: NASA

Experience the Launch of NASA’s SpaceX Crew-9 Mission

NASA - Breaking News - Wed, 07/17/2024 - 1:46pm

Digital content creators are invited to register to attend the launch of the ninth SpaceX Dragon spacecraft and Falcon 9 rocket that will carry astronauts to the International Space Station for a science expedition mission. This mission is part of NASA’s Commercial Crew Program

Launch of NASA’s SpaceX Crew-9 mission is targeted for no earlier than mid-August from Launch Complex 39A at the agency’s Kennedy Space Center in Florida. The launch will carry NASA astronauts Zena Cardman, commander; Nick Hague, pilot; and Stephanie Wilson, mission specialist; along with Roscosmos cosmonaut Alexander Gorbunov, mission specialist. 

If your passion is to communicate and engage the world online, then this is the event for you! Seize the opportunity to see and share the #Crew9 mission launch. 

A maximum of 50 social media users will be selected to attend this two-day event and will be given access similar to news media. 

NASA Social participants will have the opportunity to: 

  • View a crewed launch of the SpaceX Falcon 9 rocket and Dragon spacecraft 
  • Tour NASA facilities at Kennedy Space Center 
  • Meet and interact with Crew-9 subject matter experts 
  • Meet fellow space enthusiasts who are active on social media 

Registration for this event opens on Wednesday, July 17, and the deadline to apply is at 10 a.m. EDT on Monday, July 22. All social applications will be considered on a case-by-case basis.

APPLY NOW 

Do I need to have a social media account to register? 

 Yes. This event is designed for people who: 

  • Actively use multiple social networking platforms and tools to disseminate information to a unique audience. 
  • Regularly produce new content that features multimedia elements. 
  • Have the potential to reach a large number of people using digital platforms, or reach a unique audience, separate and distinctive from traditional news media and/or NASA audiences. 
  • Must have an established history of posting content on social media platforms. 
  • Have previous postings that are highly visible, respected and widely recognized. 

Users on all social networks are encouraged to use the hashtag #NASASocial and #Crew9. Updates and information about the event will be shared on X via @NASASocial and @NASAKennedy, and via posts to Facebook and Instagram

How do I register? 

Registration for this event opens on Wednesday, July 17, and the deadline to apply is at 10 a.m. EDT on Monday, July 22. All social applications will be considered on a case-by-case basis.

Can I register if I am not a U.S. citizen? 

Because of the security deadlines, registration is limited to U.S. citizens. If you have a valid permanent resident card, you will be processed as a U.S. citizen. 

When will I know if I am selected? 

After registrations have been received and processed, an email with confirmation information and additional instructions will be sent to those selected. We expect to send the acceptance notifications by August 7.

What are NASA Social credentials? 

All social applications will be considered on a case-by-case basis. Those chosen must prove through the registration process they meet specific engagement criteria. 

If you do not make the registration list for this NASA Social, you still can attend the launch offsite and participate in the conversation online. Find out about ways to experience a launch here. 

What are the registration requirements? 

Registration indicates your intent to travel to NASA’s Kennedy Space Center in Florida and attend the two-day event in person. You are responsible for your own expenses for travel, accommodations, food, and other amenities. 

Some events and participants scheduled to appear at the event are subject to change without notice. NASA is not responsible for loss or damage incurred as a result of attending. NASA, moreover, is not responsible for loss or damage incurred if the event is cancelled with limited or no notice. Please plan accordingly. 

Kennedy is a government facility. Those who are selected will need to complete an additional registration step to receive clearance to enter the secure areas. 

IMPORTANT: To be admitted, you will need to provide two forms of unexpired government-issued identification; one must be a photo ID and match the name provided on the registration. Those without proper identification cannot be admitted

For a complete list of acceptable forms of ID, please visit: NASA Credentialing Identification Requirements

All registrants must be at least 18 years old. 

What if the launch date changes? 

Many different factors can cause a scheduled launch date to change multiple times. If the launch date changes, NASA may adjust the date of the NASA Social accordingly to coincide with the new target launch date. NASA will notify registrants of any changes by email. 

If the launch is postponed, attendees will be invited to attend a later launch date. NASA cannot accommodate attendees for delays beyond 72 hours. 

NASA Social attendees are responsible for any additional costs they incur related to any launch delay. We strongly encourage participants to make travel arrangements that are refundable and/or flexible. 

What if I cannot come to the Kennedy Space Center? 

If you cannot come to the Kennedy Space Center and attend in person, you should not register for the NASA Social. You can follow the conversation online using #NASASocial.  

You can watch the launch on NASA+ or plus.nasa.gov. NASA will provide regular launch and mission updates on @NASA, @NASAKennedy, and @Commercial_Crew, as well as on NASA’s Commercial Crew Program blog

If you cannot make this NASA Social, don’t worry; NASA is planning many other Socials in the near future at various locations! 

Keep Exploring Discover More Topics From NASA

International Space Station

Launch Pad 39B

Kennedy Space Center

Commercial Crew Program

Categories: NASA

Acting Center Chief Technologist Dr. Phillip Williams

NASA Image of the Day - Wed, 07/17/2024 - 1:36pm
"I found out years later that seeing me in high school and hearing my experience in college inspired her to major in physics, and so she became the first robotics director at her school. And now she’s a principal. And it just rocked me because I was just being me and trying to share. It seemed like I paid it forward the same way that NASA mechanical engineer made a mark on me.” — Dr. Phillip Williams, Acting Center Chief Technologist, NASA's Langley Research Center
Categories: Astronomy, NASA

NASA, SpaceX Invite Media to Watch Crew-9 Launch to Space Station

NASA - Breaking News - Wed, 07/17/2024 - 1:01pm
The crew of NASA’s SpaceX Crew-9 mission to the International Space Station poses for a photo during training in Hawthorne, California.Credit: SpaceX

Media accreditation now is open for the launch of NASA’s ninth rotational mission of a SpaceX Falcon 9 rocket and Dragon spacecraft that will carry astronauts to the International Space Station for a science expedition. This mission is part of NASA’s Commercial Crew Program.

Launch of NASA’s SpaceX Crew-9 mission is targeted for no earlier than mid-August from Launch Complex 39A at the agency’s Kennedy Space Center in Florida, pending completion of the company’s ongoing Falcon 9 investigation. Crew safety and mission assurance are top priorities for NASA and its partners.

The launch will carry NASA astronauts Zena Cardman, commander; Nick Hague, pilot; and Stephanie Wilson, mission specialist; along with Roscosmos cosmonaut Alexander Gorbunov, mission specialist. This is the first spaceflight for Cardman and Gorbunov, the second mission to the orbiting laboratory for Hague, and fourth spaceflight for Wilson, who has spent 42 days in space aboard three space shuttle Discovery missions – STS-120, STS-121, and STS-131.

U.S. media, international media without U.S. citizenship, and U.S. citizens representing international media organizations must apply by 11:59 p.m. EDT on Wednesday, July 31. All accreditation requests must be submitted online at:

https://media.ksc.nasa.gov

NASA’s media accreditation policy is online. For questions about accreditation or special logistical requests, email: ksc-media-accreditat@mail.nasa.gov. Requests for space for satellite trucks, tents, or electrical connections are due by Thursday, Aug. 1.

For other questions, please contact NASA Kennedy’s newsroom at: 321-867-2468.

Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: 321-501-8425, o Messod Bendayan: 256-930-1371.

For launch coverage and more information about the mission, visit:

https://www.nasa.gov/commercialcrew

-end-

Joshua Finch / Claire O’Shea
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov

Steve Siceloff / Danielle Sempsrott / Stephanie Plucinsky
Kennedy Space Center, Florida
321-867-2468
steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov

Leah Cheshier
Johnson Space Center, Houston
281-483-5111
leah.d.cheshier@nasa.gov

Share Details Last Updated Jul 17, 2024 LocationNASA Headquarters Related Terms
Categories: NASA

The Next Full Moon is the Buck or Thunder Moon

NASA - Breaking News - Wed, 07/17/2024 - 12:14pm
23 Min Read The Next Full Moon is the Buck or Thunder Moon

Mule deer buck, Yellowstone National Park

The Next Full Moon is the Buck or Thunder Moon; the Hay or Mead Moon; Guru Purnima; Asalha Puja (aka Dharma Day or Esala Poya); and the start of Vassa. 

The next full Moon will be Sunday morning, July 21, 2024, appearing opposite the Sun (in Earth-based longitude) at 6:17 AM EDT. For the International Date Line West and the American Samoa and Midway time zones this will be late Saturday night. For Line Islands Time this will be early Monday morning. The Moon will appear full for about three days around this time, from Friday evening through Monday morning, making this a full Moon weekend. 

The Maine Farmers’ Almanac began publishing “Indian” names for full Moons in the 1930s and these names are now widely known and used. According to this almanac, as the full Moon in June the Algonquin tribes of what is now the northeastern United States called this the Buck Moon. Early summer is normally when the new antlers of buck deer push out of their foreheads in coatings of velvety fur. They also called this the Thunder Moon because of early Summer’s frequent thunderstorms.

Europeans called this the Hay Moon for the haymaking of early summer, and sometimes the Mead Moon (although this name was also used for the previous full Moon). Mead is created by fermenting honey mixed with water, sometimes adding fruits, spices, grains, or hops. 

For Hindus, Buddhists, and Jains, this is the Guru Full Moon (Guru Purnima), celebrated as a time for clearing the mind and honoring the guru or spiritual master. 

For Theravada Buddhists this full Moon is Asalha Puja, also known as Dharma Day or Esala Poya, an important festival celebrating the Buddha’s first sermon after reaching nirvana, which started Buddhism. This sermon became the core of Buddhist teachings and includes the four noble truths. In addition, with this full Moon the Buddhist Monks start Vassa, the annual three-month retreat during the rainy season. 

In many traditional lunisolar and lunar calendars full Moons fall on or near the middle of the lunar months. This full Moon is near the middle of the sixth month of the Chinese year of the Dragon, Tammuz in the Hebrew calendar, and Muharram in the Islamic calendar. Muharram is one of the four sacred months during which warfare is forbidden. 

Since this is the Thunder Moon, a quick note on lightning safety. Most of the lightning that strikes the ground arcs from the negatively charged bottom of the storm to the ground underneath the storm. Much rarer is positive lightning, which arcs from the top of a thunderstorm to strike much farther away. Positive lightning can sometimes strike areas where the sky is clear (hence the term “bolt out of the blue”). NOAA’s Lightning FAQ Page says that almost all lightning will occur within 10 miles of its parent thunderstorm, but that lightning detection equipment has confirmed bolts striking up to almost 50 miles away. Because positive lightning arcs across a greater distance it tends to be 5 to 10 times more powerful than regular ground strikes. It can strike dry areas outside of the storm’s rainfall, so positive lightning tends to start more fires than negative lightning. Although positive lightning is rare (less than 5% of all lightning strikes), the lack of warning and its greater power make it more lethal. A good rule to follow is, if you can hear the thunder, you can be struck by lightning. As a bicycle enthusiast and daily commuter (before I retired) I am well aware that the inch or so of rubber tire between my metal bicycle and the ground will make little difference to a bolt that can arc across miles of air from the top of a thunderstorm to where I am riding. 

As usual, the wearing of suitably celebratory celestial attire is encouraged in honor of the full Moon. Be safe (especially during thunderstorms), avoid starting wars, and take a moment to clear your mind. 

As for other celestial events between now and the full Moon after next (with specific times and angles based on the location of NASA Headquarters in Washington, D.C.):

As summer continues the daily periods of sunlight continue to shorten from their longest on the summer solstice on June 20, 2024. On Sunday, July 21, (the day of the full Moon), morning twilight will begin at 4:52 AM, sunrise will be at 6:00 AM, solar noon at 1:15 PM when the Sun will reach its maximum altitude of 71.4 degrees, sunset will be at 8:28 PM, and evening twilight will end at 9:37 PM. By Monday, Aug. 21, (the day of the full Moon after next), morning twilight will begin at 5:24 AM, sunrise will be at 6:26 AM, solar noon at 1:11 PM when the Sun will reach its maximum altitude of 63.6 degrees, sunset will be at 7:57 PM, and evening twilight will end at 8:58 PM.

Six meteor showers are predicted to peak during this lunar cycle, including one of the best meteor showers of the year for the Southern Hemisphere and one of the best meteor showers of the year for the Northern Hemisphere. 

On July 31, 2024, the Southern Delta Aquariids (005 SDA) meteor shower is predicted to peak at 25 meteors per hour (under ideal conditions). This shower is one of the most active annual sources for the Southern Hemisphere, but viewing it from our more northern latitudes will be difficult. As reported by the International Meteor Organization, this shower has a broad peak, and in past years observers from Australia (in 1977) and Crete (in 2003) have reported outbursts of 40 meteors per hour several days before the predicted peak. On the morning of the predicted peak (July 31), the best time to look (from the Washington, D.C. area) will likely be from after midnight until about 2 AM. The radiant (the point from which the meteors appear to radiate out from) will rise on the east-southeastern horizon on July 30 at about 10:15 PM. Since half of the meteors are hidden by the horizon at radiant rise, waiting until the radiant is higher in the sky should make more meteors visible. But moonrise will be at 1:58 AM (when the radiant will be about 30 degrees above the south-southeastern horizon). After moonrise moonlight will interfere with seeing these meteors, making our window for seeing these meteors fairly short. The parent body for this meteor shower is not certain, but they are caused by dust entering our atmosphere at 41 kilometers per second (92,000 miles per hour), so fast that air gets compressed and heated until it glows white-hot. 

This should be a good year for the annual Perseid meteor shower. The Perseids (007 PER) meteor shower is predicted to peak on Monday, Aug. 12, 2024, between 9 AM and Noon EDT (when we can’t see them). At its peak (under ideal conditions) the Perseids can produce about 100 visible meteors per hour, making it one of the three best meteor showers of the year for the Northern Hemisphere (the others being the Quadrantids in early January and the Geminids in mid December). The time closest to the predicted peak that we can see will be the early morning of Aug. 12. Moonset will be a little before midnight on Aug. 11, and the radiant will rise higher in the north-northeastern sky until the sky shows the first signs of dawn (before morning twilight begins at 5:16 AM). The peak is broad, and in past years high activity has been reported well after the peak, so keep an eye on the sky between moonset and the first hints of dawn for the nights before and after the predicted peak. The Perseid meteor shower is caused by dust from the comet 109P/Swift-Tuttle entering our atmosphere at 59 kilometers per second (132,000 miles per hour) – as previously noted, so fast that air gets compressed and heated until it glows white-hot. 

The best conditions for viewing these meteors would be if the weather is clear with no clouds or high hazes, you go to a place far from any light sources or urban light pollution, and you have a clear view of a wide expanse of the sky. Be sure to give your eyes plenty of time to adapt to the dark. The rod cells in your eyes are more sensitive to low light levels but play little role in color vision. Your color-sensing cone cells are concentrated near the center of your view with more of the rod cells on the edge of your view. Since some meteors are faint, you will tend to see more meteors from the “corner of your eye” (which is why you need a view of a large part of the sky). Your color vision (cone cells) will adapt to darkness in about 10 minutes, but your more sensitive night vision will continue to improve for an hour or more (with most of the improvement in the first 35 to 45 minutes). The more sensitive your eyes are, the more chance you have of seeing meteors. Even a short exposure to light (from passing car headlights, etc.) will start the adaptation over again (so no turning on a light or your cell phone to check what time it is). 

The other four meteor showers, the July Gamma Draconids (184 GDR), Alpha Capricornids (001 CAP), Eta Eridanids (191 ERI), and Kappa Cygnids (012 KCG), are all expected to produce less than five meteors per hour under ideal conditions (which most of us don’t have in our urban and suburban environs) but if you happen to be out with a clear sky late at night or in the early morning, your odds of spotting a meteor are a little higher than usual. 

No comets are expected to be visible this lunar cycle. 

Evening Sky Highlights

On the evening of Sunday, July 21, 2024 (the evening of the day of the full Moon), as twilight ends (at 9:37 PM EDT), the rising Moon will be 3 degrees above the east-southeastern horizon. The bright planet Mercury will be 1 degree above the west-northwestern horizon and six minutes away from setting. The planet Venus will set 22 minutes before twilight ends, but will be bright enough to see in the glow of dusk, low on the west-northwestern horizon before it sets. The bright object appearing closest to overhead will be Vega, the brightest star in the constellation Lyra the lyre, at 65 degrees above the eastern horizon. Vega is one of the three bright stars in the “Summer Triangle,” along with Deneb and Altair. It is the fifth-brightest star in our night sky, about 25 light-years from Earth, has twice the mass of our Sun, and shines 40 times brighter than our Sun. 

As this lunar cycle progresses the background of stars will appear to shift westward each evening (as the Earth moves around the Sun), while the planet Mercury will initially dwell low on the west-northwestern horizon, shifting towards the left. On July 24 Mercury will be 2 degrees below the bright star Regulus, and this will be the last evening Mercury will be above the horizon as twilight ends (although it may remain visible in the glow of dusk before twilight ends into early August). The bright planet Venus will also be visible in the glow of dusk, gradually shifting away from the Sun, but will not be above the horizon as twilight ends until late August. The bright star Regulus will appear about 1 degree to the lower right of Venus on Aug. 4, low on the west-northwestern horizon, with Regulus setting 17 minutes before evening twilight ends. The waxing Moon will pass by Venus and Regulus on Aug. 5 (setting before evening twilight ends), Spica on Aug. 9 and 10, and Antares on Aug. 13. Aug. 16 will be the first evening that the planet Saturn will be above the eastern horizon as evening twilight ends. 

By the evening of Monday, Aug. 19 (the evening of the day of the full Moon after next), as twilight ends (at 8:58 PM), the rising Moon will be 7 degrees above the east-southeastern horizon. The only visible planet in the sky will be Saturn at 1.5 degrees above the eastern horizon. The planet Venus will set four minutes before twilight ends but will be bright enough to see in the glow of dusk, low on the western horizon before it sets. The bright object appearing closest to overhead will still be Vega at 80 degrees above the eastern horizon. 

Morning Sky Highlights

On the morning of Sunday, July 21, 2024 (the morning of the day of the full Moon), as twilight begins (at 4:52 AM EDT), the setting Moon will be 7 degrees above the southwestern horizon. The brightest planet in the sky will be Jupiter at 25 degrees above the eastern horizon. Mars will be 33 degrees above the eastern horizon and Saturn 45 degrees above the southern horizon. The bright object appearing closest to overhead will be the star Deneb at 56 degrees above the west-northwestern horizon. Deneb is the 19th brightest star in our night sky and is the brightest star in the constellation Cygnus the swan. Deneb is one of the three bright stars of the Summer Triangle (along with Vega and Altair). It is about 20 times more massive than our Sun but has used up its hydrogen, becoming a blue-white supergiant about 200 times the diameter of the Sun. If Deneb were where our Sun is, it would extend to about the orbit of Earth. Deneb is about 2,600 light-years from us. 

As this lunar cycle progresses, Jupiter, Saturn, and the background of stars will appear to shift westward each evening, with Mars shifting more slowly and to the left toward Jupiter. The waning Moon will pass by Saturn on July 25, Mars on July 30, Jupiter on July 31, and Pollux on Aug. 2 and 3. Jupiter and Mars will appear at their closest on Aug. 14, after which they will separate again. 

By the morning of Monday, Aug. 19 (the morning of the day of the full Moon after next), as twilight begins (at 5:24 AM), the setting full Moon will be 5 degrees above the southwestern horizon. The brightest planet in the sky will be Jupiter at 49 degrees above the eastern horizon. Near Jupiter will be Mars at 47 degrees above the eastern horizon. Saturn will be 29 degrees above the southwestern horizon. The bright object appearing closest to overhead will be the star Capella, the brightest star in the constellation Auriga the charioteer, at 55 degrees above the east-northeastern horizon. Although we see Capella as a single star (the sixth-brightest in our night sky), it is actually four stars (two pairs of stars orbiting each other). Capella is about 43 light-years from us.

Detailed Daily Guide

Here for your reference is a day-by-day listing of celestial events between now and the full Moon after next. The times and angles are based on the location of NASA Headquarters in Washington, D.C., and some of these details may differ for where you are (I use parentheses to indicate times specific to the D.C. area). 

Wednesday night into early Thursday morning, July 17 to 18, 2024, the bright star Antares will appear near the waxing gibbous Moon. As evening twilight ends (at 9:40 PM EDT) Antares will be 3 degrees to the upper right of the Moon. The Moon will reach its highest in the sky 27 minutes later (at 10:07 PM). As Antares sets (at 2:21 AM) it will be 5 degrees to the lower right of the Moon. For much of the southern part of Africa the Moon will pass in front of Antares earlier on Wednesday. See http://lunar-occultations.com/iota/bstar/0717zc2366.htm (external link) for a map and information on the locations that will see this occultation. 

As mentioned above, the full Moon will be Sunday morning, July 21, 2024, appearing opposite the Sun (in Earth-based longitude) at 6:17 AM EDT. This will be late Saturday night in the International Date Line West and the American Samoa and Midway time zones, and early Monday morning in the Line Islands Time zone. The Moon will appear full for about three days around this time, from Friday evening through Monday morning, making this a full Moon weekend. 

Early Monday morning, July 22, 2024, will be when the planet Mercury reaches its greatest angular separation from the Sun as seen from Earth for this apparition (called greatest elongation). Because the angle between the line from the Sun to Mercury and the line of the horizon changes with the seasons, the date when Mercury and the Sun appear farthest apart as seen from Earth is not always the same as when Mercury appears highest above the horizon as evening twilight ends (which occurred on July 13). 

Early Wednesday morning, July 24, 2024, at 1:43 AM EDT, the Moon will be at perigee, its closest to Earth for this orbit. 

Wednesday evening, July 24, 2024, will be the last evening that the planet Mercury will be above the west-northwestern horizon as evening twilight ends (at 9:34 PM EDT), setting one minute later. This will also be the evening when Mercury will appear closest to the bright star Regulus, which will be 2 degrees above Mercury on the horizon. 

Wednesday night into Thursday morning, July 24 to 25, 2024, the planet Saturn will appear near the waning gibbous Moon. At moonrise on the eastern horizon (at 10:45 PM EDT) Saturn will be 4 degrees to the upper right of the Moon. By the time the Moon reaches its highest (at 4:42 AM) Saturn will be 7 degrees to the lower right, with morning twilight beginning 14 minutes later. See http://lunar-occultations.com/iota/planets/0724saturn.htm (external link) for a map and information on where the Moon will block Saturn from view. 

Saturday evening July 27, 2024, the waning Moon will appear half-full as it reaches its last quarter at 10:52 PM EDT (when we can’t see it).

Tuesday, July 30, 2024, the planet Mars will appear 4 degrees to the lower right of the waning crescent Moon with the Pleiades star cluster to the upper right of the Moon. Mars will rise on the east-northeastern horizon (at 1:39 AM EDT) with the Pleiades star cluster 5 degrees to the upper right of the Moon. Morning twilight will begin more than three hours later (at 5:01 AM) with the Pleiades 7 degrees to the upper right.

As described earlier in this posting, early Wednesday morning, July 31, 2024, from about midnight until moonrise (at 1:58 AM EDT) will likely be the best time to look toward the southeast for the Southern Delta Aquariids (005 SDA) meteor shower. Although viewing from our more northern latitudes will be limited, this shower is one of the most active annual sources for the Southern Hemisphere (with a predicted peak of 25 meteors per hour under ideal conditions). This shower has a broad peak, and rare outbursts of up to 40 meteors per hour have been reported days before the predicted peak (in 1977 and 2003). You might have an increased chance of seeing meteors in the early mornings from after midnight to before moonrise around this date. 

Friday morning, Aug. 2, 2024, the bright star Pollux (the brighter of the twin stars in the constellation Gemini) will appear 8 degrees to the lower left of the waning crescent Moon. Pollux will rise after the Moon on the northeastern horizon (at 4:24 AM EDT) and morning twilight will begin 41 minutes later (at 5:05 AM). 

The next morning, Saturday, Aug. 3, 2024, the thin, waning crescent Moon will have shifted to 7 degrees below Pollux. The Moon will rise (at 4:59 AM EDT) on the east-northeastern horizon just six minutes before morning twilight begins. 

Throughout this lunar cycle the planet Mars will be passing above the bright star Aldebaran as it moves towards the bright planet Jupiter. Sunday morning, Aug. 4, 2024, will be when Mars and Aldebaran will be at their closest, about 5 degrees apart. Jupiter, Mars, and Aldebaran will form a triangle, with Mars above, Aldebaran to the lower right (matching Mars in brightness), and bright Jupiter to the lower left. Aldebaran will rise last (at 1:53 AM EDT) on the east-northeastern horizon and will be 37 degrees above the eastern horizon as morning twilight begins (at 5:07 AM). The constellation Orion will appear on the horizon below this triangle. 

Sunday morning, Aug. 4, 2024, at 7:13 AM EDT, will be the new Moon, when the Moon passes between the Earth and the Sun and will not be visible from the Earth. The day of, or the day after the New Moon marks the start of the new month for most lunisolar calendars. Aug. 4 is the start of the seventh month of the Chinese Year of the Dragon. Sundown on Aug. 4 is the start of Av in the Hebrew calendar. In the Islamic calendar the months traditionally start with the first sighting of the waxing crescent Moon. Many Muslim communities now follow the Umm al-Qura Calendar of Saudi Arabia, which uses astronomical calculations to start months in a more predictable way. Using this calendar, sundown on Sunday, Aug. 4, will probably mark the start of Safar, the second month of the Islamic calendar. 

Monday evening, Aug. 5, 2024, if you have a very clear view of the western to west-northwestern horizon (particularly with binoculars), you might be able to see the thin, waxing crescent Moon less than a degree above the bright planet Venus, with the bright star Regulus 1.5 degrees below Venus. The planet Mercury (less bright than Regulus) will be 6 degrees to the lower left of Venus. There may only be a short window between when dusk will have faded enough to see Mercury and when Mercury sets 36 minutes after sunset (at 8:50 PM EDT). Regulus will set next nine minutes after Mercury (45 minutes after sunset), followed by Venus eight minutes later (53 minutes after sunset), and the Moon six minutes after that (59 minutes after sunset), six minutes before evening twilight ends (at 9:19 PM). Venus and Regulus will have been at their closest (1 degree apart) the evening before and Mercury and Venus will be at their closest (6 degrees apart) two evenings later, but these will be hard to spot, low on the horizon in the glow of dusk. 

Thursday, Aug. 8, 2024, at 9:32 PM EDT, the Moon will be at apogee, its farthest from the Earth for this orbit. 

Friday evening, Aug. 9, 2024, the bright star Spica will appear 5 degrees to the upper left of the waxing crescent Moon. The Moon will be 14 degrees above the west-southwestern horizon as evening twilight ends (at 9:13 PM EDT). The Moon will set first a little more than an hour later (at 10:35 PM). Saturday morning, for part of the western Pacific north of Australia and Indonesia, the Moon will block Spica from view. See http://lunar-occultations.com/iota/bstar/0810zc1925.htm (external link) for a map and information on locations that can see this occultation. 

By Saturday evening, Aug. 10, 2024, the waxing crescent Moon will have shifted to 7 degrees to the left of the star Spica as evening twilight ends and the pair will separate as the night progresses. 

Saturday night, Aug. 10, 2024, will be the night of the seventh day of the seventh month of the Chinese calendar, known as the double seventh festival, Qixi in China, Chilseok in Korea, and Thất Tịch in Vietnam. The double seventh festival is sometimes called the Chinese Valentine’s Day. There are many variations on the legend, but basically they involve the Milky Way and the three bright stars we know as the Summer Triangle. The star Vega represents the weaver girl and the star Altair represents the cowherd. They fall in love and neglect their duties, so the Goddess of Heaven puts a wide river in the sky, the Milky Way, to keep them apart. They are allowed to meet only one night a year, on the seventh night of the seventh month, when the star Deneb forms a bridge across the Milky Way. In some versions of the legend, the bridge is formed by magpies, so another name is the Magpie Festival. The Japanese Tanabata or Star Festival is related, but is no longer tied to the lunisolar date (it is now celebrated on July 7, the double seventh of the Gregorian Calendar). On average there are a little more than seven days between each quarter of the Moon, so the first quarter Moon tends to occur a day or two after the seventh day of the lunisolar month. 

As described earlier in this post, this should be a good year for the annual Perseids (007 PER) meteor shower, which can peak at more than 100 meteors per hour (under ideal conditions). The time closest to the predicted peak that we can see (from the Washington, D.C. area) will be the early morning of Monday, Aug. 12, 2024. Moonset will be a little before midnight on Aug. 11 and the radiant will rise higher in the north-northeastern sky until the sky shows the first signs of dawn (before morning twilight begins at 5:16 AM). The peak is broad, and in past years high activity has been reported well after the peak, so keep an eye on the sky from moonset to the first hints of dawn on the nights before and after as well. See the meteor shower summary near the beginning of this post for more information on viewing these meteors. 

Monday morning, Aug. 12, 2024, the Moon will appear half-full as it reaches its first quarter at 11:19 AM EDT (when we can’t see it). 

Tuesday night, Aug. 13, 2024, the bright star Antares will appear near the waxing gibbous Moon. Antares will be 2.5 degrees to the upper left as evening twilight ends (at 9:08 PM EDT). By the time of moonset on the southwestern horizon (Wednesday morning at 12:30 AM) Antares will be 1 degree above the Moon. Viewers in the southern part of South America and the Antarctic Peninsula will see the Moon pass in front of Antares. See http://lunar-occultations.com/iota/bstar/0814zc2349.htm (external link) for a map and information on areas that can see this occultation. 

Throughout this lunar cycle the planet Mars will drift toward the bright planet Jupiter. They will be at their closest on Wednesday morning, Aug. 14, 2024, just a third of a degree apart, which should be a good show! Bright Jupiter will rise early in the morning (at 1:18 AM EDT) on the east-northeastern horizon below Mars. They will be 45 degrees above the eastern horizon as morning twilight begins four hours later (at 5:18 AM). 

Friday evening, Aug. 16, 2024, will be the first evening that the planet Saturn will be above the eastern horizon as evening twilight ends (at 9:03 PM EDT). 

Sunday evening, Aug. 18, 2024, the planet Mercury will be passing between Earth and the Sun as seen from Earth, called inferior conjunction. Planets that orbit inside of the orbit of Earth can have two types of conjunctions with the Sun, inferior (when passing between the Earth and the Sun) and superior (when passing on the far side of the Sun as seen from the Earth). Mercury will be shifting from the evening sky to the morning sky and will begin emerging from the glow of dawn on the east-northeastern horizon at the end of August. 

The full Moon after next will be Monday afternoon, Aug. 19, 2024, at 2:26 PM EDT. This will be Tuesday morning from Nepal Standard Time eastward across the rest of Asia and Australia to the International Date Line. The Moon will appear full for about three days around this time, from Sunday morning through early Wednesday morning. As the third full Moon in a season with four full Moons, this will be a Blue Moon (by the older, more traditional definition).

Categories: NASA

Globular Cluster Omega Centauri

APOD - Wed, 07/17/2024 - 12:00pm

Globular star cluster


Categories: Astronomy, NASA

Science Activation’s PLACES Team Facilitates Second Professional Learning Institute

NASA - Breaking News - Wed, 07/17/2024 - 11:08am

3 min read

Science Activation’s PLACES Team Facilitates Second Professional Learning Institute

The NASA Science Activation Program’s Place-Based Learning to Advance Connections, Education, and Stewardship (PLACES) team successfully led their second Professional Learning (PL) Summer Institute (SI) at Northern Arizona University (NAU) in Flagstaff, Arizona from June 11-13, 2024. The team led a group of 13 educators through a variety of powerful place-based data-rich (PBDR) experiences across the three-day SI. PL kicked off with teachers engaging in an intensive field experience at Hat Ranch that leveraged the ecological expertise of NAU’s subject matter expert, Jared Litson Begay, and using data collection protocols from the NASA-sponsored program, GLOBE (Global Learning and Observations to Benefit the Environment) to better understand piñon pine populations in Flagstaff ecosystems. Following this, teachers moved from their primary data collection experiences to exploring secondary data that expanded on the piñon pine focus by leveraging data and the Data Literacy Cubes from My NASA Data (MND).

Using and reflecting on GLOBE protocols created powerful conversations where teachers saw how place influenced how they engaged in data collection and how data can help develop new place-based knowledge and connections in their contexts. One teacher even shared that “collecting data using the GLOBE app and making observations about data helped me better understand how I can use these practices with my students.” The MND data and Data Literacy Cubes offered educators the pathways to move from their primary data collection experiences to ask and answer new and exciting questions.

In the follow-up survey, teachers shared that they are interested in exploring “additional resources from NASA,” using “local experts or data for small town/rural areas through NASA,” and implementing PBDR instruction using NASA assets in the coming months. 100% of teachers who were surveyed after the PL indicated (1) they agree or strongly agree that they feel greater connection to NASA and knowledge of NASA assets, and (2) they would recommend the PLACES PL to a colleague. In the coming months, the teachers will participate in a virtual Community of Practice where they will implement PBDR experiences in their own contexts, share examples of student work, and elicit feedback from one another to continue improving their practice.

The PLACES team would like to give a huge shout-out to those who contributed to planning, developing, and implementing the NAU Summer Institute!

  • Facilitation Team: Sean Michael Ryan (NAU), Lori Rubino-Hare (NAU), Karen Lionberger (WestEd), Frieda Richsman (Concord Consortium)
  • Support Team: Lauren Schollenberger (NAU)
  • Team Member Participants: Barbie Buckner (NASA Langley), Tracy Ostrom (GLOBE, UC Berkeley), Sara Salisbury (WestEd)
  • Observers: Kirsten Dehler, Nicole Wong (WestEd)

PLACES is supported by NASA under cooperative agreement award number 80NSSC22M0005 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn

Summer Institute participant uses the GLOBE observer app in the field to gather data on the height of trees at Hat Ranch in Flagstaff, AZ. Share

Details

Last Updated

Jul 17, 2024

Editor NASA Science Editorial Team

Related Terms Explore More

2 min read Celebrate the Heliophysics Big Year with Free Heliophysics and Math Webinars from NASA HEAT

Article


1 week ago

2 min read NASA’s Neurodiversity Network Interns Speak at National Space Development Conference

Article


1 week ago

1 min read NASA Science Activation Teams Present at National Rural STEM Summit

Article


2 weeks ago

Keep Exploring Discover More Topics From NASA

James Webb Space Telescope

Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


Perseverance Rover

This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


Parker Solar Probe

On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


Juno

NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

Categories: NASA

NASA STEM Program for Indigenous Communities Honored for Excellence

NASA - Breaking News - Wed, 07/17/2024 - 10:22am

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) An image of a Zhaabondwaan, Anishnaabe traditional teaching lodge in Ontario, Canada, 2023.

NASA has been selected by the International Astronautical Federation to receive its 2024 “3G” Diversity Award, which recognizes organizations for their contributions to fostering geographic, generational, and gender diversity in the space sector.

NASA’s Indigenous Community-Based Education (CBE) Program is a consortium of partnerships between NASA and numerous, diverse Indigenous communities which co-create unique educational programs for the youth. Through these partnerships, which have been cultivated for the past two decades, Indigenous Knowledge and Western science come together in a community-based way to support the development of learners’ cultural and science, technology, engineering, and mathematics (STEM) identities.

The Indigenous CBE Program is part of NASA’s Minority University Research and Education Project (MUREP) American Indian and Alaska Native STEM Engagement activity and is supported by NASA’s Astrobiology Program and Planetary Science Division.

The Indigenous CBE Program also works toward more equitable practices in science and supports a diverse workforce by offering working groups that connect Indigenous and Western scientists and educators, as well as mentoring for emerging Indigenous STEM scholars.

“Relationships and collaboration are at the heart of this work,” said Daniella Scalice, NASA lead for the Indigenous CBE Program. “This award is shared with all my community-based partners. The women I work with who are serving their youth and community every day – they are the real heroes.”

“NASA has had a longstanding commitment to equity in STEM education and research.” said Torry Johnson, deputy associate administrator of STEM Engagement Programs at NASA Headquarters. “MUREP American Indian and Alaska Native STEM Engagement provides avenues for NASA to build and nurture relationships, new partnerships, and collaborations with Indigenous communities, and to empower the next generation of Indigenous STEM leaders.”

Starting in January, awardees were nominated to the International Astronautical Federation by representatives from other member organizations. NASA will receive the award during the International Astronautical Federation’s annual conference in October.

For more information on NASA’s MUREP American Indian and Alaska Native STEM Engagement program, visit:

https://go.nasa.gov/3vEyhOp

Share Details Last Updated Jul 17, 2024 Related Terms Explore More 3 min read Science Activation’s PLACES Team Facilitates Second Professional Learning Institute

The NASA Science Activation Program’s Place-Based Learning to Advance Connections, Education, and Stewardship (PLACES) team…

Article 9 hours ago
3 min read NASA, Universities Take Learning Out of Classroom Article 2 days ago 2 min read Celebrate the Heliophysics Big Year with Free Heliophysics and Math Webinars from NASA HEAT

The Heliophysics Big Year (HBY) is a global celebration of the Sun’s influence on Earth…

Article 1 week ago
Keep Exploring Discover Related Topics

MUREP for American Indian and Alaska Native STEM Engagement (MAIANSE)

For Colleges and Universities

About STEM Engagement at NASA

Learning Resources

Categories: NASA

Discovery Alert: With Six New Worlds, 5,500 Discovery Milestone Passed!

NASA - Breaking News - Tue, 07/16/2024 - 10:17pm

4 min read

Discovery Alert: With Six New Worlds, 5,500 Discovery Milestone Passed! NASA’s Exoplanet Archive confirmed four new worlds, bringing the total past 5,500.

On Aug. 24, 2023, more than three decades after the first confirmation of planets beyond our own solar system, scientists announced the discovery of six new exoplanets, stretching that number to 5,502. From zero exoplanet confirmations to over 5,500 in just a few decades, this new milestone marks another major step in the journey to understand the worlds beyond our solar system.

The Discovery

With the discovery of six new exoplanets, scientists have tipped the scales and surpassed 5,500 exoplanets found (there are now 5,502 known exoplanets, to be exact).

Just about 31 years ago, in 1992, the first exoplanets were confirmed when scientists detected twin planets Poltergeist and Phobetor orbiting the pulsar PSR B1257+12. In March 2022, just last year, scientists celebrated passing 5,000 exoplanets discovered.

Key Facts 

Scientists have discovered six new exoplanets — HD 36384 b, TOI-198 b, TOI-2095 b, TOI-2095 c, TOI-4860 b, and MWC 758 c — this has pushed the total number of confirmed exoplanets discovered to 5,502.

Details

HD 36384 b is a super-Jupiter that orbits an enormous M giant star.

  • This planet was discovered using the radial velocity method, which measures the “wobble” of far-off stars that is caused by the gravitational tug of orbiting planets.
  • Orbits a star so large that it clocks in at nearly 40 times the size of our Sun.

TOI-198 b is a potentially rocky planet that orbits on the innermost edge of the habitable zone around its star, an M dwarf.

  • This planet was discovered using the transit method, which detects exoplanets as they cross the face of their stars in their orbit, causing the star to temporarily dim.

TOI-2095 b and TOI-2095 c are both large, hot super-Earths that orbit in the same system around a shared star, an M dwarf.

  • Planets were both discovered using the transit method.
  • Are close enough to their star that they are likely more similar to Venus than Earth.

TOI-4860 b is a Jupiter-sized gas giant, or a “hot Jupiter,” that orbits an M dwarf star.

  • This planet was discovered using the transit method.
  • Completes an orbit every 1.52 days, meaning it is very close to its star. While it is extremely rare for giant planets like this to orbit so closely to Sun-like stars, it is even rarer for them to orbit M-dwarf stars as is the case here.

MWC 758 c is a giant protoplanet that orbits a very young star. This star still has its protoplanetary disk, which is a rotating disc of gas and dust that can surround a young star.

  • This planet was discovered using direct imaging.
  • Was found carving spiral arms into its star’s protoplanetary disk.
  • Is one of the first exoplanets discovered in a system where the star has a protoplanetary disk.

The field of exoplanet science has exploded since the first exoplanet confirmation in 1992, and with evolving technology, the future for this field looks brighter than ever.

In March 2022, NASA passed 5,000 confirmed exoplanets. Tis data sonification allows us to hear the pace of the discovery of those worlds. In this animation, exoplanets are represented by musical notes played across decades of discovery. Circles show location and size of orbit, while their color indicates the detection method. Lower notes mean longer orbits, higher notes mean shorter orbits. Credit: NASA/JPL-Caltech/M. Russo, A. Santaguida (SYSTEM Sounds) Watch this video in 3D

There are a number of both space and ground-based instruments and observatories that scientists have used to detect and study exoplanets.

NASA’s Transiting Exoplanet Survey Satellite (TESS) launched in 2018 and has identified thousands of exoplanet candidates and confirmed over 320 planets.

NASA’s flagship space telescopes Spitzer, Hubble, and most recently the James Webb Space Telescope have also been used to discover and study exoplanets.

NASA’s Nancy Grace Roman Space Telescope is set to launch in May 2027. Roman will be carrying a technology demonstration called the Roman Coronagraph Instrument. This coronagraph will work by using a series of complex masks and mirrors to distort the light coming from far-away stars. By distorting this starlight, the instrument will reveal and directly-image hidden exoplanets.

With the success of the Roman Coronagraph Instrument, NASA could push the envelope even further with is a concept for the mission the Habitable Worlds Observatory, which would search for “signatures of life on planets outside of our solar system,” according to the 2020 Decadal Survey on Astronomy and Astrophysics.

The Discoverers 

These six exoplanets were discovered by different teams as part of five separate studies:

  1. TOI-4860 b
  2. TOI-2095 b & c
  3. HD 36384 b
  4. TOI-198 b
  5. MWC 758 c
Share

Details

Last Updated

Jul 17, 2024

Related Terms Explore More

6 min read NASA’s Webb Investigates Eternal Sunrises, Sunsets on Distant World

Article


2 days ago

5 min read Webb Finds Plethora of Carbon Molecules Around Young Star

Article


1 month ago

4 min read Discovery Alert: Spock’s Home Planet Goes ‘Poof’

Article


2 months ago

Keep Exploring Discover More Topics From NASA

Exoplanets


Universe


Roman


Exoplanet Catalog

Categories: NASA

NASA Invites Media to Discuss Exploration Science Program Update

NASA - Breaking News - Tue, 07/16/2024 - 5:58pm
NASA’s Galileo spacecraft took this image of Earth’s Moon on Dec. 7, 1992, on its way to explore the Jupiter system in 1995-97. The distinct bright ray crater at the bottom of the image is the Tycho impact basin.Credit: NASA

NASA will hold a media teleconference at 4 p.m. EDT, Wednesday, July 17, to provide an update on a program within NASA’s Exploration Science Strategy and Integration Office.

Audio of the teleconference will stream live on the agency’s website at:

https://www.nasa.gov/nasatv

Participants in the teleconference include:

  • Nicola Fox, associate administrator, Science Mission Directorate, NASA Headquarters
  • Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters

To ask questions during the teleconference, media must RSVP no later than two hours before the event to Erin Morton at: erin.morton@nasa.gov. NASA’s media accreditation policy is available online.

The Exploration Science Strategy Integration Office in NASA’s Science Mission Directorate ensures science is infused into all aspects of lunar exploration. Through researching the Moon and its environment, and by using the Moon as an observation platform, NASA strives to gain a greater understanding of the Moon itself, the solar system, the universe, and the deep space environment.

To learn more about NASA’s missions for lunar discovery, visit: 

https://science.nasa.gov/lunar-science

-end-

Karen Fox / Erin Morton 
Headquarters, Washington 
202-358-1275 / 202-805-9393
karen.fox@nasa.gov / erin.morton@nasa.gov

Share Details Last Updated Jul 16, 2024 LocationNASA Headquarters Related Terms
Categories: NASA

NASA Ships Moon Rocket Stage Ahead of First Crewed Artemis Flight

NASA - Breaking News - Tue, 07/16/2024 - 5:08pm
Move teams with NASA and Boeing, the SLS core stage lead contractor, position the massive rocket stage for NASA’s SLS (Space Launch System) rocket on special transporters to strategically guide the flight hardware the 1.3-mile distance from the factory floor onto the agency’s Pegasus barge on July 16. The core stage will be ferried to NASA’s Kennedy Space Center in Florida, where it will be integrated with other parts of the rocket that will power NASA’s Artemis II mission. Pegasus is maintained at NASA’s Michoud Assembly Facility. Credit: NASA

NASA rolled out the SLS (Space Launch System) rocket’s core stage for the Artemis II test flight from its manufacturing facility in New Orleans on Tuesday for shipment to the agency’s spaceport in Florida. The rollout is key progress on the path to NASA’s first crewed mission to the Moon under the Artemis campaign.

Using highly specialized transporters, engineers maneuvered the giant core stage from inside NASA’s Michoud Assembly Facility in New Orleans to the agency’s Pegasus barge. The barge will ferry the stage more than 900 miles to NASA’s Kennedy Space Center in Florida, where engineers will prepare it in the Vehicle Assembly Building for attachment to other rocket and Orion spacecraft elements.

“With Artemis, we’ve set our sights on doing something big and incredibly complex that will inspire a new generation, advance our scientific endeavors, and move U.S. competitiveness forward,” said Catherine Koerner, associate administrator for NASA’s Exploration Systems Development Mission Directorate at NASA Headquarters in Washington. “The SLS rocket is a key component of our efforts to develop a long-term presence at the Moon.”

Technicians moved the SLS rocket stage from inside NASA Michoud on the 55th anniversary of the launch of Apollo 11 on July 16, 1969. The move of the rocket stage for Artemis marks the first time since the Apollo Program that a fully assembled Moon rocket stage for a crewed mission rolled out from NASA Michoud.

The SLS rocket’s core stage is the largest NASA has ever produced. At 212 feet tall, it consists of five major elements, including two huge propellant tanks that collectively hold more than 733,000 gallons of super-chilled liquid propellant to feed four RS-25 engines. During launch and flight, the stage will operate for just over eight minutes, producing more than 2 million pounds of thrust to propel four astronauts inside NASA’s Orion spacecraft toward the Moon.

“The delivery of the SLS core stage for Artemis II to Kennedy Space Center signals a shift from manufacturing to launch readiness as teams continue to make progress on hardware for all major elements for future SLS rockets,” said John Honeycutt, SLS program manager at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “We are motivated by the success of Artemis I and focused on working toward the first crewed flight under Artemis.”

After arrival at NASA Kennedy, the stage will undergo additional outfitting inside the Vehicle Assembly Building. Engineers then will join it with the segments that form the rocket’s twin solid rocket boosters. Adapters for the Moon rocket that connect it to the Orion spacecraft will be shipped to NASA Kennedy this fall, while the interim cryogenic propulsion stage is already in Florida. Engineers continue to prepare Orion, already at Kennedy, and exploration ground systems for launch and flight.

All major structures for every SLS core stage are fully manufactured at NASA Michoud. Inside the factory, core stages and future exploration upper stages for the next evolution of SLS, called the Block 1B configuration, currently are in various phases of production for Artemis III, IV, and V. Beginning with Artemis III, to better optimize space at Michoud, Boeing, the SLS core stage prime contractor, will use space at NASA Kennedy for final assembly and outfitting activities.

Building, assembling, and transporting the SLS core stage is a collaborative effort for NASA, Boeing, and lead RS-25 engines contractor Aerojet Rocketdyne, an L3Harris Technologies company. All 10 NASA centers contribute to its development with more than 1,100 companies across the United States contributing to its production. 

NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.

For more on NASA’s Artemis campaign, visit: 

http://www.nasa.gov/artemis

-end- 

Madison Tuttle/Rachel Kraft
Headquarters, Washington
202-358-1600
madison.e.tuttle@nasa.gov/rachel.h.kraft@nasa.gov

Corinne Beckinger 
Marshall Space Flight Center, Huntsville, Ala. 
256-544-0034  
corinne.m.beckinger@nasa.gov

Share Details Last Updated Jul 17, 2024 LocationNASA Headquarters Related Terms
Categories: NASA

NASA Deputy Administrator Holds First Bilateral Engagement with KASA

NASA - Breaking News - Tue, 07/16/2024 - 5:08pm
NASA Deputy Administrator Pam Melroy and senior NASA leaders conduct the first bilateral meeting with KASA’s administrator, Dr. Young-bin Yoon on Monday, July 15, 2024 in Busan, Korea. NASA/Amber Jacobson

NASA Deputy Administrator Pam Melroy conducted the first bilateral meeting on Monday with Dr. Young-bin Yoon, administrator of the newly established KASA (Korea AeroSpace Administration), which opened on May 27. The creation of KASA underscores the Republic of Korea’s commitment to advancing space exploration.

The bilateral meeting marks a pivotal moment for a NASA’s relationship with KASA, building upon decades of bilateral ties with several Korean ministries and institutions. Melroy emphasized enhancing cooperation under the Artemis program and expanding science collaboration during discussions with Yoon. Looking ahead, NASA and KASA are exploring a wide range of opportunities and fostering innovation in new areas.

Over the past year, the U.S.-Korea space relationship has seen significant progress, highlighted by increased engagements and collaborative initiatives across various space disciplines. These efforts include sharing data from the Korea Pathfinder Lunar Orbiter and leveraging NASA’s Deep Space Network, showcasing Korea’s commitment to open science, and enabling scientists globally to access valuable data for future lunar activities.

Historically, NASA has collaborated across a wide range of disciplines with KARI (Korea Aerospace Research Institute) and KASI (Korea Astronomy and Space Science Institute). The establishment of KASA allows Korea to focus its space efforts under one agency, further enhancing space collaboration and cooperation.

Categories: NASA

NASA Celebrates 20 Years of Earth-Observing Aura Satellite

NASA - Breaking News - Tue, 07/16/2024 - 4:17pm
4 Min Read NASA Celebrates 20 Years of Earth-Observing Aura Satellite

The Aura spacecraft, shown in this artist’s concept, is a NASA atmospheric chemistry mission that monitors Earth’s protective atmosphere.

Credits:
NASA

Earth (ESD)

From monitoring the hole in the ozone above the Antarctic to studying air quality around the entire planet, NASA’s Aura satellite has provided scientists with essential measurements during its two decades in orbit.

“The Aura mission has been nothing short of transformative for scientific research and applied sciences,” said Bryan Duncan, project scientist for NASA’s Aura satellite mission. “The mission’s data have given scientists and applied scientists an unparalleled view of air pollution around the world.”

Aura has revealed the effects of industrialization, environmental regulations, wildfires, the COVID-19 pandemic, and many other aspects of the air we breathe. The satellite paved the way for recent missions to study the atmosphere and its inner workings, including PACE and TEMPO. As the Aura mission team celebrates its launch anniversary of July 15, 2004, here are a few of the many highlights from the last 20 years.

Aura Eyes Ozone Hole over Antarctica

The first publicly released image from the Aura mission (autumn 2004) showed dramatically depleted levels of ozone in the stratosphere over Antarctica.

NASA Study: First Direct Proof of Ozone Hole Recovery Due to Chemicals Ban

In a 2018 study, scientists showed for the first time through direct satellite observations that levels of chlorine in the atmosphere declined, resulting in less ozone depletion. Because of an international ban on chlorine-containing manmade chemicals called chlorofluorocarbons, there was about 20% less ozone depletion during the Antarctic winter in 2016 than there was in 2005. 

New NASA Satellite Maps Show Human Fingerprint on Global Air Quality This global map shows the concentration of nitrogen dioxide in the troposphere as detected by the Ozone Monitoring Instrument aboard the Aura satellite, averaged over 2014. NASA

Using high-resolution global maps of air quality indicators made with data from the Aura satellite, NASA scientists tracked air pollution trends between 2005 and 2015 in various regions and 195 cities around the globe. The study found that the United States, Europe, and Japan saw improved air quality due to emission control regulations, while China, India, and the Middle East, with their fast-growing economies and expanding industry, saw more air pollution.

How NASA is Helping the World Breathe More Easily

Many of NASA’s Earth-observing satellites, including Aura, can see what the human eye can’t — including potentially harmful pollutants lingering in the air we breathe. These satellites help us measure and track air pollution as it moves around the globe and have contributed significantly to a decades-long quest for cleaner air. For example, data from Aura’s Ozone Monitoring Instrument helped the EPA and NASA identify a drop in nitrogen dioxide that researchers cited as evidence of the success of the Clean Air Act.

Air Quality: A Tale of Three Cities

Air quality in Beijing, Los Angeles, and Atlanta — like air quality across the globe — is dynamic. This video describes how scientists use instruments like Aura’s Ozone Monitoring Instrument to study questions including what causes ozone, sulfur dioxide, and nitrogen dioxide emissions. It also explores why reductions in volatile organic carbon pollution worked to reduce ground-level ozone in Los Angeles, but not in Atlanta.

Seeing the COVID-19 Pandemic from Space

Economic and social shutdowns in response to the COVID-19 pandemic led to noticeable changes in Earth’s environment, at least in the short term. NASA researchers used satellite and ground-based observations – including nitrogen dioxide levels from Ozone Monitoring Instrument – to track these impacts on our air, land, water, and climate. 

A Satellite’s View of Ship Pollution

With natural-color satellite imagery of the atmosphere over the ocean, scientists have observed “ship tracks” — bright, linear trails amidst the cloud layers that are created by particles and gases from ships. Scientists used Ozone Monitoring Instrument data to detect the almost invisible tracks of nitrogen dioxide along several shipping routes from 2005 to 2012.

First Global Maps of Volcanic Emissions Use NASA Satellite Data Volcanic sulfur dioxide emissions from Indonesia’s many volcanoes are shown in shades of orange. The data was produced from observations from NASA’s Aura satellite.

With the Ozone Monitoring Instrument data, researchers compiled emissions data from 2005 to 2015 create the first global inventory for volcanic sulfur dioxide emissions. The data set helped refine climate and atmospheric chemistry models and provided more insight into human and environmental health risks.

Scientists Show Connection Between Gas Flaring and Arctic Pollution

Flaring of excess natural gas from industrial oil fields in the Northern Hemisphere was found to be a potentially significant source of nitrogen dioxide and black carbon emissions polluting the Arctic, according to a 2016 NASA study that included data from Aura.

2023 Ozone Hole Ranks 16th Largest, NASA and NOAA Researchers Find

Researchers continue to rely on Aura data to monitor the Antarctic ozone hole, two decades after the satellite launched. Each Southern Hemisphere spring, NASA and NOAA (National Oceanic and Atmospheric Administration) use satellite and balloon-based measurements to measure the maximum size of the ozone hole. The story above notes the 2023 result; stay tuned for what Aura helps us discover in 2024 and beyond.

This map shows the size and shape of the ozone hole over the South Pole on Sept. 21, 2023, the day of its maximum extent that year, as calculated by the NASA Ozone Watch team. Moderate ozone losses (orange) are visible amid widespread areas of more potent ozone losses (red).

By Erica McNamee and Kate Ramsayer

NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share

Details

Last Updated

Jul 16, 2024

Editor Erica McNamee Contact Erica McNamee erica.s.mcnamee@nasa.gov Location Goddard Space Flight Center

Related Terms Explore More

5 min read Alphabet Soup: NASA’s GOLD Finds Surprising C, X Shapes in Atmosphere

Article


3 weeks ago

4 min read NASA Announces New System to Aid Disaster Response

Article


1 month ago

2 min read North Carolina Volunteers Work Toward Cleaner Well Water

When the ground floods during a storm, floodwaters wash bacteria and other contaminants into private…



Article


1 month ago

Keep Exploring Discover More Topics From NASA

Aura

Earth Orbiter


Earth

Your home. Our Mission. And the one planet that NASA studies more than any other.


Climate Change

NASA is a global leader in studying Earth’s changing climate.


PACE

PACE will help us better understand our ocean and atmosphere by measuring key variables associated with cloud formation, particles and…

Categories: NASA

Apollo 11 Lifts Off

NASA Image of the Day - Tue, 07/16/2024 - 4:10pm
Apollo 11 launches from NASA's Kennedy Space Center in Florida at 9:32 a.m. EDT, July 16, 1969. Aboard the Apollo 11 spacecraft were astronauts Neil A. Armstrong, commander; Michael Collins, command module pilot; and Buzz Aldrin Jr., lunar module pilot. Apollo 11 was the United States' first lunar landing mission. While Armstrong and Aldrin descended in the Lunar Module "Eagle" to explore the Sea of Tranquility region of the Moon, Collins remained in lunar orbit.
Categories: Astronomy, NASA

Apollo 11 Lifts Off

NASA - Breaking News - Tue, 07/16/2024 - 4:08pm
NASA

55 years ago on July 16, 1969, NASA’s Apollo 11 spacecraft launched from the agency’s Kennedy Space Center in Florida, as seen in this photo. Astronauts Neil Armstrong, Michael Collins, and Buzz Aldrin were aboard.

Apollo 11’s primary mission objective was to fulfill a national goal set by President John F. Kennedy on May 25, 1961: perform a crewed lunar landing and return safely to Earth before the decade ended. Additional flight objectives included scientific exploration by the lunar module (LM) crew, deployment of a television camera to transmit signals to Earth, and deployment of a solar wind composition experiment, seismic experiment package, and a Laser Ranging Retroreflector. During the exploration, Armstrong and Aldrin were to gather samples of lunar-surface materials for return to Earth. They also were to extensively photograph the lunar terrain, the deployed scientific equipment, the LM spacecraft, and each other, both with still and motion picture cameras.

Experience the countdown to liftoff.

Image credit: NASA

Categories: NASA

NASA to Provide Background on Space Station Deorbit Planning

NASA - Breaking News - Tue, 07/16/2024 - 3:49pm
The International Space Station is pictured from the SpaceX Crew Dragon Endeavour during a fly around of the orbiting lab that took place following its undocking from the Harmony module’s space-facing port on Nov. 8, 2021.

NASA is planning for the future in low Earth orbit for science, research, and commercial opportunities as the agency and its international partners maximize the use of the International Space Station.

As the agency fosters new commercial space stations, leadership from NASA and SpaceX will participate in a media teleconference at 2 p.m. EDT Wednesday, July 17, to discuss the company’s selection to develop and deliver the U.S. Deorbit Vehicle, which will safely move the International Space Station out of orbit and into a remote area of an ocean at the end of its operations.

Audio of the teleconference will stream live on the agency’s website:

https://www.nasa.gov/nasatv

Participants include:

  • Ken Bowersox, associate administrator, NASA’s Space Operations Mission Directorate
  • Dana Weigel, manager, NASA’s International Space Station Program
  • Sarah Walker, director, Dragon mission management, SpaceX

Media interested in participating must contact the newsroom at NASA Johnson no later than one hour prior to the start of the call at 281-483-5111 or jsccommu@mail.nasa.gov. A copy of NASA’s media accreditation policy is online.

As the agency transitions to commercially owned space destinations, it is crucial to prepare for the safe and responsible deorbit of the space station in a controlled manner after the end of its operational life in 2030.

Read more about the agency’s International Space Station Deorbit Analysis Summary white paper.

Learn more about space station operations at:

https://www.nasa.gov/station

-end-

Josh Finch / Jimi Russell
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / james.j.russell@nasa.gov

Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov

Categories: NASA