Feed aggregator
This Week In Space podcast: Episode 144 —The great lunar armada
Nikon 5x15 HG monocular review
Satellites watch 'ghost island' solidify in the Caspian Sea before disappearing (photos)
World's largest telescope threatened by light pollution from renewable energy project
SpaceX launching 27 Starlink satellites today in 1st flight since Starship explosion
Step inside a virtual reality art piece inspired by the James Webb Space Telescope
New Glenn Reaches Orbit, but Doesn't Recover the Booster
On Thursday, January 16th, at 02:03 AM EST, Blue Origin’s New Glenn rocket took off on its maiden flight from Launch Complex 36 at Cape Canaveral Space Force Station. This was a momentous event for the company, as the two-stage heavy-lift rocket has been in development for many years, features a partially reusable design, and is vital to Bezos’ plan of “building a road to space.” While the company failed to retrieve the first-stage booster during the flight test, the rocket made it to orbit and successfully deployed its payload -the Blue Ring Pathfinder – to orbit (which has since begun gathering data).
According to the most recent statement by Blue Origin, the second stage reached its final orbit following two successful burns of its two BE-3U engines. The successful launch of NG-1 means that Blue Origin can now launch payloads to Low Earth Orbit (LEO), a huge milestone for the commercial space company. “I’m incredibly proud New Glenn achieved orbit on its first attempt,” said Blue Origin CEO Dave Limp in a company statement. “We knew landing our booster, So You’re Telling Me There’s a Chance, on the first try was an ambitious goal. We’ll learn a lot from today and try again at our next launch this spring. Thank you to all of Team Blue for this incredible milestone.”
The rocket is named in honor of NASA astronaut John Glenn, a member of the Mercury 7 and the first American astronaut to orbit Earth as part of the Liberty Bell 7 mission on July 21st, 1961. This is in keeping with Blue Origin’s history of naming their launch vehicles after famous astronauts, such as the New Shepard rocket. This single-stage suborbital launch vehicle is named in honor of Alan Shepard, the first American astronaut to go to space as part of the Freedom 7 mission on May 5th, 1961.
Unlike the New Shepard, a fully reusable vehicle used primarily for space tourism and technology demonstrations and experiments, the New Glenn has a reusable first stage designed to land at sea on a barge named Jacklyn, or Landing Platform Vessel 1 (LPV1). While the second stage is not currently reusable, Blue Origin has been working on a reusable second stage (through Project Jarvis) since 2021. While development began on the New Glenn in 2013, the rocket has been stuck in “development hell” since 2016, shortly after it was first announced.
As a result, Blue Origin began lagging behind its main competitor (SpaceX) and missed out on several billion dollars worth of contracts. This included the company’s failure to secure a National Security Space Launch (NSSL) procurement contract and the U.S. Space Force’s termination of their launch technology partnership in late 2020. In 2021, the ongoing delay led to Jeff Bezos announcing that he would step down as CEO of Amazon Web Services (AWS) to take the helm at Blue Origin. By February 2024, the first fully-developed New Glenn rocket was unveiled at Launch Complex 36.
This mission not only validated the launch vehicle that is vital to the company’s future plans in space. It also served as the first of several demonstrations required to be certified for use by the National Security Space Launch program. “The success of the NG-1 mission marks a new chapter for launch operations at the Eastern Range, redefining commercial-military collaboration to maintain SLD 45’s position as the world’s premier gateway to space,” wrote Airman 1st Class Collin Wesson of the U.S. Space Force (USSF) Space Launch Delta 45 (SLD 45) Public Affairs, shortly after the launch.
These plans include the launch of Amazon’s proposed constellation of internet satellites (Project Kuiper) and the creation of the Orbital Reef – a proposed commercial space station under development by Blue Origin and Sierra Space. They have also secured a contract with NASA to launch the Escape and Plasma Acceleration and Dynamics Explorers (ESCAPADE) mission, two satellites that will study how solar wind interacts with Mars’ magnetic environment and drives atmospheric escape. NASA has also contracted with Blue Origin to provide payload and crewed launch services for the Artemis Program.
Artist’s concept of the Blue Moon Mk. II lander. Credit: Blue OriginThis includes the cargo lander Blue Moon Mark 1 and the Mark 2 that will transport the Artemis V astronauts to the lunar surface. This flight and those that will follow place Blue Origin among other commercial space companies poised to break up the near-monopoly SpaceX has enjoyed for over a decade. Said Jarrett Jones, the Senior VP for Blue Origin’s New Glenn:
“Today marks a new era for Blue Origin and for commercial space. We’re focused on ramping our launch cadence and manufacturing rates. My heartfelt thanks to everyone at Blue Origin for the tremendous amount of work in making today’s success possible, and to our customers and the space community for their continuous support. We felt that immensely today.”
Further Reading: Blue Origin
The post New Glenn Reaches Orbit, but Doesn't Recover the Booster appeared first on Universe Today.
Astronomers are Watching a Newly Forming Super Star Cluster
Six or seven billion years ago, most stars formed in super star clusters. That type of star formation has largely died out now. Astronomers know of two of these SSCs in the modern Milky Way and one in the Large Magellanic Cloud (LMC), and all three of them are millions of years old.
New JWST observations have found another SSC forming in the LMC, and it’s only 100,000 years old. What can astronomers learn from it?
SSCs are responsible for a lot of star formation, but billions of years have passed since their heyday. Finding a young one in a galaxy so close to us is a boon for astronomers. It gives them an opportunity to wind back the clock and see how SSCs are born.
New research published in The Astrophysical Journal presents the new findings. It’s titled “JWST Mid-infrared Spectroscopy Resolves Gas, Dust, and Ice in Young Stellar Objects in the Large Magellanic Cloud.” The lead author is Omnarayani (Isha) Nayak from the Space Telescope Science Institute and NASA’s Goddard Space Flight Center.
At about 160,000 light-years away, the LMC is close in terms of galactic neighbours. It’s also face-on from our vantage point, making it easier to study. The N79 region in the LMC is a massive star-forming nebula about 1600 light-years across. The JWST used its Mid-Infrared Instrument (MIRI) and found 97 new young stellar objects (YSOs) in N79, where the newly discovered super star cluster, H72.97-69.39, is located.
This image from the NASA/ESA/CSA James Webb Space Telescope shows N79, a region of interstellar atomic hydrogen that is ionized and is captured here by Webb’s Mid-InfraRed Instrument (MIRI). N79 is a massive star-forming complex spanning roughly 1630 light-years in the generally unexplored southwest region of the LMC. At the longer wavelengths of light captured by MIRI, Webb’s view of N79 showcases the region’s glowing gas and dust. Star-forming regions such as this are of interest to astronomers because their chemical composition is similar to that of the gigantic star-forming regions observed when the Universe was only a few billion years old, and star formation was at its peak. Image Credit: ESA/Webb, NASA & CSA, M. Meixner CC BY 4.0 INTStellar metallicity increases over time as generations of stars are born and die. The LMC’s metallic abundance is only half that of our Solar System, meaning the conditions in the new SSC are similar to when stars formed billions of years ago in the early Universe. This is another of those situations in astronomy where studying a particular object or region is akin to looking into the past.
“Studying YSOs in the LMC gives astronomers a front-row seat to witness the birth of stars in a nearby galaxy. For the first time, we can observe individual low-mass protostars similar to the Sun forming in small clusters—outside of our own Milky Way Galaxy,” said Isha Nayak, lead author of this research. “We can see with unprecedented detail extragalactic star formation in an environment similar to how some of the first stars formed in the universe.”
The YSOs near the SSC H72.97-69.39 (hereafter referred to as H72) are segregated by mass. The most massive YSOs are concentrated near H72, while the less massive are on the outskirts of N79. The JWST revealed that what astronomers used to think were single massive young stars are actually clusters of YSOs. These observations confirm for the first time that what appear to be individual YSOs are often small clusters of protostars.
A composite image created using JWST NIRCam and ALMA data. Light from stars is shown in yellow, while blue and purple represent the dust and gas fueling star formation. Image Credit: NSF/AUI/NSF NRAO/S.DagnelloThis finding brings attention to the complex processes of early star formation. “The formation of massive stars plays a vital role in influencing the chemistry and structure of the interstellar medium (ISM),” the authors write in their published research. “Star formation takes place in clusters, with massive stars dominating the luminosity.”
One of the five young stars is over 500,000 times more luminous than the Sun. As revealed by the JWST Near InfraRed Camera (NIRCam), it’s surrounded by more than 1,550 young stars.
This Spitzer image from the new research shows the N79 region in the LMC. N79 consists of three giant molecular clouds. Spitzer data showed that each of the red circles is a massive young stellar object of at least eight solar masses. However, the JWST has revealed that three of them, with the exception of the one in N79W, aren’t individual YSOs; they’re clusters. Together, they could make up a very young super star cluster. Image Credit: Nayak et al. 2025.Previous Atacama Large Millimeter/submillimeter Array (ALMA) observations hinted at what might contribute to the formation of SSCs. ALMA showed that colliding filaments of molecular gas at least one parsec long are in the region. These filaments could be behind H72’s formation.
This figure from previous research shows ALMA observations of the region near the super star cluster H72. Each one shows carbon monoxide in a different velocity channel. The white “x” shows the location of H72. “Scrolling through the channels it is clear there is a filament in the northeast to southwest direction and a distinct filament in the northwest to southeast direction,” the authors explain. Image Credit: Nayak et al. 2019.This work highlights JWST’s power to resolve complex star formation locations in other galaxies. Not only did the JWST show us that what appeared to be individual YSOs are actually groups of stars, but it allowed the researchers to determine their mass accretion rates and chemical properties. The JWST’s new data gives astronomers new insights into complex chemistry, including the presence of organic molecules, dust, and ice in star-forming regions.
The post Astronomers are Watching a Newly Forming Super Star Cluster appeared first on Universe Today.
NASA's Jet Propulsion Lab to open next week after LA fires
Fire at world’s largest battery facility is a clean energy setback
Fire at world’s largest battery facility is a clean energy setback
Sticks and Stones: The Molecular Clouds in the Heart of the Milky Way
The Central Molecular Zone (CMZ) at the heart of the Milky Way holds a lot of gas. It contains about 60 million solar masses of molecular gas in complexes of giant molecular clouds (GMCs), structures where stars usually form. Because of the presence of Sag. A*, the Milky Way’s supermassive black hole (SMBH), the CMZ is an extreme environment. The gas in the CMZ is ten times more dense, turbulent, and heated than gas elsewhere in the galaxy.
How do star-forming GMCs behave in such an extreme environment?
Researchers have found a novel way to study two of the GMCs in the CMZ. The clouds are named “Sticks” and “Stones” and astronomers have used decades of X-ray observations from the Chandra X-ray Observatory to probe the 3D structures of the pair of clouds.
University of Connecticut Physics Researcher Danya Alboslani and postdoctoral researcher Dr. Samantha Brunker are both with the Milky Way Laboratory at the University of Connecticut. They’ve produced two manuscripts presenting their new X-ray tomography method and their results. Brunker is the lead author of “3D MC I: X-ray Tomography Begins to Unravel the 3-D Structure of a Molecular Cloud in our Galaxy’s Center,” and Alboslani is the lead author of “3D MC II: X ray echoes reveal a clumpy molecular cloud in the CMZ.” Brunker and Alboslani are also co-authors on each paper. Alboslani also presented her results at the recent 245th Meeting of the American Astronomical Society.
When gas from elsewhere in the galaxy reaches Sgr A*, it forms an accretion ring around the SMBH. As the gas heats up, it releases X-rays. These X-ray emission are only intermittent, and in the past, some of these episodes have been very intense. The X-ray travel outward in all directions, and while we didn’t have the capability to observe them, they interacted with GMCs near the CMZ. The clouds first absorbed them the re-emitted them in a phenomenon called fluorescence.
“The cloud absorbs the X-rays that are coming from Sgr A* then re-emits X-rays in all directions. Some of these X-rays are coming towards us, and there is this very specific energy level, the 6.4 electron volt neutral iron line, that has been found to correlate with the dense parts of molecular gas,” says Alboslani. “If you imagine a black hole in the center producing these X-rays which radiate outwards and eventually interact with a molecular cloud in the CMZ, over time, it will highlight different parts of the cloud, so what we’re seeing is a scan of the cloud.”
The Central Molecular Zone; the Heart of the Milky Way. Image Credit: Henshaw / MPIAThe center of the galaxy is choked with dust that obscures our view of the region. Visible light is blocked, but the powerful X-rays emitted by Sgr A* during accretion events are visible.
Typically, astronomers only see two dimensions of objects in space. According to Battersby, their new X-Ray tomography method allows them to measure the GMCs’ third dimension. Battersby explains that while we typically only see two spatial dimensions of objects in space, the X-ray tomography method allows us to measure the third dimension of the cloud. It’s because we see the X-rays illuminate individual slices of the cloud over time. “We can use the time delay between illuminations to calculate the third spatial dimension because X-rays travel at the speed of light,” Battersby explains.
The Chandra X-Ray Observatory has been observing these X-rays for two decades, and as it observes them it sees different “slices” of the clouds, just like medical tomography. The slices are then built up into a 3D image. These are the first 3D maps of star-forming clouds in such an extreme environment.
This figure from Brunker’s paper on the “Sticks” cloud illustrates how the X-ray tomography works. Each coloured line represents a different “slice” of the cloud from a specific year. Image Credit: Brunker et al. 2025.The X-ray tomography method has one weakness. The X-ray observations aren’t continuous, so there are gaps. There are also some structures visible in submillimeter wavelengths that aren’t seen in X-rays. To get around that, the pair of researchers used data from the ALMA and the Herschel Space Observatory to compare the structures seen in the X-ray echoes to those seen in other wavelengths. The structures that are missing in X-rays but visible in submillimeter wavelengths can also be used to constrain the duratio of X-ray flares that illuminated the clouds.
“We can estimate the sizes of the molecular structures that we do not see in the X-ray,“ says Brunker, “and from there we can place constraints on the duration of the X-ray flare by modeling what we would be able to observe for a range of flare lengths. The model that reproduced observations with similar sized ‘missing structures’ indicated that the X-ray flare couldn’t have been much longer than 4-5 months.”
This figure from Brunker’s paper shows ALMA observations, which show the presence of H2CO (formaldehyde) combined with Chandra’s X-ray observations. Blue is X-rays and pink is ALMA data. Purple is where they overlap. Each panel is from a different year. Image Credit: Brunker et al. 2025.“The overall morphological agreement, and in particular, the association of the densest regions in both X-ray and molecular line data is striking and is the first time it has been shown on such a small scale,” says Brunker.
Detecting a third dimension of the clouds in this extreme environment could open new avenues of discovery.
“While we learn a lot about molecular clouds from data collected in 2D, the added third dimension allows for a more detailed understanding of the physics of how new stars are born,” says Battersby. “Additionally, these observations place key constraints on the global geometry of our Galaxy’s Center as well as the past flaring activity of Sgr A*, central open questions in modern astrophysics.”
When it comes to how new stars from, there are many unanswered questions. While we know turbulence in GMCs can inhibit star formation, the exact mechanism is unkown. Astronomers are also uncertain how environmental factors affect star formation. There are many others and some of them can be answered by watching how GMCs behave in extreme environments.
There are also many questions regarding Sgr A*’s X-ray flaring. Astronomers aren’t certain how factors like magnetic reconnection events near the black hole and hot spots in the accretion flow affect X-ray flaring. They also aren’t certain why X-ray flaring occurs in random intervals. That’s just a sample of unanswered questions that could be addressed by studying GMCs in the galactic centre.
If all large galaxies contain SMBHs, which seems increasingly likely, then all large galaxies have CMZs that are extreme environments. The CMZs and the SMBHs are the heart of galaxies, and astrophysicists are keen to understand the processes that play out there, and if stars are able to form there.
“We can study processes in the Milky Way’s Central Molecular Zone (CMZ) and use our findings to learn about other extreme environments. While many distant galaxies have similar environments, they are too far away to study in detail. By learning more about our own Galaxy, we also learn about these distant galaxies that cannot be resolved with today’s telescopes,” says Alboslani.
Alboslani presents her results in this video from AAS 245. Her presentation begins at the 32:40 mark.
The post Sticks and Stones: The Molecular Clouds in the Heart of the Milky Way appeared first on Universe Today.