Following the light of the sun, we left the Old World.

— Inscription on Columbus' caravels

Feed aggregator

Why do giraffes have spots? Not for the reason you might think

New Scientist Space - Cosmology - Wed, 03/26/2025 - 1:00pm
The size and shape of a giraffe’s spots seem to influence how well the animals survive when temperatures get hotter or colder than normal
Categories: Astronomy

Why do giraffes have spots? Not for the reason you might think

New Scientist Space - Space Headlines - Wed, 03/26/2025 - 1:00pm
The size and shape of a giraffe’s spots seem to influence how well the animals survive when temperatures get hotter or colder than normal
Categories: Astronomy

Mini-Satellite Sends Encrypted Quantum Message a Record-Breaking Distance

Scientific American.com - Wed, 03/26/2025 - 1:00pm

Scientists in China have transmitted encrypted images a record 12,900 kilometers, paving the way for quantum messaging anywhere on Earth

Categories: Astronomy

Strange red nova deaths of shrouded stars investigated by 'stellar Sherlocks'

Space.com - Wed, 03/26/2025 - 1:00pm
A group of stellar Sherlocks have solved the mystery of red transient objects that appear and fade in the sky, linking them to the total explosive death of stars.
Categories: Astronomy

1st images of elusive auroras on Neptune revealed by James Webb Space Telescope

Space.com - Wed, 03/26/2025 - 12:36pm
Using the James Webb Space Telescope, astronomers have captured direct images of Neptune's elusive auroras for the first time.
Categories: Astronomy

Norman Rockwell Commemorates Gemini Program with Grissom and Young

NASA Image of the Day - Wed, 03/26/2025 - 12:36pm
Astronauts John Young and Gus Grissom are suited for the first flight of the Gemini program in March 1965. NASA loaned Norman Rockwell a Gemini spacesuit in order to make this painting as accurate as possible.
Categories: Astronomy, NASA

How Can I See the Northern Lights? We Asked a NASA Expert: Episode 54

NASA News - Wed, 03/26/2025 - 12:35pm

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

How can I see the northern lights?

To see the northern lights, you need to be in the right place at the right time.

Auroras are the result of charged particles and magnetism from the Sun called space weather dancing with the Earth’s magnetic field. And they happen far above the clouds. So you need clear skies, good space weather at your latitude and the higher, more polar you can be, the better. You need a lot of patience and some luck is always helpful.

A smartphone can also really help confirm whether you saw a little bit of kind of dim aurora, because cameras are more sensitive than our eyes.

The best months to see aurorae, statistically, are March and September. The best times to be looking are around midnight, but sometimes when the Sun is super active, it can happen any time from sunset to sunrise.

You can also increase your chances by learning more about space weather data and a great place to do that is at the NOAA Space Weather Prediction Center.

You can also check out my project, Aurorasaurus.org, where we have free alerts that are based on your location and we offer information about how to interpret the data. And you can also report and tell us if you were able to see aurora or not and that helps others.

One last tip is finding a safe, dark sky viewing location with a great view of the northern horizon that’s near you.

[END VIDEO TRANSCRIPT]

Full Episode List

Full YouTube Playlist

Share Details Last Updated Mar 26, 2025 Related Terms Explore More 6 min read How NASA’s Perseverance Is Helping Prepare Astronauts for Mars Article 1 day ago 6 min read NASA’s Webb Captures Neptune’s Auroras For First Time

Long-sought auroral glow finally emerges under Webb’s powerful gaze For the first time, NASA’s James…

Article 2 days ago
5 min read NASA’s Parker Solar Probe Team Wins 2024 Collier Trophy

The innovative team of engineers and scientists from NASA, the Johns Hopkins Applied Physics Laboratory…

Article 2 days ago
Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

How Can I See the Northern Lights? We Asked a NASA Expert: Episode 54

NASA - Breaking News - Wed, 03/26/2025 - 12:35pm

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

How can I see the northern lights?

To see the northern lights, you need to be in the right place at the right time.

Auroras are the result of charged particles and magnetism from the Sun called space weather dancing with the Earth’s magnetic field. And they happen far above the clouds. So you need clear skies, good space weather at your latitude and the higher, more polar you can be, the better. You need a lot of patience and some luck is always helpful.

A smartphone can also really help confirm whether you saw a little bit of kind of dim aurora, because cameras are more sensitive than our eyes.

The best months to see aurorae, statistically, are March and September. The best times to be looking are around midnight, but sometimes when the Sun is super active, it can happen any time from sunset to sunrise.

You can also increase your chances by learning more about space weather data and a great place to do that is at the NOAA Space Weather Prediction Center.

You can also check out my project, Aurorasaurus.org, where we have free alerts that are based on your location and we offer information about how to interpret the data. And you can also report and tell us if you were able to see aurora or not and that helps others.

One last tip is finding a safe, dark sky viewing location with a great view of the northern horizon that’s near you.

[END VIDEO TRANSCRIPT]

Full Episode List

Full YouTube Playlist

Share Details Last Updated Mar 26, 2025 Related Terms Explore More 6 min read How NASA’s Perseverance Is Helping Prepare Astronauts for Mars Article 2 days ago 6 min read NASA’s Webb Captures Neptune’s Auroras For First Time

Long-sought auroral glow finally emerges under Webb’s powerful gaze For the first time, NASA’s James…

Article 2 days ago
5 min read NASA’s Parker Solar Probe Team Wins 2024 Collier Trophy

The innovative team of engineers and scientists from NASA, the Johns Hopkins Applied Physics Laboratory…

Article 3 days ago
Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

Top Math Prize Recipient Wedded Algebra and Calculus to Found a New Field

Scientific American.com - Wed, 03/26/2025 - 12:30pm

Masaki Kashiwara, this year’s Abel Prize winner, co-founded a new field of mathematics called algebraic analysis

Categories: Astronomy

Norman Rockwell Commemorates Gemini Program with Grissom and Young

NASA News - Wed, 03/26/2025 - 12:26pm
Norman Rockwell

In his painting called Grissom and Young, American painter and illustrator Norman Rockwell captures technicians helping NASA astronauts John Young and Gus Grissom suit up for the first flight of the Gemini program in March 1965. NASA loaned Norman Rockwell a Gemini spacesuit to make this painting as accurate as possible.

Since its beginning, NASA has used the power of art to communicate the extraordinary aspects of its missions in a way that connects uniquely with humanity. NASA’s original art program, started in 1962 under the direction of Administrator James Webb, included a diverse collection of works from artists such as Rockwell, Andy Warhol, and Annie Leibovitz.

See more art inspired by NASA.

Image credit: Norman Rockwell

Categories: NASA

Norman Rockwell Commemorates Gemini Program with Grissom and Young

NASA - Breaking News - Wed, 03/26/2025 - 12:26pm
Norman Rockwell

In his painting called Grissom and Young, American painter and illustrator Norman Rockwell captures technicians helping NASA astronauts John Young and Gus Grissom suit up for the first flight of the Gemini program in March 1965. NASA loaned Norman Rockwell a Gemini spacesuit to make this painting as accurate as possible.

Since its beginning, NASA has used the power of art to communicate the extraordinary aspects of its missions in a way that connects uniquely with humanity. NASA’s original art program, started in 1962 under the direction of Administrator James Webb, included a diverse collection of works from artists such as Rockwell, Andy Warhol, and Annie Leibovitz.

See more art inspired by NASA.

Image credit: Norman Rockwell

Categories: NASA

Marvel reveals colossal ' Avengers: Doomsday' cast in surprise livestream as production begins, classic X-men lead the charge (video)

Space.com - Wed, 03/26/2025 - 12:25pm
Earth's Mightiest Heroes are assembling again, as Avengers: Doomsday is finally in production and has unveiled its complete roster.
Categories: Astronomy

The Sky’s Not the Limit: Testing Precision Landing Tech for Future Space Missions

NASA News - Wed, 03/26/2025 - 12:07pm

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) A NASA F/A-18 research aircraft flies above California near NASA’s Armstrong Flight Research Center in Edwards, California, testing a commercial precision landing technology for future space missions. The Psionic Space Navigation Doppler Lidar (PSNDL) system is installed in a pod located under the right wing of the aircraft.NASA

Nestled in a pod under an F/A-18 Hornet aircraft wing, flying above California, and traveling up to the speed of sound, NASA put a commercial sensor technology to the test. The flight tests demonstrated the sensor accuracy and navigation precision in challenging conditions, helping prepare the technology to land robots and astronauts on the Moon and Mars. 

The Psionic Space Navigation Doppler Lidar (PSNDL) system is rooted in NASA technology that Psionic, Inc. of Hampton, Virginia, licensed and further developed. They miniaturized the NASA technology, added further functionality, and incorporated component redundancies that make it more rugged for spaceflight. The PSNDL navigation system also includes cameras and an inertial measurement unit to make it a complete navigation system capable of accurately determining a vehicle’s position and velocity for precision landing and other spaceflight applications. 

NASA engineers and technicians install the Psionic Space Navigation Doppler Lidar (PSNDL) system into a testing pod on a NASA F/A-18 research aircraft ahead of February 2025 flight tests at NASA’s Armstrong Flight Research Center in Edwards, California.NASA

The aircraft departed from NASA’s Armstrong Flight Research Center in Edwards, California, and conducted a variety of flight paths over several days in February 2025. It flew a large figure-8 loop and conducted several highly dynamic maneuvers over Death Valley, California, to collect navigation data at various altitudes, velocities, and orientations relevant for lunar and Mars entry and descent. Refurbished for these tests, the NASA F/A-18 pod can support critical data collection for other technologies and users at a low cost. 

Doppler Lidar sensors provide a highly accurate measurement of speed by measuring the frequency shift between laser light emitted from the sensor reflected from the ground. Lidar are extremely useful in sunlight-challenged areas that may have long shadows and stark contrasts, such as the lunar South Pole. Pairing PSNDL with cameras adds the ability to visually compare pictures with surface reconnaissance maps of rocky terrain and navigate to landing at interesting locations on Mars. All the data is fed into a computer to make quick, real-time decisions to enable precise touchdowns at safe locations. 

Psionic Space Navigation Doppler Lidar (PSNDL) system installed in a testing pod on a NASA F/A-18 research aircraft ahead of February 2025 flight tests at NASA’s Armstrong Flight Research Center in Edwards, California.NASA

Since licensing NDL in 2016, Psionic has received funding and development support from NASA’s Space Technology Mission Directorate through its Small Business Innovative Research program and Tipping Point initiative. The company has also tested PSNDL prototypes on suborbital vehicles via the Flight Opportunities program. In 2024, onboard a commercial lunar lander, NASA successfully demonstrated the predecessor NDL system developed by the agency’s Langley Research Center in Hampton, Virginia. 

Explore More 4 min read NASA Starling and SpaceX Starlink Improve Space Traffic Coordination Article 11 hours ago 6 min read How NASA’s Perseverance Is Helping Prepare Astronauts for Mars Article 12 hours ago 2 min read NASA Cloud Software Helps Companies Find their Place in Space  Article 1 day ago Facebook logo @NASATechnology @NASA_Technology Share Details Last Updated Mar 26, 2025 EditorLoura Hall Related Terms
Categories: NASA

The Sky’s Not the Limit: Testing Precision Landing Tech for Future Space Missions

NASA - Breaking News - Wed, 03/26/2025 - 12:07pm

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) A NASA F/A-18 research aircraft flies above California near NASA’s Armstrong Flight Research Center in Edwards, California, testing a commercial precision landing technology for future space missions. The Psionic Space Navigation Doppler Lidar (PSNDL) system is installed in a pod located under the right wing of the aircraft.NASA

Nestled in a pod under an F/A-18 Hornet aircraft wing, flying above California, and traveling up to the speed of sound, NASA put a commercial sensor technology to the test. The flight tests demonstrated the sensor accuracy and navigation precision in challenging conditions, helping prepare the technology to land robots and astronauts on the Moon and Mars. 

The Psionic Space Navigation Doppler Lidar (PSNDL) system is rooted in NASA technology that Psionic, Inc. of Hampton, Virginia, licensed and further developed. They miniaturized the NASA technology, added further functionality, and incorporated component redundancies that make it more rugged for spaceflight. The PSNDL navigation system also includes cameras and an inertial measurement unit to make it a complete navigation system capable of accurately determining a vehicle’s position and velocity for precision landing and other spaceflight applications. 

NASA engineers and technicians install the Psionic Space Navigation Doppler Lidar (PSNDL) system into a testing pod on a NASA F/A-18 research aircraft ahead of February 2025 flight tests at NASA’s Armstrong Flight Research Center in Edwards, California.NASA

The aircraft departed from NASA’s Armstrong Flight Research Center in Edwards, California, and conducted a variety of flight paths over several days in February 2025. It flew a large figure-8 loop and conducted several highly dynamic maneuvers over Death Valley, California, to collect navigation data at various altitudes, velocities, and orientations relevant for lunar and Mars entry and descent. Refurbished for these tests, the NASA F/A-18 pod can support critical data collection for other technologies and users at a low cost. 

Doppler Lidar sensors provide a highly accurate measurement of speed by measuring the frequency shift between laser light emitted from the sensor reflected from the ground. Lidar are extremely useful in sunlight-challenged areas that may have long shadows and stark contrasts, such as the lunar South Pole. Pairing PSNDL with cameras adds the ability to visually compare pictures with surface reconnaissance maps of rocky terrain and navigate to landing at interesting locations on Mars. All the data is fed into a computer to make quick, real-time decisions to enable precise touchdowns at safe locations. 

Psionic Space Navigation Doppler Lidar (PSNDL) system installed in a testing pod on a NASA F/A-18 research aircraft ahead of February 2025 flight tests at NASA’s Armstrong Flight Research Center in Edwards, California.NASA

Since licensing NDL in 2016, Psionic has received funding and development support from NASA’s Space Technology Mission Directorate through its Small Business Innovative Research program and Tipping Point initiative. The company has also tested PSNDL prototypes on suborbital vehicles via the Flight Opportunities program. In 2024, onboard a commercial lunar lander, NASA successfully demonstrated the predecessor NDL system developed by the agency’s Langley Research Center in Hampton, Virginia. 

Explore More 4 min read NASA Starling and SpaceX Starlink Improve Space Traffic Coordination Article 24 hours ago 6 min read How NASA’s Perseverance Is Helping Prepare Astronauts for Mars Article 1 day ago 2 min read NASA Cloud Software Helps Companies Find their Place in Space  Article 2 days ago Facebook logo @NASATechnology @NASA_Technology Share Details Last Updated Mar 26, 2025 EditorLoura Hall Related Terms
Categories: NASA

An early hint of cosmic dawn has been seen in a distant galaxy

New Scientist Space - Cosmology - Wed, 03/26/2025 - 12:00pm
A galaxy inside a bubble may be evidence that the universe was starting to become transparent 330 million years after the big bang
Categories: Astronomy

An early hint of cosmic dawn has been seen in a distant galaxy

New Scientist Space - Space Headlines - Wed, 03/26/2025 - 12:00pm
A galaxy inside a bubble may be evidence that the universe was starting to become transparent 330 million years after the big bang
Categories: Astronomy

NASA’s Webb Sees Galaxy Mysteriously Clearing Fog of Early Universe

NASA News - Wed, 03/26/2025 - 12:00pm
Explore This Section

5 Min Read NASA’s Webb Sees Galaxy Mysteriously Clearing Fog of Early Universe

The incredibly distant galaxy JADES-GS-z13-1, observed just 330 million years after the big bang, was initially discovered with deep imaging from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera). Full image below.

Credits:
NASA, ESA, CSA, JADES Collaboration, J. Witstok (University of Cambridge/University of Copenhagen), P. Jakobsen (University of Copenhagen), A. Pagan (STScI), M. Zamani (ESA/Webb)

Using the unique infrared sensitivity of NASA’s James Webb Space Telescope, researchers can examine ancient galaxies to probe secrets of the early universe. Now, an international team of astronomers has identified bright hydrogen emission from a galaxy in an unexpectedly early time in the universe’s history. The surprise finding is challenging researchers to explain how this light could have pierced the thick fog of neutral hydrogen that filled space at that time.

The Webb telescope discovered the incredibly distant galaxy JADES-GS-z13-1, observed to exist just 330 million years after the big bang, in images taken by Webb’s NIRCam (Near-Infrared Camera) as part of the James Webb Space Telescope Advanced Deep Extragalactic Survey (JADES). Researchers used the galaxy’s brightness in different infrared filters to estimate its redshift, which measures a galaxy’s distance from Earth based on how its light has been stretched out during its journey through expanding space.

Image A: JADES-GS-z13-1 in the GOODS-S field (NIRCam Image) The incredibly distant galaxy JADES-GS-z13-1, observed just 330 million years after the big bang, was initially discovered with deep imaging from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera). Now, an international team of astronomers definitively has identified powerful hydrogen emission from this galaxy at an unexpectedly early period in the universe’s history. JADES-GS-z-13 has a redshift (z) of 13, which is an indication of its age and distance. NASA, ESA, CSA, JADES Collaboration, J. Witstok (University of Cambridge/University of Copenhagen), P. Jakobsen (University of Copenhagen), A. Pagan (STScI), M. Zamani (ESA/Webb) Image B: JADES-GS-z13-1 (NIRCam Close-Up) This image shows the galaxy JADES GS-z13-1 (the red dot at center), imaged with NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) as part of the JWST Advanced Deep Extragalactic Survey (JADES) program. These data from NIRCam allowed researchers to identify GS-z13-1 as an incredibly distant galaxy, and to put an estimate on its redshift value. Webb’s unique infrared sensitivity is necessary to observe galaxies at this extreme distance, whose light has been shifted into infrared wavelengths during its long journey across the cosmos. NASA, ESA, CSA, JADES Collaboration, J. Witstok (University of Cambridge/University of Copenhagen), P. Jakobsen (University of Copenhagen), M. Zamani (ESA/Webb)

The NIRCam imaging yielded an initial redshift estimate of 12.9. Seeking to confirm its extreme redshift, an international team lead by Joris Witstok of the University of Cambridge in the United Kingdom, as well as the Cosmic Dawn Center and the University of Copenhagen in Denmark, then observed the galaxy using Webb’s Near-Infrared Spectrograph instrument.

In the resulting spectrum, the redshift was confirmed to be 13.0. This equates to a galaxy seen just 330 million years after the big bang, a small fraction of the universe’s present age of 13.8 billion years old. But an unexpected feature stood out as well: one specific, distinctly bright wavelength of light, known as Lyman-alpha emission, radiated by hydrogen atoms. This emission was far stronger than astronomers thought possible at this early stage in the universe’s development.

“The early universe was bathed in a thick fog of neutral hydrogen,” explained Roberto Maiolino, a team member from the University of Cambridge and University College London. “Most of this haze was lifted in a process called reionization, which was completed about one billion years after the big bang. GS-z13-1 is seen when the universe was only 330 million years old, yet it shows a surprisingly clear, telltale signature of Lyman-alpha emission that can only be seen once the surrounding fog has fully lifted. This result was totally unexpected by theories of early galaxy formation and has caught astronomers by surprise.”

Image C: JADES-GS-z13-1 Spectrum Graphic NASA’s James Webb Space Telescope has detected unexpected light from a distant galaxy. The galaxy JADES-GS-z13-1, observed just 330 million years after the big bang (corresponding to a redshift of z=13.05), shows bright emission from hydrogen known as Lyman-alpha emission. This is surprising because that emission should have been absorbed by a dense fog of neutral hydrogen that suffused the early universe. NASA, ESA, CSA, J. Witstok (University of Cambridge, University of Copenhagen), J. Olmsted (STScI)

Before and during the era of reionization, the immense amounts of neutral hydrogen fog surrounding galaxies blocked any energetic ultraviolet light they emitted, much like the filtering effect of colored glass. Until enough stars had formed and were able to ionize the hydrogen gas, no such light — including Lyman-alpha emission — could escape from these fledgling galaxies to reach Earth. The confirmation of Lyman-alpha radiation from this galaxy, therefore, has great implications for our understanding of the early universe.

“We really shouldn’t have found a galaxy like this, given our understanding of the way the universe has evolved,” said Kevin Hainline, a team member from the University of Arizona. “We could think of the early universe as shrouded with a thick fog that would make it exceedingly difficult to find even powerful lighthouses peeking through, yet here we see the beam of light from this galaxy piercing the veil. This fascinating emission line has huge ramifications for how and when the universe reionized.”

The source of the Lyman-alpha radiation from this galaxy is not yet known, but it may include the first light from the earliest generation of stars to form in the universe.

“The large bubble of ionized hydrogen surrounding this galaxy might have been created by a peculiar population of stars — much more massive, hotter, and more luminous than stars formed at later epochs, and possibly representative of the first generation of stars,” said Witstok. A powerful active galactic nucleus, driven by one of the first supermassive black holes, is another possibility identified by the team.

This research was published Wednesday in the journal Nature.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

Downloads

Click any image to open a larger version.

View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.

View/Download the research results from the journal Nature.

Media Contacts

Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Bethany DownerBethany.Downer@esawebb.org
ESA/Webb, Baltimore, Md.

Christine Pulliamcpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.

Related Information

Read more about cosmic history, the early universe, and cosmic reionization.

Article: Learn about what Webb has revealed about galaxies through time.

Video: How Webb reveals the first galaxies

More Webb News

More Webb Images

Webb Science Themes

Webb Mission Page

Related For Kids

What Is a Galaxy?

What is the Webb Telescope?

SpacePlace for Kids

En Español

¿Qué es una galaxia?

Ciencia de la NASA

NASA en español 

Space Place para niños

Keep Exploring Related Topics

James Webb Space Telescope

Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


Galaxies


Galaxies Stories


Universe

Share

Details

Last Updated

Mar 26, 2025

Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov

Related Terms
Categories: NASA

NASA’s Webb Sees Galaxy Mysteriously Clearing Fog of Early Universe

NASA - Breaking News - Wed, 03/26/2025 - 12:00pm
Explore This Section

5 Min Read NASA’s Webb Sees Galaxy Mysteriously Clearing Fog of Early Universe

The incredibly distant galaxy JADES-GS-z13-1, observed just 330 million years after the big bang, was initially discovered with deep imaging from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera). Full image below.

Credits:
NASA, ESA, CSA, JADES Collaboration, J. Witstok (University of Cambridge/University of Copenhagen), P. Jakobsen (University of Copenhagen), A. Pagan (STScI), M. Zamani (ESA/Webb)

Using the unique infrared sensitivity of NASA’s James Webb Space Telescope, researchers can examine ancient galaxies to probe secrets of the early universe. Now, an international team of astronomers has identified bright hydrogen emission from a galaxy in an unexpectedly early time in the universe’s history. The surprise finding is challenging researchers to explain how this light could have pierced the thick fog of neutral hydrogen that filled space at that time.

The Webb telescope discovered the incredibly distant galaxy JADES-GS-z13-1, observed to exist just 330 million years after the big bang, in images taken by Webb’s NIRCam (Near-Infrared Camera) as part of the James Webb Space Telescope Advanced Deep Extragalactic Survey (JADES). Researchers used the galaxy’s brightness in different infrared filters to estimate its redshift, which measures a galaxy’s distance from Earth based on how its light has been stretched out during its journey through expanding space.

Image A: JADES-GS-z13-1 in the GOODS-S field (NIRCam Image) The incredibly distant galaxy JADES-GS-z13-1, observed just 330 million years after the big bang, was initially discovered with deep imaging from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera). Now, an international team of astronomers definitively has identified powerful hydrogen emission from this galaxy at an unexpectedly early period in the universe’s history. JADES-GS-z-13 has a redshift (z) of 13, which is an indication of its age and distance. NASA, ESA, CSA, JADES Collaboration, J. Witstok (University of Cambridge/University of Copenhagen), P. Jakobsen (University of Copenhagen), A. Pagan (STScI), M. Zamani (ESA/Webb) Image B: JADES-GS-z13-1 (NIRCam Close-Up) This image shows the galaxy JADES GS-z13-1 (the red dot at center), imaged with NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) as part of the JWST Advanced Deep Extragalactic Survey (JADES) program. These data from NIRCam allowed researchers to identify GS-z13-1 as an incredibly distant galaxy, and to put an estimate on its redshift value. Webb’s unique infrared sensitivity is necessary to observe galaxies at this extreme distance, whose light has been shifted into infrared wavelengths during its long journey across the cosmos. NASA, ESA, CSA, JADES Collaboration, J. Witstok (University of Cambridge/University of Copenhagen), P. Jakobsen (University of Copenhagen), M. Zamani (ESA/Webb)

The NIRCam imaging yielded an initial redshift estimate of 12.9. Seeking to confirm its extreme redshift, an international team lead by Joris Witstok of the University of Cambridge in the United Kingdom, as well as the Cosmic Dawn Center and the University of Copenhagen in Denmark, then observed the galaxy using Webb’s Near-Infrared Spectrograph instrument.

In the resulting spectrum, the redshift was confirmed to be 13.0. This equates to a galaxy seen just 330 million years after the big bang, a small fraction of the universe’s present age of 13.8 billion years old. But an unexpected feature stood out as well: one specific, distinctly bright wavelength of light, known as Lyman-alpha emission, radiated by hydrogen atoms. This emission was far stronger than astronomers thought possible at this early stage in the universe’s development.

“The early universe was bathed in a thick fog of neutral hydrogen,” explained Roberto Maiolino, a team member from the University of Cambridge and University College London. “Most of this haze was lifted in a process called reionization, which was completed about one billion years after the big bang. GS-z13-1 is seen when the universe was only 330 million years old, yet it shows a surprisingly clear, telltale signature of Lyman-alpha emission that can only be seen once the surrounding fog has fully lifted. This result was totally unexpected by theories of early galaxy formation and has caught astronomers by surprise.”

Image C: JADES-GS-z13-1 Spectrum Graphic NASA’s James Webb Space Telescope has detected unexpected light from a distant galaxy. The galaxy JADES-GS-z13-1, observed just 330 million years after the big bang (corresponding to a redshift of z=13.05), shows bright emission from hydrogen known as Lyman-alpha emission. This is surprising because that emission should have been absorbed by a dense fog of neutral hydrogen that suffused the early universe. NASA, ESA, CSA, J. Witstok (University of Cambridge, University of Copenhagen), J. Olmsted (STScI)

Before and during the era of reionization, the immense amounts of neutral hydrogen fog surrounding galaxies blocked any energetic ultraviolet light they emitted, much like the filtering effect of colored glass. Until enough stars had formed and were able to ionize the hydrogen gas, no such light — including Lyman-alpha emission — could escape from these fledgling galaxies to reach Earth. The confirmation of Lyman-alpha radiation from this galaxy, therefore, has great implications for our understanding of the early universe.

“We really shouldn’t have found a galaxy like this, given our understanding of the way the universe has evolved,” said Kevin Hainline, a team member from the University of Arizona. “We could think of the early universe as shrouded with a thick fog that would make it exceedingly difficult to find even powerful lighthouses peeking through, yet here we see the beam of light from this galaxy piercing the veil. This fascinating emission line has huge ramifications for how and when the universe reionized.”

The source of the Lyman-alpha radiation from this galaxy is not yet known, but it may include the first light from the earliest generation of stars to form in the universe.

“The large bubble of ionized hydrogen surrounding this galaxy might have been created by a peculiar population of stars — much more massive, hotter, and more luminous than stars formed at later epochs, and possibly representative of the first generation of stars,” said Witstok. A powerful active galactic nucleus, driven by one of the first supermassive black holes, is another possibility identified by the team.

This research was published Wednesday in the journal Nature.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

Downloads

Click any image to open a larger version.

View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.

View/Download the research results from the journal Nature.

Media Contacts

Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Bethany DownerBethany.Downer@esawebb.org
ESA/Webb, Baltimore, Md.

Christine Pulliamcpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.

Related Information

Read more about cosmic history, the early universe, and cosmic reionization.

Article: Learn about what Webb has revealed about galaxies through time.

Video: How Webb reveals the first galaxies

More Webb News

More Webb Images

Webb Science Themes

Webb Mission Page

Related For Kids

What Is a Galaxy?

What is the Webb Telescope?

SpacePlace for Kids

En Español

¿Qué es una galaxia?

Ciencia de la NASA

NASA en español 

Space Place para niños

Keep Exploring Related Topics

James Webb Space Telescope

Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


Galaxies


Galaxies Stories


Universe

Share

Details

Last Updated

Mar 26, 2025

Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov

Related Terms
Categories: NASA

Webb sees galaxy mysteriously clearing fog of early Universe

ESO Top News - Wed, 03/26/2025 - 12:00pm

Using the unique infrared sensitivity of the NASA/ESA/CSA James Webb Space Telescope, researchers can examine ancient galaxies to probe secrets of the early Universe. Now, an international team of astronomers has identified bright hydrogen emission from a galaxy in an unexpectedly early time in the Universe’s history. The surprise finding is challenging researchers to explain how this light could have pierced the thick fog of neutral hydrogen that filled space at that time.

Categories: Astronomy

NASA Starling and SpaceX Starlink Improve Space Traffic Coordination

NASA News - Wed, 03/26/2025 - 11:58am

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) The Starling swarm’s extended mission tested advanced autonomous maneuvering capabilities.NASA/Daniel Rutter

As missions to low Earth orbit become more frequent, space traffic coordination remains a key element to efficiently operating in space. Different satellite operators using autonomous systems need to operate together and manage increasing workloads. NASA’s Starling spacecraft swarm recently tested a coordination with SpaceX’s Starlink constellation, demonstrating a potential solution to enhance space traffic coordination.

Led by the Small Spacecraft Technology program at NASA’s Ames Research Center in California’s Silicon Valley, Starling originally set out to demonstrate autonomous planning and execution of orbital maneuvers with the mission’s four small spacecraft. After achieving its primary objectives, the Starling mission expanded to become Starling 1.5, an experiment to demonstrate maneuvers between the Starling swarm and SpaceX’s Starlink satellites, which also maneuver autonomously.

Coordination in Low Earth Orbit

Current space traffic coordination systems screen trajectories of spacecraft and objects in space and alert operators on the ground of potential conjunctions, which occur when two objects exceed an operator’s tolerance for a close approach along their orbital paths. Spacecraft operators can request notification at a range of probabilities, often anywhere from a 1 in 10,000 likelihood of a collision to 1 in 1,000,000 or lower.

Conjunction mitigation between satellite operators requires manual coordination through calls or emails on the ground. An operator may receive a notification for a number of reasons including recently maneuvering their satellite, nearby space debris, or if another satellite adjusts its orbit.

Once an operator is aware of a potential conjunction, they must work together with other operators to reduce the probability of a collision. This can result in time-consuming calls or emails between ground operations teams with different approaches to safe operations. It also means maneuvers may require several days to plan and implement. This timeline can be challenging for missions that require quick adjustments to capture important data.

“Occasionally, we’ll do a maneuver that we find out wasn’t necessary if we could have waited before making a decision. Sometimes you can’t wait three days to reposition and observe. Being able to react within a few hours can make new satellite observations possible,” said Nathan Benz, project manager of Starling 1.5 at NASA Ames.

Improving Coordination for Autonomous Maneuvering

The first step in improving coordination was to develop a reliable way to signal maneuver responsibility between operators. “Usually, SpaceX takes the responsibility to move out of the way when another operator shares their predicted trajectory information,” said Benz.

SpaceX and NASA collaborated to design a conjunction screening service, which SpaceX then implemented. Satellite operators can submit trajectories and receive conjunction data quickly, then accept responsibility to maneuver away from a potential conjunction.

“For this experiment, NASA’s Starling accepted responsibility to move using the screening service, successfully tested our system’s performance, then autonomously planned and executed the maneuver for the NASA Starling satellite, resolving a close approach with a Starlink satellite,” said Benz.

Through NASA’s Starling 1.5 experiment, the agency helped validate SpaceX’s Starlink screening service. The Office of Space Commerce within the U.S. Department of Commerce also worked with SpaceX to understand and assess the Starlink screening service.

Quicker Response to Changes on Earth

The time it takes to plan maneuvers in today’s orbital traffic environment limits the number of satellites a human operator can manage and their ability to collect data or serve customers.

“A fully automated system that is flexible and adaptable between satellite constellations is ideal for an environment of multiple satellite operators, all of whom have differing criteria for mitigating collision risks,” said Lauri Newman, program officer for NASA’s Conjunction Assessment Risk Analysis program at the agency’s headquarters in Washington.

Reducing the time necessary to plan maneuvers could open up a new class of missions, where quick responses to changes in space or on Earth’s surface are possible. Satellites capable of making quicker movements could adjust their orbital position to capture a natural disaster from above, or respond to one swarm member’s interesting observations, moving to provide a more thorough look.

“With improved access and use of low Earth orbit and the necessity to provide a more advanced space traffic coordination system, Starling 1.5 is providing critical data.  Starling 1.5 is the result of a successful partnership between NASA, the Department of Commerce, and SpaceX, maturing technology to solve such challenges,” said Roger Hunter, program manager of the Small Spacecraft Technology program. “We look forward to the sustained impact of the Starling technologies as they continue demonstrating advancements in spacecraft coordination, cooperation, and autonomy.”    

NASA Ames leads the Starling projects. NASA’s Small Spacecraft Technology program within the Space Technology Mission Directorate funds and manages the Starling mission. 

Share Details Last Updated Mar 26, 2025 LocationAmes Research Center Related Terms Explore More 2 min read The Sky’s Not the Limit: Testing Precision Landing Tech for Future Space Missions Article 11 hours ago 2 min read NASA Cloud Software Helps Companies Find their Place in Space  Article 1 day ago 5 min read NASA Demonstrates New Wildland Fire Airspace Management System Article 1 day ago Keep Exploring Discover More Topics From NASA

Ames Research Center

Space Technology Mission Directorate

Conjunction Assessment (CA Home)

Starling

Categories: NASA