Watch the stars and from them learn. To the Master's honor all must turn, Each in its track, without a sound, Forever tracing Newton's ground

— Albert Einstein

Feed aggregator

How government use of AI could hurt democracy

New Scientist Space - Space Headlines - Fri, 07/11/2025 - 6:00pm
Countries are eager to use AI to automate some government processes, but this risks eroding citizens’ trust and feelings of democratic control – because AI mistakes can ruin their lives
Categories: Astronomy

Act fast to get the best cameras for less — Amazon Prime Day ends tonight

Space.com - Fri, 07/11/2025 - 5:30pm
The end of Prime Day is in sight — savings won't last for long on these top Canon and Sony cameras.
Categories: Astronomy

Want a last minute steal? Save $200 on this pro-level Sony A7R IV mirrorless camera as Walmart takes on Amazon

Space.com - Fri, 07/11/2025 - 5:00pm
Prime Day is brilliant, but the best savings aren't always at Amazon. Walmart has beaten the online giant's price for this Sony A7R IV camera, by over $200, but it could be ending soon!
Categories: Astronomy

'Darkness is coming.' 'Foundation' Season 3 arrives today on Apple TV+

Space.com - Fri, 07/11/2025 - 5:00pm
The Mule makes a murderous entrance in today's premiere episode, 'A Song For the End of Everything'.
Categories: Astronomy

We may have finally solved an ultra-high-energy cosmic ray puzzle

New Scientist Space - Cosmology - Fri, 07/11/2025 - 4:30pm
The IceCube neutrino detector has allowed researchers to resolve a debate about what types of particles make up ultra-high-energy cosmic rays – but much remains unknown about these rare events
Categories: Astronomy

We may have finally solved an ultra-high-energy cosmic ray puzzle

New Scientist Space - Space Headlines - Fri, 07/11/2025 - 4:30pm
The IceCube neutrino detector has allowed researchers to resolve a debate about what types of particles make up ultra-high-energy cosmic rays – but much remains unknown about these rare events
Categories: Astronomy

Keeping wastewater flowing into tomorrow's coffee | On the ISS this week July 7 - 11, 2025

Space.com - Fri, 07/11/2025 - 4:00pm
The Expedition 73 and Axiom Mission 4 crews spent their second of two weeks together conducting science aboard the International Space Station.
Categories: Astronomy

Deflecting Asteroids Isn't Simple According to New Data from DART

Universe Today - Fri, 07/11/2025 - 3:43pm

Sometimes a mission can be too successful. When NASA's DART spacecraft slammed into Dimorphos in 2022 as part of an asteroid redirection test, it altered the asteroids orbit, proving that kinetic impactors can be used to defend Earth from hazardous objects. Unfortunately, the impact also created a shower of boulders that also gave Dimorphos an unpredicted kinetic kick.

Categories: Astronomy

HKU astrobiologist joins national effort to map out China’s Tianwen-3 Mars sample return mission

Universe Today - Fri, 07/11/2025 - 3:43pm

China's Tianwen-3 is poised to be the first sample-return mission to Mars. The science team now includes a group of astrobiologists from Hong Kong University (HKU), led by Professor Yiliang Li. In a recent paper, the team advised the China National Space Agency (CNSA) on landing site selection and how the first samples from Mars should be analyzed and curated once they are brought back to Earth.

Categories: Astronomy

How Your Flight Home Could Be Broadcasting Earth's Location to Aliens.

Universe Today - Fri, 07/11/2025 - 3:43pm

Alarmingly, a team of scientists propose that every flight you take could be alerting alien civilizations to our existence. I must apologise now as I pack for a flight out to Mexico in a few days! The new research reveals that airport radar systems from Heathrow to JFK are unintentionally broadcasting powerful signals up to 200 light years into space, that’s far enough to reach over 120,000 star systems that might harbor intelligent life! These "accidental technosignatures" would appear obviously artificial to any aliens with technology similar to ours, potentially making every takeoff and landing an announcement that we're here!

Categories: Astronomy

Giant Liquid Mirrors Could Revolutionise the Hunt for Habitable Worlds

Universe Today - Fri, 07/11/2025 - 3:43pm

A team of researchers has cracked the code for building space telescopes with mirrors the size of a soccer field, not from perfectly figured glass, but from liquid floating in zero gravity! The new research reveals how a 50-metre liquid mirror telescope could maintain its optical quality for decades despite the constant slewing motions needed to observe different stars, with deformations taking years to propagate from the edges toward the centre. The idea could enable the next generation of space telescopes capable of directly imaging Earth-like planets around other stars, potentially answering the ultimate question: are we alone in the universe?

Categories: Astronomy

NASA's Future Telescope Could Solve the Mystery of Life's Origins

Universe Today - Fri, 07/11/2025 - 3:43pm

A team of scientists are preparing to use NASA's upcoming Habitable Worlds Observatory to answer one of the most profound questions of all time: How does life begin? Rather than searching for individual signs of life, the team plan to study patterns across dozens of exoplanets to test competing theories about the origins of life; from scenarios where life is so rare we might be alone within 33 light-years, to theories predicting that life emerges wherever basic conditions exist. This approach could transform perhaps our oldest question into testable science, potentially revealing whether our biosphere is an accident or part of a universe teeming with life.

Categories: Astronomy

Advances in NASA Imaging Changed How World Sees Mars

NASA - Breaking News - Fri, 07/11/2025 - 3:41pm

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA’s Mariner 4 captured the first-ever close-up image of Mars on July 14, 1965. While waiting for the data to be processed into the image (inset at right), team members hand-colored strips of paper that the data was printed on, assigning hues to value ranges. The result is on display at JPL.NASA/JPL-Caltech

Sixty years ago, NASA’s Mariner 4 captured groundbreaking views of the Red Planet, leading to a steady stream of advances in the cameras used to study other worlds.

In 1965, NASA’s Mariner 4 mission brought Mars into American living rooms, where TV sets showed fuzzy black-and-white images of a cratered landscape. The spacecraft took 21 complete pictures — the first ever captured of another planet — as it flew by as close as 6,118 miles (9,846 kilometers) above the surface.

The mission team couldn’t wait to see what the camera aboard the spacecraft would return. When the actual images were delayed, they went so far as to create a color-by-numbers image, assigning hues to specific values in the data.

Their handiwork wasn’t far off, and the barren landscape Mariner 4 captured ignited the imaginations of future scientists and engineers who would go on to work on a succession of missions, each revealing Mars in a way it had never been seen before.

Millions of Mars images have been taken since then, many of which are captivating in their own way. The images that follow highlight some of the “firsts” in the way the agency has used imaging to help unlock the secrets of Mars.

Viking 1 Sets Foot on Mars

July 20, 1976

This historic image — the first from the surface of Mars — confirmed that NASA’s Viking 1 lander had become the first spacecraft to touch down on the Red Planet on July 20, 1976. NASA/JPL-Caltech

Viking 1 became the first spacecraft to touch down on Mars on July 20, 1976. The first high-resolution image it sent to Earth captured a dry, rocky landscape that dashed any hope among scientists of discovering life on the surface. But the crisp images that followed from the lander’s 360-degree cylindrical scan camera underscored the scientific value of seeing Mars from the ground and generated excitement for a more ambitious visit: a robotic spacecraft that could drive across this alien world.

Portrait of Mars by Viking 1 Orbiter

1980

NASA’s twin Viking landers didn’t travel alone. Two accompanying orbiters circled Mars to study it from above. The Viking 1 orbiter captured many images in 1980 that were combined to produce this view of Valles Marineris, the “Grand Canyon of Mars.”NASA/JPL-Caltech/USGS

When the twin Viking landers arrived at Mars, each descended from an orbiter that used cameras to map Mars in a way Earth-based telescopes couldn’t. They began capturing images before the landers even touched down, continuing until 1980. That year, the Viking 1 orbiter captured images that were later stitched into a defining portrait of Valles Marineris — the “Grand Canyon of Mars.”

Sojourner Starts to Explore

July 5, 1997

The size of a microwave oven, NASA’s Sojourner rover was the first spacecraft to drive on Mars, as seen in this image taken by NASA’s Pathfinder lander on July 5, 1997. The rover explored the Martian surface for 83 days, well beyond its planned seven-day mission.NASA/JPL-Caltech

By the time NASA returned to the Martian surface in 1997 with the Pathfinder lander and its microwave-oven-size Sojourner rover, much had changed on Earth since Mariner 4’s images beamed to TV viewers: Now, the internet was bringing around-the-clock news to personal computers, allowing a young generation of space fans to witness the tentative first steps of a new form of planetary exploration. The panoramic images from the ground were the first since Viking and, as part of NASA’s “faster, better, cheaper” initiative, offered more detail and a comparatively lower cost.

Opportunity Spots Passing Dust Devil

March 31, 2016

NASA’s Spirit and Opportunity rovers crossed many miles of Martian terrain, capturing stunning vistas and passing dust devils along the way. The twins far outlasted their planned mission of 90 days: Spirit traveled the Red Planet for more than six years, while Opportunity journeyed for almost 15.NASA/JPL-Caltech

In 2004, NASA’s golf-cart-size twin rovers Spirit and Opportunity set down on the Red Planet, beginning a new phase of Martian exploration. Equipped with both mast-mounted panoramic and arm-mounted microscopic imagers, the roving spacecraft let scientists, engineers, and the world discover new terrain each day. They captured colorful views of Martian vistas and revealed details of pebble-size “blueberries.” Mars was beginning to feel less like an unfamiliar world than a place with recognizable landmarks.

MRO’s HiRISE Views Victoria Crater

July 18, 2009

More advanced orbiters have brought a different perspective of the Red Planet — especially NASA’s Mars Reconnaissance Orbiter, which uses its HiRISE camera to see surface features that appeared blurry in earlier images. Here, HiRISE views Victoria Crater.NASA/JPL-Caltech/University of Arizona

Since Viking, a series of increasingly advanced orbiters have arrived at Mars with new science tools and cameras. Using increasingly sophisticated imagers, they have mapped the planet’s hills and valleys, identified significant minerals, and found buried glaciers. A camera that has been in operation aboard NASA’s Mars Reconnaissance Orbiter since 2006, the High-Resolution Imaging Science Experiment (HiRISE) frequently captures individual dunes, boulders, and craters, as with this picture of Victoria Crater, revealing features that had been blurry in previous images. The camera has also identified landing sites and places where future rovers (perhaps even astronauts) could explore.

Curiosity, Perseverance Bring More Cameras and Color

Aug. 5, 2012 and Feb. 18, 2021

Curiosity Perseverance NASA/JPL-Caltech NASA/JPL-Caltech CuriosityPerseverance NASA/JPL-Caltech NASA/JPL-Caltech Curiosity Perseverance More Cameras, More Color CurtainToggle2-Up Image Details NASA’s Curiosity and Perseverance rovers each brought more cameras — and more color — to the Martian surface. One example are the hazard-avoidance cameras, which are black-and-white on Curiosity, left, and higher-resolution color on Perseverance. NASA/JPL-Caltech

Both Curiosity and Perseverance arrived at Mars (in 2012 and 2021, respectively) loaded with cameras that pack millions of pixels into their images and peer farther into the distance than Spirit or Opportunity ever could. They also feature upgraded arm-mounted cameras for studying fine details like sand particles and rock textures. Perseverance took a step beyond Curiosity in several ways, including with high-speed cameras that showed its parachute deploying and its rocket-powered jetpack flying away during entry, descent, and landing on Mars. Another advance can be seen in each vehicle’s hazard-avoidance cameras, which help rover drivers spot rocks they might bump into. As seen in the first images each rover sent back, Curiosity’s black-and-white cameras were upgraded to color and higher resolution for Perseverance, providing clearer views of the surface.

Ingenuity Spots Perseverance at Belva Crater

Aug. 22, 2023

NASA’s Perseverance landed along with the Ingenuity helicopter, which proved flight in Mars’ thin atmosphere was possible. This view from Ingenuity — taken from an altitude of about 40 feet (12 meters) during its 51st flight — includes the rover, visible as a whitish speck at upper left.NASA/JPL-Caltech

Just as Pathfinder brought the tiny Sojourner rover to Mars, NASA’s next-generation Perseverance rover carried the Ingenuity helicopter. Along with proving flight in Mars’ thin air was possible, Ingenuity used a commercial, off-the-shelf color camera to take aerial views over the course of 72 flights. During one of those flights, Ingenuity even spotted Perseverance in the distance — another first on the Red Planet. Future Mars helicopters might be able to scout paths ahead and find scientifically interesting sites for robots and astronauts alike.

More About These Missions

NASA JPL, which is managed for the agency by Caltech in Pasadena, California, built Mariner 4, the Viking 1 and 2 orbiters, Pathfinder, Sojourner, Spirit and Opportunity, Curiosity, Perseverance, and Ingenuity. It continues to operate Curiosity and Perseverance.

Lockheed Martin Space in Denver built MRO and supports its operations, while JPL manages the mission. The University of Arizona, in Tucson, operates HiRISE, which was built by BAE Systems, in Boulder, Colorado.

The Viking 1 and 2 landers were built by Martin Marietta; the Viking program was managed by NASA’s Langley Research Center in Hampton, Virginia. JPL led operations for the Viking landers and orbiters.

Mariner 4 Mars Flyby 60th Anniversary Media Reel News Media Contacts

Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov

Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

2025-088

Share Details Last Updated Jul 12, 2025 Related Terms Explore More 6 min read NASA Mars Orbiter Learns New Moves After Nearly 20 Years in Space Article 3 weeks ago 6 min read NASA’s Perseverance Rover Scours Mars for Science Article 3 weeks ago 5 min read NASA’s Curiosity Mars Rover Starts Unpacking Boxwork Formations Article 3 weeks ago Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

Advances in NASA Imaging Changed How World Sees Mars

NASA News - Fri, 07/11/2025 - 3:41pm

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA’s Mariner 4 captured the first-ever close-up image of Mars on July 14, 1965. While waiting for the data to be processed into the image (inset at right), team members hand-colored strips of paper that the data was printed on, assigning hues to value ranges. The result is on display at JPL.NASA/JPL-Caltech

Sixty years ago, NASA’s Mariner 4 captured groundbreaking views of the Red Planet, leading to a steady stream of advances in the cameras used to study other worlds.

In 1965, NASA’s Mariner 4 mission brought Mars into American living rooms, where TV sets showed fuzzy black-and-white images of a cratered landscape. The spacecraft took 21 complete pictures — the first ever captured of another planet — as it flew by as close as 6,118 miles (9,846 kilometers) above the surface.

The mission team couldn’t wait to see what the camera aboard the spacecraft would return. When the actual images were delayed, they went so far as to create a color-by-numbers image, assigning hues to specific values in the data.

Their handiwork wasn’t far off, and the barren landscape Mariner 4 captured ignited the imaginations of future scientists and engineers who would go on to work on a succession of missions, each revealing Mars in a way it had never been seen before.

Millions of Mars images have been taken since then, many of which are captivating in their own way. The images that follow highlight some of the “firsts” in the way the agency has used imaging to help unlock the secrets of Mars.

Viking 1 Sets Foot on Mars

July 20, 1976

This historic image — the first from the surface of Mars — confirmed that NASA’s Viking 1 lander had become the first spacecraft to touch down on the Red Planet on July 20, 1976. NASA/JPL-Caltech

Viking 1 became the first spacecraft to touch down on Mars on July 20, 1976. The first high-resolution image it sent to Earth captured a dry, rocky landscape that dashed any hope among scientists of discovering life on the surface. But the crisp images that followed from the lander’s 360-degree cylindrical scan camera underscored the scientific value of seeing Mars from the ground and generated excitement for a more ambitious visit: a robotic spacecraft that could drive across this alien world.

Portrait of Mars by Viking 1 Orbiter

1980

NASA’s twin Viking landers didn’t travel alone. Two accompanying orbiters circled Mars to study it from above. The Viking 1 orbiter captured many images in 1980 that were combined to produce this view of Valles Marineris, the “Grand Canyon of Mars.”NASA/JPL-Caltech/USGS

When the twin Viking landers arrived at Mars, each descended from an orbiter that used cameras to map Mars in a way Earth-based telescopes couldn’t. They began capturing images before the landers even touched down, continuing until 1980. That year, the Viking 1 orbiter captured images that were later stitched into a defining portrait of Valles Marineris — the “Grand Canyon of Mars.”

Sojourner Starts to Explore

July 5, 1997

The size of a microwave oven, NASA’s Sojourner rover was the first spacecraft to drive on Mars, as seen in this image taken by NASA’s Pathfinder lander on July 5, 1997. The rover explored the Martian surface for 83 days, well beyond its planned seven-day mission.NASA/JPL-Caltech

By the time NASA returned to the Martian surface in 1997 with the Pathfinder lander and its microwave-oven-size Sojourner rover, much had changed on Earth since Mariner 4’s images beamed to TV viewers: Now, the internet was bringing around-the-clock news to personal computers, allowing a young generation of space fans to witness the tentative first steps of a new form of planetary exploration. The panoramic images from the ground were the first since Viking and, as part of NASA’s “faster, better, cheaper” initiative, offered more detail and a comparatively lower cost.

Opportunity Spots Passing Dust Devil

March 31, 2016

NASA’s Spirit and Opportunity rovers crossed many miles of Martian terrain, capturing stunning vistas and passing dust devils along the way. The twins far outlasted their planned mission of 90 days: Spirit traveled the Red Planet for more than six years, while Opportunity journeyed for almost 15.NASA/JPL-Caltech

In 2004, NASA’s golf-cart-size twin rovers Spirit and Opportunity set down on the Red Planet, beginning a new phase of Martian exploration. Equipped with both mast-mounted panoramic and arm-mounted microscopic imagers, the roving spacecraft let scientists, engineers, and the world discover new terrain each day. They captured colorful views of Martian vistas and revealed details of pebble-size “blueberries.” Mars was beginning to feel less like an unfamiliar world than a place with recognizable landmarks.

MRO’s HiRISE Views Victoria Crater

July 18, 2009

More advanced orbiters have brought a different perspective of the Red Planet — especially NASA’s Mars Reconnaissance Orbiter, which uses its HiRISE camera to see surface features that appeared blurry in earlier images. Here, HiRISE views Victoria Crater.NASA/JPL-Caltech/University of Arizona

Since Viking, a series of increasingly advanced orbiters have arrived at Mars with new science tools and cameras. Using increasingly sophisticated imagers, they have mapped the planet’s hills and valleys, identified significant minerals, and found buried glaciers. A camera that has been in operation aboard NASA’s Mars Reconnaissance Orbiter since 2006, the High-Resolution Imaging Science Experiment (HiRISE) frequently captures individual dunes, boulders, and craters, as with this picture of Victoria Crater, revealing features that had been blurry in previous images. The camera has also identified landing sites and places where future rovers (perhaps even astronauts) could explore.

Curiosity, Perseverance Bring More Cameras and Color

Aug. 5, 2012 and Feb. 18, 2021

Curiosity Perseverance NASA/JPL-Caltech NASA/JPL-Caltech CuriosityPerseverance NASA/JPL-Caltech NASA/JPL-Caltech Curiosity Perseverance More Cameras, More Color CurtainToggle2-Up Image Details NASA’s Curiosity and Perseverance rovers each brought more cameras — and more color — to the Martian surface. One example are the hazard-avoidance cameras, which are black-and-white on Curiosity, left, and higher-resolution color on Perseverance. NASA/JPL-Caltech

Both Curiosity and Perseverance arrived at Mars (in 2012 and 2021, respectively) loaded with cameras that pack millions of pixels into their images and peer farther into the distance than Spirit or Opportunity ever could. They also feature upgraded arm-mounted cameras for studying fine details like sand particles and rock textures. Perseverance took a step beyond Curiosity in several ways, including with high-speed cameras that showed its parachute deploying and its rocket-powered jetpack flying away during entry, descent, and landing on Mars. Another advance can be seen in each vehicle’s hazard-avoidance cameras, which help rover drivers spot rocks they might bump into. As seen in the first images each rover sent back, Curiosity’s black-and-white cameras were upgraded to color and higher resolution for Perseverance, providing clearer views of the surface.

Ingenuity Spots Perseverance at Belva Crater

Aug. 22, 2023

NASA’s Perseverance landed along with the Ingenuity helicopter, which proved flight in Mars’ thin atmosphere was possible. This view from Ingenuity — taken from an altitude of about 40 feet (12 meters) during its 51st flight — includes the rover, visible as a whitish speck at upper left.NASA/JPL-Caltech

Just as Pathfinder brought the tiny Sojourner rover to Mars, NASA’s next-generation Perseverance rover carried the Ingenuity helicopter. Along with proving flight in Mars’ thin air was possible, Ingenuity used a commercial, off-the-shelf color camera to take aerial views over the course of 72 flights. During one of those flights, Ingenuity even spotted Perseverance in the distance — another first on the Red Planet. Future Mars helicopters might be able to scout paths ahead and find scientifically interesting sites for robots and astronauts alike.

More About These Missions

NASA JPL, which is managed for the agency by Caltech in Pasadena, California, built Mariner 4, the Viking 1 and 2 orbiters, Pathfinder, Sojourner, Spirit and Opportunity, Curiosity, Perseverance, and Ingenuity. It continues to operate Curiosity and Perseverance.

Lockheed Martin Space in Denver built MRO and supports its operations, while JPL manages the mission. The University of Arizona, in Tucson, operates HiRISE, which was built by BAE Systems, in Boulder, Colorado.

The Viking 1 and 2 landers were built by Martin Marietta; the Viking program was managed by NASA’s Langley Research Center in Hampton, Virginia. JPL led operations for the Viking landers and orbiters.

Mariner 4 Mars Flyby 60th Anniversary Media Reel News Media Contacts

Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov

Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

2025-088

Share Details Last Updated Jul 12, 2025 Related Terms Explore More 6 min read NASA Mars Orbiter Learns New Moves After Nearly 20 Years in Space Article 3 weeks ago 6 min read NASA’s Perseverance Rover Scours Mars for Science Article 3 weeks ago 5 min read NASA’s Curiosity Mars Rover Starts Unpacking Boxwork Formations Article 3 weeks ago Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

NASA Astronaut Shannon Walker Retires

NASA - Breaking News - Fri, 07/11/2025 - 3:31pm
NASA astronaut Shannon Walker on the International Space Station

NASA astronaut Shannon Walker retired July 10, concluding a career that spanned 38 years, including 30 years of federal service and more than 21 years as an astronaut. During two spaceflights, she spent 330 days in orbit, contributing to hundreds of scientific experiments and technology demonstrations for the benefit of humanity.

Walker served as a mission specialist during NASA’s SpaceX Crew-1 mission to the International Space Station in 2020, the first crewed operational Dragon spacecraft flight. She also was the first woman to fly aboard a Dragon spacecraft. Once aboard the orbiting laboratory, Walker joined the Expedition 64/65 crew and briefly commanded Expedition 65, logging 167 days in space before returning to Earth in May 2021.

She spent 163 days in space during her first spaceflight in 2010 as a member of the space station’s Expedition 24/25 crew. She was the pilot of the Soyuz TMA-19, which became the first crew to dock with the station’s Rassvet module.

“Shannon’s dedication to human space exploration has left an incredible impact, not just here in Houston, but across the industry,” said Steve Koerner, acting director of NASA’s Johnson Space Center in Houston. “Her leadership and guidance will be missed immensely, but she leaves behind a legacy of excellence that will continue to inspire the next generation of explorers for decades to come.”

Most recently, Walker served as the deputy chief of the Astronaut Office. She also oversaw the 2021 class of astronaut candidates, supervising their training and graduation in 2024.

“Shannon and I were a part of the same astronaut class back when we first started,” said Joe Acaba, chief of the Astronaut Office at NASA Johnson. “She has been a great friend to me ever since and a great leader within the Astronaut Office. I could not imagine a better partner by my side when, nearly 20 years later, we’d become chief and deputy chief. She has undoubtedly been a positive influence on this office, and her retirement is well-deserved.”

Walker began her career as a flight controller in the Mission Control Center at NASA Johnson, supporting several shuttle missions. She next worked in the International Space Station Program Office, helping to develop, build, and integrate hardware for the space station. In the early days of the space station, she returned to mission control, leading the engineering team responsible for the space station’s technical health.

She was selected as an astronaut in 2004. After completing her initial two years of training, she served as a crew support astronaut and worked as a capsule communicator, or capcom. She also held leadership positions within the several branches of the Astronaut Office focused on International Space Station operations, crew Soyuz missions, and supporting astronauts with flight assignments. She also commanded the NASA Extreme Environment Mission Operations project, or NEEMO 15 underwater mission.

“I had always known I wanted to be an astronaut when I grew up, but looking back on the past 38 years, I never would have imagined how many adventures my career would take me on,” said Walker. “I feel fortunate to have been able to work with people all over the world in the pursuit of space exploration. I have seen a lot of change in the evolution of human spaceflight, and I know the future is in good hands with all the talented people we have here and the generations yet to come.”

The Houston native attended Rice University in her hometown, where she earned a bachelor’s degree in physics, followed by a master’s degree and doctorate in space physics.

Learn more about how NASA explores the unknown and innovates for the benefit of humanity at:  https://www.nasa.gov/

-end-

Chelsey Ballarte

Johnson Space Center, Houston

281-483-5111

Chelsey.n.ballarte@nasa.gov

Categories: NASA

NASA Astronaut Shannon Walker Retires

NASA News - Fri, 07/11/2025 - 3:31pm
NASA astronaut Shannon Walker on the International Space Station

NASA astronaut Shannon Walker retired July 10, concluding a career that spanned 38 years, including 30 years of federal service and more than 21 years as an astronaut. During two spaceflights, she spent 330 days in orbit, contributing to hundreds of scientific experiments and technology demonstrations for the benefit of humanity.

Walker served as a mission specialist during NASA’s SpaceX Crew-1 mission to the International Space Station in 2020, the first crewed operational Dragon spacecraft flight. She also was the first woman to fly aboard a Dragon spacecraft. Once aboard the orbiting laboratory, Walker joined the Expedition 64/65 crew and briefly commanded Expedition 65, logging 167 days in space before returning to Earth in May 2021.

She spent 163 days in space during her first spaceflight in 2010 as a member of the space station’s Expedition 24/25 crew. She was the pilot of the Soyuz TMA-19, which became the first crew to dock with the station’s Rassvet module.

“Shannon’s dedication to human space exploration has left an incredible impact, not just here in Houston, but across the industry,” said Steve Koerner, acting director of NASA’s Johnson Space Center in Houston. “Her leadership and guidance will be missed immensely, but she leaves behind a legacy of excellence that will continue to inspire the next generation of explorers for decades to come.”

Most recently, Walker served as the deputy chief of the Astronaut Office. She also oversaw the 2021 class of astronaut candidates, supervising their training and graduation in 2024.

“Shannon and I were a part of the same astronaut class back when we first started,” said Joe Acaba, chief of the Astronaut Office at NASA Johnson. “She has been a great friend to me ever since and a great leader within the Astronaut Office. I could not imagine a better partner by my side when, nearly 20 years later, we’d become chief and deputy chief. She has undoubtedly been a positive influence on this office, and her retirement is well-deserved.”

Walker began her career as a flight controller in the Mission Control Center at NASA Johnson, supporting several shuttle missions. She next worked in the International Space Station Program Office, helping to develop, build, and integrate hardware for the space station. In the early days of the space station, she returned to mission control, leading the engineering team responsible for the space station’s technical health.

She was selected as an astronaut in 2004. After completing her initial two years of training, she served as a crew support astronaut and worked as a capsule communicator, or capcom. She also held leadership positions within the several branches of the Astronaut Office focused on International Space Station operations, crew Soyuz missions, and supporting astronauts with flight assignments. She also commanded the NASA Extreme Environment Mission Operations project, or NEEMO 15 underwater mission.

“I had always known I wanted to be an astronaut when I grew up, but looking back on the past 38 years, I never would have imagined how many adventures my career would take me on,” said Walker. “I feel fortunate to have been able to work with people all over the world in the pursuit of space exploration. I have seen a lot of change in the evolution of human spaceflight, and I know the future is in good hands with all the talented people we have here and the generations yet to come.”

The Houston native attended Rice University in her hometown, where she earned a bachelor’s degree in physics, followed by a master’s degree and doctorate in space physics.

Learn more about how NASA explores the unknown and innovates for the benefit of humanity at:  https://www.nasa.gov/

-end-

Chelsey Ballarte

Johnson Space Center, Houston

281-483-5111

Chelsey.n.ballarte@nasa.gov

Categories: NASA

Prime Day is over but savings are still active — invest in some new optics for the return of Saturn to late-night skies

Space.com - Fri, 07/11/2025 - 3:00pm
Prime Day finished on July 11 and there are still some late savings on telescopes and binoculars, but they won't last forever.
Categories: Astronomy

Sunspot crackling with magnetic 'bombs' is now turning toward Earth (photo)

Space.com - Fri, 07/11/2025 - 3:00pm
Astrophotographer Philippe Tosi captured explosive Ellerman bombs on the sun's surface as an active sunspot turned toward Earth.
Categories: Astronomy

Elon Musk's New Grok 4 Takes on ‘Humanity’s Last Exam’ as the AI Race Heats Up

Scientific American.com - Fri, 07/11/2025 - 2:30pm

Elon Musk has launched xAI’s Grok 4—calling it the “world’s smartest AI” and claiming it can ace Ph.D.-level exams and outpace rivals such as Google’s Gemini and OpenAI’s o3 on tough benchmarks

Categories: Astronomy

I couldn't keep quiet about $1000 off the Sony A7R V in this anti-Prime Day deal

Space.com - Fri, 07/11/2025 - 2:22pm
The Sony A7R V mirrorless camera plunges to just $3200 at Walmart, a staggering $1000 saving that eclipses Amazon's Prime Day price!
Categories: Astronomy