"Time and space are modes in which we think and not conditions in which we live."

— Albert Einstein

NASA - Breaking News

Syndicate content
Official National Aeronautics and Space Administration Website
Updated: 14 hours 24 min ago

AI for Earth: How NASA’s Artificial Intelligence and Open Science Efforts Combat Climate Change

Thu, 04/18/2024 - 5:06pm

4 min read

AI for Earth: How NASA’s Artificial Intelligence and Open Science Efforts Combat Climate Change Lights brighten the night sky in this image of Europe, including Poland, taken from the International Space Station. NASA

As extreme weather events increase around the world due to climate change, the need for further research into our warming planet has increased as well. For NASA, climate research involves not only conducting studies of these events, but also empowering outside researchers to do the same. The artificial intelligence (AI) efforts spearheaded by the agency offer a powerful tool to accomplish these goals.

In 2023, NASA teamed up with IBM Research to create an AI geospatial foundation model. Trained on vast amounts of NASA’s widely used Harmonized Landsat and Sentinel-2 (HLS) data, the model provides a base for a variety of AI-powered studies to tackle environmental challenges. In keeping with open science principles, the model is freely available for anyone to access.

Foundation models serve as a baseline from which scientists can develop a diverse set of applications, enabling powerful and efficient solutions. “Foundation models only know what things are represented in the data,” explained Manil Maskey, the data science lead at NASA’s Office of the Chief Science Data Officer (OCSDO). “It’s like a Swiss Army Knife—it can be used for multiple different things.”

Once a foundation model is created, it can be trained on a small amount of data to perform a specific task. To date, the Interagency Implementation and Advanced Concept Team (IMPACT) along with collaborators have demonstrated the geospatial foundation model’s capabilities by fine-tuning it to detect burn scars, to delineate flood water, and to classify crop and other land use categories.

Rectangular ponds for shrimp farming line the coast of northern Peru in this image captured on March 14, 2024 by the OLI-2 (Operational Land Imager-2) on Landsat 9. NASA Earth Observatory / Lauren Dauphin

Because of the computational resources required to create the initial foundation model, a partnership was necessary for success. In this case, NASA brought the data and scientific knowledge, while IBM brought the computing power and AI algorithm optimization expertise. The team’s shared commitment to making their research accessible through open science principles ensures that their model can be useful to as many researchers as possible.

“To build a foundation model at scale, we realized early on that it’s not feasible for one institution to build it,” Maskey said. “Everything we have done on our foundation models has been open to the public, all the way from pre-training data, code, best practices, model weights, fine-tuning training data, and publications. There’s transparency, so researchers can trace why certain things were used in terms of data or model architecture.”

Following on from the success of their geospatial foundation model, NASA and IBM Research are continuing their partnership to create a new, similar model for weather and climate studies. They are collaborating with Oak Ridge National Laboratory (ORNL), NVIDIA, and several universities to bring this model to life.

This time, the main dataset will be the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), a huge collection of atmospheric reanalysis data that spans from 1980 to the present day. Like the geospatial foundation model, the weather and climate model is being developed with an open science approach, and will be available to the public in the near future.

Covering all aspects of Earth science would take several foundation models trained on different types of datasets. However, Maskey believes those future models might someday be combined into one comprehensive model, leading to a “digital twin” of the Earth that would provide unparalleled analysis and predictions for all kinds of climate and environmental events.

Whatever innovations the future holds, NASA and IBM’s geospatial and climate foundation models will enable leaps in Earth science like never before. Though powerful AI tools will enhance researchers’ work, the team’s dedication to open science supercharges the possibilities for discovery by allowing anyone to put those tools into practice and pave the way for groundbreaking research to help better care for the planet.

For more information about open science at NASA, visit:
https://science.nasa.gov/open-science/

By Lauren Leese
Web Content Strategist for the Office of the Chief Science Data Officer

Share

Details

Last Updated

Apr 18, 2024

Related Terms Explore More

4 min read NASA Data Shows How Drought Changes Wildfire Recovery in the West

Article


3 weeks ago

5 min read Early Adopters of NASA’s PACE Data to Study Air Quality, Ocean Health

Article


3 weeks ago

4 min read NASA’s Global Precipitation Measurement Mission: 10 years, 10 stories

Article


2 months ago

Keep Exploring Discover Related Topics

Missions


Humans in Space


Climate Change


Solar System

Categories: NASA

Sols 4159-4160: A Fully Loaded First Sol

Thu, 04/18/2024 - 3:31pm

3 min read

Sols 4159-4160: A Fully Loaded First Sol This image was taken by Chemistry & Camera (ChemCam) onboard NASA’s Mars rover Curiosity on Sol 4158 (2024-04-17 07:52:27 UTC). NASA/JPL-Caltech/LANL

Earth planning date: Wednesday, April 17, 2024

Curiosity continues to make progress along the margin of upper Gediz Vallis ridge, investigating the broken bedrock in our workspace and acquiring images of the ridge deposit as the rover drives south.

Today’s 2-sol plan focused on a DRT, contact science, and drive on the first sol, followed by untargeted remote sensing on the second sol.  The team had to make some decisions at the start of planning about whether to drive on the first or second sol of this plan, and how that would affect the upcoming weekend activities.  As it turned out, the team was able to fit all of the desired contact science and remote sensing activities on the first sol, in addition to the drive on the first sol, which means we’ll be able to downlink more information about our end-of-drive location to better inform planning for the weekend.  Weekend plans provide opportunities for a lot of great contact science, so it will be really helpful to have that additional data down for planning.

That means the first sol of this plan is fully loaded!  The plan begins with a DRT activity to expose a fresh surface on the bedrock target “Tilden Lake,” followed by APXS integrations to investigate its composition. Then the Geology theme group planned several hours of remote sensing activities, including ChemCam LIBS on the bedrock target “Curry Village,” which has a similar “dragon scale” texture (or “tire tracks”) to what we had observed in the previous workspace. This big remote sensing block also includes ChemCam long distance RMI mosaics to assess the stratigraphy at Gediz Vallis ridge and the distant butte Kukenan.  These long distance RMI images reveal a lot of great detail about distant targets, like the diversity of clasts at Gediz Vallis ridge, as seen in the above image.  

The plan also includes a number of Mastcam activities to characterize local textures, sedimentary structures, dark rocks, and sandy aeolian bedforms (known as Transverse Aeolian Ridges, aka TARs) in a nearby trough.  The Environmental theme group also planned activities to monitor the movement of fines on the rover deck, search for dust devils, and monitor atmospheric dust.  After this big remote sensing block, Curiosity will use MAHLI to image the contact science target, and then continue driving south.  The second sol includes untargeted activities like an autonomously selected ChemCam AEGIS target, additional Navcam deck monitoring, and Navcam line-of-sight observations. After the drive we’ll take post drive imaging to prepare for the next plan.

Looking forward to seeing what other surprises our next workspace will reveal!

Written by Lauren Edgar, Planetary Geologist at USGS Astrogeology Science Center

Share

Details

Last Updated

Apr 18, 2024

Related Terms Explore More

3 min read Comet Geyser: Perseverance’s 21st Rock Core

Article


2 days ago

3 min read Sols 4157-4158: What is That??

Article


3 days ago

5 min read Sols 4154-4156: Bumpy Driving up the Mountain

Article


6 days ago

Keep Exploring Discover More Topics From NASA

Mars

Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…


All Mars Resources


Rover Basics


Mars Exploration Science Goals

Categories: NASA

Water Touches Everything

Thu, 04/18/2024 - 1:25pm
The ocean holds about 97 percent of Earth’s water and covers 70 percent of our planet’s surface. According to the United Nations, the ocean may be home to 50 to 80 percent of all life on Earth. Even if you live hundreds of miles from a coast, what happens in the ocean is fundamental to your life.NASA/Jenny Mottar

Real satellite imagery from NASA’s Terra, Aqua, and Landsat missions takes the shape of whales and swirling clouds in the agency’s Earth Day 2024 poster, “Water Touches Everything.”

The major ocean basins – Atlantic, Pacific, Arctic, Indian, and Southern – shape our planet’s climate and weather by absorbing, storing, and moving heat, water, and carbon dioxide. For nearly five decades, NASA missions have enabled researchers to observe from above and measure changes in the ocean across days, months, seasons, and years. Scientists use our satellite and sub-orbital data and climate models to study ocean dynamics, sea level rise, hydrological cycles, marine life, and the intersections of land and sea.

Hear NASA Science Mission Directorate Art Director, Jenny Mottar, explain her inspiration behind this year’s poster concept and design.

Image Credit: NASA/Jenny Mottar

Categories: NASA

NASA’s Juno Gives Aerial Views of Mountain, Lava Lake on Io

Thu, 04/18/2024 - 1:00pm
This animation is an artist’s concept of Loki Patera, a lava lake on Jupiter’s moon Io, made using data from the JunoCam imager aboard NASA’s Juno spacecraft. With multiple islands in its interior, Loki is a depression filled with magma and rimmed with molten lava. Credit: NASA/JPL-Caltech/SwRI/MSSS

Imagery from the solar-powered spacecraft provides close-ups of intriguing features on the hellish Jovian moon.

Scientists on NASA’s Juno mission to Jupiter have transformed data collected during two recent flybys of Io into animations that highlight two of the Jovian moon’s most dramatic features: a mountain and an almost glass-smooth lake of cooling lava. Other recent science results from the solar-powered spacecraft include updates on Jupiter’s polar cyclones and water abundance.

The new findings were announced Wednesday, April 16, by Juno’s principal investigator Scott Bolton during a news conference at the European Geophysical Union General Assembly in Vienna.

Juno made extremely close flybys of Io in December 2023 and February 2024, getting within about 930 miles (1,500 kilometers) of the surface, obtaining the first close-up images of the moon’s northern latitudes.

“Io is simply littered with volcanoes, and we caught a few of them in action,” said Bolton. “We also got some great close-ups and other data on a 200-kilometer-long (127-mile-long) lava lake called Loki Patera. There is amazing detail showing these crazy islands embedded in the middle of a potentially magma lake rimmed with hot lava. The specular reflection our instruments recorded of the lake suggests parts of Io’s surface are as smooth as glass, reminiscent of volcanically created obsidian glass on Earth.”

The JunoCam instrument on NASA’s Juno captured this view of Jupiter’s moon Io — with the first-ever image of its south polar region — during the spacecraft’s 60th flyby of Jupiter on April 9.Image credit: NASA/JPL-Caltech/SwRI/MSSS. Image processing: Gerald Eichstädt/Thomas Thomopoulos (CC BY).

Maps generated with data collected by Juno’s Microwave Radiometer (MWR) instrument reveal Io not only has a surface that is relatively smooth compared to Jupiter’s other Galilean moons, but also has poles that are colder than middle latitudes.

Pole Position

During Juno’s extended mission, the spacecraft flies closer to the north pole of Jupiter with each pass. This changing orientation allows the MWR instrument to improve its resolution of Jupiter’s northern polar cyclones. The data allows multiwavelength comparisons of the poles, revealing that not all polar cyclones are created equal.

“Perhaps most striking example of this disparity can be found with the central cyclone at Jupiter’s north pole,” said Steve Levin, Juno’s project scientist at NASA’s Jet Propulsion Laboratory in Southern California. “It is clearly visible in both infrared and visible light images, but its microwave signature is nowhere near as strong as other nearby storms. This tells us that its subsurface structure must be very different from these other cyclones. The MWR team continues to collect more and better microwave data with every orbit, so we anticipate developing a more detailed 3D map of these intriguing polar storms.”

Jovian Water

One of the mission’s primary science goals is to collect data that could help scientists better understand Jupiter’s water abundance. To do this, the Juno science team isn’t hunting for liquid water. Instead, they are looking to quantify the presence of oxygen and hydrogen molecules (the molecules that make up water) in Jupiter’s atmosphere. An accurate estimate is critical to piecing together the puzzle of our solar system’s formation.

Created using data collected by the JunoCam imager aboard NASA’s Juno during flybys in December 2023 and February 2024, this animation is an artist’s concept of a feature on the Jovian moon Io that the mission science team nicknamed “Steeple Mountain.” Credit: NASA/JPL-Caltech/SwRI/MSSS

Jupiter was likely the first planet to form, and it contains most of the gas and dust that wasn’t incorporated into the Sun. Water abundance also has important implications for the gas giant’s meteorology (including how wind currents flow on Jupiter) and internal structure.

In 1995, NASA’s Galileo probe provided an early dataset on Jupiter’s water abundance during the spacecraft’s 57-minute descent into the Jovian atmosphere. But the data created more questions than answers, indicating the gas giant’s atmosphere was unexpectedly hot and — contrary to what computer models had indicated — bereft of water.

“The probe did amazing science, but its data was so far afield from our models of Jupiter’s water abundance that we considered whether the location it sampled could be an outlier. But before Juno, we couldn’t confirm,” said Bolton. “Now, with recent results made with MWR data, we have nailed down that the water abundance near Jupiter’s equator is roughly three to four times the solar abundance when compared to hydrogen. This definitively demonstrates that the Galileo probe’s entry site was an anomalously dry, desert-like region.”

The results support the belief that the during formation of our solar system, water-ice material may have been the source of the heavy element enrichment (chemical elements heavier than hydrogen and helium that were accreted by Jupiter) during the gas giant’s formation and/or evolution. The formation of Jupiter remains puzzling, because Juno results on the core of the gas giant suggest a very low water abundance — a mystery that scientists are still trying to sort out. 

Data during the remainder of Juno’s extended mission may help, both by enabling scientists to compare Jupiter’s water abundance near the polar regions to the equatorial region and by shedding additional light on the structure of the planet’s dilute core. 

During Juno’s most recent flyby of Io, on April 9, the spacecraft came within about 10,250 miles (16,500 kilometers) of the moon’s surface. It will execute its 61st flyby of Jupiter on May 12.

More About the Mission

NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. The Italian Space Agency (ASI) funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft.

More information about Juno is available at:

https://www.nasa.gov/juno

News Media Contacts

DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov

Karen Fox / Charles Blue
NASA Headquarters, Washington
301-286-6284 / 202-802-5345
karen.c.fox@nasa.gov / charles.e.blue@nasa.gov

Deb Schmid
Southwest Research Institute, San Antonio
210-522-2254
dschmid@swri.org

2024-045

Share Details Last Updated Apr 18, 2024 Related Terms Explore More 3 min read Sols 4159-4160: A Fully Loaded First Sol

Earth planning date: Wednesday, April 17, 2024 Curiosity continues to make progress along the margin…

Article 4 hours ago
7 min read Hubble Goes Hunting for Small Main Belt Asteroids

Like boulders, rocks, and pebbles scattered across a landscape, asteroids come in a wide range…

Article 10 hours ago
5 min read NASA’s Ingenuity Mars Helicopter Team Says Goodbye … for Now Article 2 days ago
Categories: NASA

55 Years Ago: Three Months Until the Moon Landing

Thu, 04/18/2024 - 12:36pm

The rapid pace of preparations for the first Moon landing continued in April 1969. The successful Apollo 9 mission in March cleared the way for Apollo 10 to test all three components of the spacecraft in lunar orbit in May, in a dress rehearsal for the landing itself. Apollo 10 astronauts Thomas P. Stafford, John W. Young, and Eugene A. Cernan and their backups L. Gordon Cooper, Donn F. Eisele, and Edgar D. Mitchell continued training in spacecraft simulators while engineers prepared their Saturn V rocket and Apollo spacecraft for the mid-May launch. Preparations continued in parallel for Apollo 11, the mission to attempt the first Moon landing. The astronauts trained for the flight, including rehearsing the activities for their historic spacewalk on the lunar surface. Fulfilling President John F. Kennedy’s goal by the appointed deadline looked promising.

Apollo 10


The Apollo 10 flight plan.

Apollo 10 would serve as a dress rehearsal for the Moon landing mission. After liftoff from Launch Pad 39B – the first use of that facility – the spacecraft, still attached to the Saturn V’s S-IVB third stage, would make two revolutions around the Earth. The S-IVB would reignite for the Trans-Lunar Injection to begin the journey toward the Moon. Shortly after, the astronauts would undock the Command and Service Module (CSM) from the S-IVB, turn around, and dock with the Lunar Module (LM), tucked away in the top of the rocket stage, in a maneuver called transposition and docking. After jettisoning the S-IVB, the docked spacecraft would coast toward the Moon for about three days. The Service Propulsion System (SPS) engine would fire to drop them into orbit around the Moon. Stafford and Cernan would enter the LM and undock, leaving Young alone in the CSM. Using the LM’s Descent Propulsion System engine to lower their altitude, Stafford and Cernan would descend to about 50,000 feet above the lunar surface, and photograph the primary Apollo 11 landing site in the Sea of Tranquility. The LM would travel up to 350 miles away from the CSM during these maneuvers. The Ascent Propulsion System engine would then fire as they jettisoned the descent stage, in a simulation of a litfoff from the Moon. Stafford and Cernan would then rejoin Young in the CSM. After jettisoning the LM’s ascent stage and completing 11 more orbits around the Moon, Apollo 10 would fire its SPS engine for the retrun trip to Earth, ending with a splashdown in the Pacific Ocean. Except for the actual descent to and touchdown on the surface, Apollo 10 would follow all the steps of the actual Moon landing mission.


Left: Apollo 10 astronauts Thomas P. Stafford, left, John W. Young, and Eugene A. Cernan during a press conference at NASA’s Kennedy Space Center in Florida. Right: Stafford, left, Young, and Cernan hold their mission patch following a press conference at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston.

During two press conferences, at NASA’s Kennedy Space Center (KSC) in Florida on April 8 and at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston, on April 26, Stafford, Young, and Cernan discussed their eight-day mission with reporters. The trio described their upcoming flight as essentially a dress rehearsal for the Moon landing, with Stafford stating that Apollo 10 will “sort out all the unknowns and actually pave the whole way for the lunar landing mission.” They displayed their mission patch and revealed the call signs for their spacecraft – Charlie Brown for the CSM and Snoopy for the LM, after characters in the Peanuts© comic strip by Charles M. Schulz. According to Apollo Spacecraft Program Manager George M. Low, Apollo 10 would do “everything that we did on Apollo 9, only in lunar orbit.” Officials also announced that the Apollo 10 CM may carry a color TV system in addition to the standard black and white cameras. The color camera, equipped with a zoom lens, would provide live TV broadcasts from the spacecraft during critical mission operations and provide viewers at home with a glimpse of life aboard an Apollo spacecraft during a lunar mission. They also expected views of the Earth as well as the lunar landscape. During their low pass over the Moon, Stafford and Cernan would take high resolution stereo photographs of the Apollo 11 landing site. They would also activate the LM’s landing radar during the low passes, a critical test before the Moon landing. Regarding the complexity of the mission, Cernan added “I’ve never been involved in anything that has required as great an amount of coordination and team work as … to work with two vehicles in a lunar environment.” 


Left: Apollo 10 astronauts Eugene A. Cernan, left, and Thomas P. Stafford in the Lunar Module simulator. Right: Apollo 10 astronaut John W. Young in the Command Module simulator.

When not speaking with the press, Stafford, Cernan, and Young, as well as their backups, spent time almost daily in the LM and CSM simulators at MSC and KSC rehearsing various aspects of their upcoming mission. During many of these simulations, Mission Control in Houston was tied in for flight controllers to gain experience. The astronauts also spent time reviewing procedures, updating checklists, and receiving briefings on spacecraft systems and lunar topography.


Left: Apollo 10 astronauts John W. Young, left, Thomas P. Stafford, and Eugene A. Cernan during an inspection visit at Launch Pad 39B. Middle: Young, front, Stafford, and Cernan inspect the slide wire escape mechanism at the top of Launch Pad 39B. Right: Young, left, Stafford, and Cernan inside the blast room beneath the launch pad.

Engineers at KSC completed the Flight Readiness Test (FRT) between April 7 and 10, an activity that ensured the flight readiness of all the vehicle systems and their interaction with ground support equipment. Stafford, Cernan, and Young took part in an emergency egress drill at Launch Pad 39B, including inspecting the slide wire escape mechanism and the blast room, a concrete reinforced structure under the launch pad used in case of a catastrophic emergency during fueling of the rocket or the countdown. Managers from NASA Headquarters, KSC, MSC, and the Marshall Space Flight Center in Huntsville, Alabama, met at KSC on April 23 to conduct the Flight Readiness Review for Apollo 10. At the conclusion of the meeting, during which they reviewed all aspects of the flight hardware as well as the readiness of the crew, the control centers, and the Manned Spaceflight Network, the managers decided that the mission could proceed toward a launch on May 18. On April 28, a planned power outage to conduct maintenance at KSC’s Launch Control Center also caused power outages at the launch pad, where not all systems had backup power. Workers had already loaded the rocket’s first stage with its flight load of RP-1 fuel, and the loss of power caused valves at the bottom of the tank to open, spilling 5,280 liters of fuel onto the launch pad’s flame trench. Since the fuel tank did not have any relief valves to allow air to enter the tank as fuel drained out, the loss of fluid volume caused the top of the tank to dimple inward. Quick thinking engineers at the pad instituted a work around to refill the tank and the dimple popped out with a very audible “boomp.” Launch pad manager John J. “Tip” Talone concluded of the quick action, “It worked like a champ.” Engineers resolved concern with any possible cracks in the fuel tank through non-destructive testing and visual inspections. The Countdown Demonstration Test, a final dress rehearsal of the countdown, took place between April 29 and May 6, with Stafford, Young, and Cernan participating in the final phase as if on launch day.


Left: The Apollo 10 backup crew of L. Gordon Cooper, left, Edgar D. Mitchell, and Donn F. Eisele prepare for the water egress test aboard the MV Retriever in the Gulf of Mexico. Right: Mitchell, left, Eisele, and Cooper in the life raft await pickup by a helicopter during the water egress test.

Apollo 10 backup crew members Cooper, Eisele, and Mitchell completed water egress training in the Gulf of Mexico on April 4. Using a boilerplate Apollo CM and tended by the Motorized Vessel (MV) Retriever, the astronauts practiced emerging from the capsule as if after splashdown, and with assistance from divers waited in a life raft for helicopter crews to retrieve them from the water.

Apollo 11


Left: In the Manned Spacecraft Operations Building (MSOB) at NASA’s Kennedy Space Center (KSC) in Florida, workers complete attaching the landing legs to the Apollo 11 Lunar Module (LM). Middle: In the MSOB, workers lower the Command Service Module onto the Spacecraft LM Adaptor. Right: In KSC’s Vehicle Assembly Building, workers lower the Apollo 11 spacecraft onto its Saturn V rocket.

As launch day neared for Apollo 10, work progressed to get Apollo 11 ready for its historic mission. In KSC’s Manned Spacecraft Operations Building (MSOB), workers attached the four landing legs to the Apollo 11 LM, mated it with its Spacecraft LM Adapter (SLA) on April 4, and three days later completed assembly of the spacecraft by adding the CSM. On April 14, they transported the spacecraft to the Vehicle Assembly Building (VAB), where engineers stacked it atop its Saturn V rocket. They performed tests on the vehicle prior to its rollout to the launch pad in mid-May.


Left: Apollo 11 astronaut Neil A. Armstrong practices taking the first step onto the lunar surface. Middle: Edwin E. “Buzz” Aldrin, left, and Armstrong train for lunar surface activities. Right: Aldrin trains to carry the science instruments.

The Apollo 11 prime crew of Neil A. Armstrong, Michael Collins, and Edwin E. “Buzz” Aldrin and their backups James A. Lovell, William A. Anders, and Fred W. Haise busied themselves training for the Moon landing. On April 14, Apollo Spacecraft Program Manager Low announced in a press conference that Armstrong would most likely be the first person to exit the LM and take humanity’s first steps on the lunar surface. Aldrin would follow about 20 minutes later. The LM cabin’s configuration primarily dictated the rationale for this decision – because of the way the LM’s hatch opened inward, it would be difficult at best for Aldrin to exit first, since he would need to climb over Armstrong in the cramped quarters of the cabin, both of them wearing bulky spacesuits. 


Left: Apollo 11 astronaut Edwin E. “Buzz” Aldrin tests his spacesuit in a vacuum chamber. Middle: Michael Collins prepares to enter the centrifuge gondola. Right: Neil A. Armstrong trains with a lunar sample container in a vacuum chamber.

To ensure the space-worthiness of their spacesuits, the astronauts tested them in the 8-foot altitude chamber in MSC’s Crew Systems Division. Collins and Anders spent time in the centrifuge in MSC’s Flight Acceleration Facility, practicing profiles of a launch and a reentry from a lunar mission. In MSC’s Building 9, on April 18 Armstrong and Aldrin, wearing their spacesuits, completed a 2.5-hour simulation of activities, such as collecting rock and soil samples and deploying scientific instruments, that they will perform on the lunar surface. Armstrong, Aldrin, Lovell, and Haise each completed sea-level runs in Chamber B of MSC’s Space Environment Simulation Laboratory. During these tests, the astronauts wore their spacesuits and practiced the various lunar surface activities, such as activating the television camera, collecting rock samples, and deploying the scientific experiments of the Early Apollo Surface Experiment Package (EASEP). They followed up these ambient sessions with altitude runs in early May.


Left: One of the three Lunar Module-2 drop tests conducted during the first week of April. Right: The Lunar Receiving Laboratory for astronauts and lunar samples returning from the Moon.

To certify the LM and its systems for the loads it would encounter during a lunar landing, engineers at MSC continued drop tests with the flight-like LM-2 in the Vibration and Acoustics Test Facility (VATF).  Beginning the series in late March, engineers completed three of the five drop tests in early April. These tests induced lateral accelerations on the wire harnesses and plumbing in the spacecraft’s aft equipment bay, produced high acceleration loads around the inertial measurement unit and the environmental control system, and stressed the LM’s front face and side hatch. The final test in early May completed the certification of the LM for the first lunar landing. Elsewhere at MSC, staff continued to prepare the Lunar Receiving Laboratory (LRL) for the return of astronauts and samples from the Moon. Workers completed long-duration simulations of the LRL’s major functions including the Crew Reception Area in early April. The tests highlighted some deficiencies requiring correction prior to the first Moon landing flight. These included problems with the sterilization equipment and the gloves used in gloveboxes to handle lunar samples repeatedly developed holes, compromising the biological barrier. A management readiness review held April 17-18 also noted these as areas needing improvement. To solve these issues, MSC Director Robert R. Gilruth named his special assistant Richard S. Johnston to oversee all aspects of the LRL. Workers corrected the problems and the LRL received certification just prior to the Apollo 11 mission.


Left: At Ellington Air Force Base in Houston, NASA pilot Harold E. “Bud” Ream at the controls of Lunar Landing Training Vehicle-2 (LLTV-2) on its first flight after flights resumed. Middle: Ream walks away from LLTV-2 after the successful flight. Right: Multiple exposure of a practice landing at the Lunar Landing Research Facility at NASA’s Langley Research Center in Hampton, Virginia. 

At Ellington Air Force Base near MSC, the Lunar Landing Training Vehicle (LLTV) resumed flight operations on April 7 with MSC pilot Harold E. “Bud” Ream at the controls. Apollo commanders relied on the LLTV as a key training tool to simulate the flying characteristics of the LM, especially of the final 500 feet of the descent. But NASA managers had grounded the LLTV after a crash in December 1968, and following investigations had allowed flights to resume but only by test pilots. Ream completed more than a dozen flights before managers cleared the LLTV for astronaut training in June. While the LLTV remained grounded, Apollo 11 astronauts made use of the Lunar Landing Research Facility (LLRF) at the NASA Langley Research Center in Hampton, Virginia, to train for the final descent to the lunar surface.  Lovell and Haise practiced Moon landings in the LLRF in mid-April. Armstrong and Aldrin would use the facility for practice landings in late June. Once managers cleared the LLTV for astronaut use in early June, Armstrong and Lovell completed training flights in that higher fidelity vehicle later that month.

Apollo 12

Looking beyond Apollo 11, NASA continued preparations for the next missions. In case Apollo 11 could not achieve the Moon landing, the agency established readiness dates for Apollo 12 of Sept. 13 and Apollo 13 of Nov. 10, to try again. If Apollo 11 succeeded, the follow on missions would occur at four-month intervals and explore different regions of the Moon with an expanded set of science instruments and geology objectives.


Left: Apollo 12 astronauts Charles “Pete” Conrad, left, Richard F. Gordon, and Alan L. Bean pose in front of a boilerplate Apollo capsule during water egress training when they served as the backup crew for Apollo 9. Right: Apollo 12 prime crew members Conrad, left, and Bean, right, review Apollo Lunar Surface Experiment Package equipment as backup astronaut James B. Irwin, with arms folded, looks on.

On April 10, NASA announced the prime and backup crews for Apollo 12. The prime crew consisted of Charles “Pete” Conrad, Richard F. Gordon, and Alan L. Bean. The three had served as the backup crew for the March 1969 Apollo 9 mission. Conrad had flown in space twice before, during the then record-breaking eight-day Gemini V mission in 1965 and with Gordon on his only previous mission during Gemini XI in 1966, when they achieved a then-record human space flight altitude of 853 miles. NASA selected Bean, a spaceflight rookie, in 1963. The Apollo 12 backup crew of David R. Scott, Alfred M. Worden, and James B. Irwin would fly the mission in case something happened to the prime crew. Scott had previously flown in space aboard Gemini VIII in 1966, the mission that accomplished the first docking in space and also made the first emergency landing, and more recently he flew aboard Apollo 9. Worden and Irwin had not yet flown in space, but Worden had served on support crews and Irwin as the commander of the crew that conducted tests with LM Test Article-8 (LTA-8) in 1968 to evaluate the LM in a vacuum chamber at MSC.


Left: At NASA’s Kennedy Space Center (KSC) in Florida, workers unwrap the Apollo 12 Lunar Module (LM) descent stage shortly after its arrival in the Manned Spacecraft Operations Building. Middle: Workers lower the Apollo 12 LM ascent stage onto the Command Module for a docking test. Right: Workers roll the Apollo 12 Saturn V S-II second stage into KSC’s Vehicle Assembly Building.

At KSC, components for Apollo 12 began to arrive for processing. The Saturn V’s S-IVB third stage had arrived at the VAB in March, joined by the S-II second stage on April 21, with the S-IC first stage expected in May. The Apollo 12 LM and CSM had arrived in the MSOB in March, and as workers finished up work with the Apollo 11 spacecraft, they shifted their focus to processing Apollo 12. On April 18, they conducted a docking test between the LM’s ascent stage and the CSM, already placed in its altitude chamber for future testing.

To be continued …

News from around the world in April 1969:

April 1 – At MSC, Director of Engineering Maxime A. Faget displayed a wood and paper model of a concept that would develop into the reusable space shuttle.

April 1 – The Hawker-Siddeley Harrier – a vertical take-off and landing fighter jet – began service with the Royal Air Force.

April 4 – Surgeon Dr. Denton Cooley implanted the first temporary artificial heart in a human in an operation at St. Luke’s Episcopal Hospital in Houston.

April 7 – First use of what became the Internet, with circulation of a Request for Comments document among the Network Working Group developing communications protocols for the ARPANET, the Internet’s forerunner.

April 14 – The Montreal Expos beat the visiting St. Louis Cardinals in the first Major League Baseball game played outside the U.S.

April 20 – Princeton University announced that for the first time in its 223- year history it would admit women starting in the fall of 1969.

April 22 – Robin Knox-Johnson completed the first solo sail around the world without stopping or taking on supplies during the entire 312-day voyage.

April 28 – Charles de Gaulle resigned as president of France after 11 years in office.

April 29 – President Richard M. Nixon awarded the Presidential Medal of Freedom to bandleader Duke Ellington.

Explore More 13 min read 45 Years Ago: Space Shuttle Enterprise Arrives at NASA’s Kennedy Space Center Article 6 days ago 5 min read NASA’s SERT II: ‘A Genuine Space Success Story’ Article 1 week ago 5 min read 60 Years Ago: Gemini 1 Flies a Successful Uncrewed Test Flight Article 1 week ago
Categories: NASA

Two NASA Sounding Rockets Launch from Alaska During Solar Flare

Thu, 04/18/2024 - 11:52am

1 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Two Black Brant IX sounding rockets launched from Poker Flat Research Range in Fairbanks, Alaska, April 17, 2024, during an M-class solar flare for NASA’s sounding rocket solar flare campaign. The first rocket launched at 2:13 p.m. local Alaska time for the Focusing Optics X-ray Solar Imager (FOXSI) mission that used X-ray vision to observe the Sun during the solar flare event by focusing directly on high-energy X-rays. The second rocket launched at 2:14 p.m. for the High Resolution Coronal Imager, or Hi-C, mission designed to observe a large, active region in the Sun’s corona. The rockets reached altitudes up to 168 miles (271 km) and were able to successfully observe the solar flare.

Photo Credit: NASA/Lee Wingfield

Share Details Last Updated Apr 18, 2024 EditorJamie AdkinsContactAmy Barraamy.l.barra@nasa.gov Related Terms
Categories: NASA

Climate Change Research

Thu, 04/18/2024 - 11:00am
6 Min Read Climate Change Research The Kibo laboratory module from the Japan Aerospace Exploration Agency (comprised of a pressurized module and exposed facility, a logistics module, a remote manipulator system and an inter-orbit communication system unit) pictured as the International Space Station orbits over the southern Pacific Ocean east of New Zealand. Credits: NASA Science in Space: April 2024

Everyone on Earth is touched by the effects of climate change, such as hotter temperatures, shifts in rain patterns, and sea level rise. Collecting climate data helps communities better plan for these changes and build more resilience to them.

The International Space Station, one of dozens of NASA missions contributing to this effort, has multiple instruments collecting various types of climate-related data. Because the station’s orbit passes over 90 percent of Earth’s population and circles the planet 16 times each day, these instruments have views of multiple locations at different times of day and night. The data inform climate decisions and help scientists understand and solve the challenges created by climate change.

While crew members have little involvement in the ongoing operation of these instruments, they do play a critical role in unpacking hardware when it arrives at the space station and in assembling and installing the instruments via spacewalks or using the station’s robotic arm.

This ECOSTRESS evapotranspiration image of California’s Central Valley from May 22, 2022, shows high water use (blue) and dry conditions (brown).NASA

One investigation on the orbiting lab that contributes to efforts to monitor and address climate change is ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS). It provides thermal infrared measurements of Earth’s surface that help answer questions about water stress in plants and how specific regions respond to climate change. Research confirmed the accuracy of ECOSTRESS surface estimates1 and found that the process of photosynthesis in plants begins to fail at 46.7 degrees C (114 degrees F).2 Average temperatures have increased 0.5 degrees C per decade in some tropical regions, and temperature extremes are becoming more pronounced. Rainforests are a primary producer of oxygen and, without sufficient mitigation of the effects of climate change, leaf temperatures in these tropical forests soon could approach this failure threshold.

The Total and Spectral Solar Irradiance Sensor (TSIS) measures total solar irradiance (TSI) and solar spectral irradiance (SSI). TSI is the total solar energy input to Earth and SSI measures the Sun’s energy in individual wavelengths. Energy from the Sun drives atmospheric and oceanic circulations on Earth, and knowing its magnitude and variability is essential to understanding Earth’s climate. Researchers verified the instrument’s performance and showed that it made more accurate measurements than previous instruments.3,4 TSIS maintains a continuity of nearly 40 years of data on solar irradiance from space-based observations.

To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

This visualization blends US Forest Service plot locations (orange dots) with vegetation height data from GEDI (green) across the continental US. Credits: NASA

The Global Ecosystem Dynamics Investigation (GEDI) observes global forests and topography using light detection and ranging (lidar). These observations could provide insight into important carbon and water cycling processes, biodiversity, and habitat. One study used GEDI data to estimate pan-tropical and temperate biomass densities at the national level for every country observed and the sub-national level for the United States.5

A cluster of methane plumes detected by EMIT in 2022 in a region approximately 150 square miles in Uzbekistan. EMIT captured in an instant what might have taken 65 hours of flight time with an airborne instrument.NASA

Earth Surface Mineral Dust Source Investigation (EMIT) determines the type and distribution of minerals in the dust of Earth’s arid regions using an imaging spectrometer. Mineral dust affects local warming and cooling, air quality, rate of snow melt, and ocean plankton growth. Researchers demonstrated that data from EMIT also can be used to identify and monitor specific sources of methane and carbon dioxide emissions. Carbon dioxide and methane are the primary human-caused drivers of climate change. Increasing emissions in areas with poor reporting requirements create significant uncertainty in the global carbon budget.6 The high spatial resolution of EMIT data could allow precise monitoring even of sources that are close together.

This image accumulated data from OCO-3 to show carbon dioxide concentrations in Los Angeles.NASA

The station’s Orbiting Carbon Observatory-3 (OCO-3) collects data on global carbon dioxide during sunlit hours, mapping emissions of targeted local hotspots. This type of satellite-based remote sensing helps assess and verify emission reductions included in national and global plans and agreements. Monitoring by OCO-3 and the Italian Space Agency’s PRecursore IperSpettrale della Missione Applicativa (PRISMA) satellite of 30 coal-fired power plants between 2021 and 2022 showed agreement with on-site observations.7 This result suggests that under the right conditions, satellites can provide reliable estimates of emissions from discreet sources. Combustion for power and other industrial uses account for an estimated 59% of global human-caused carbon dioxide emissions.

This image shows approximately three years of SAGE III aerosol data from across the globe, showing the effect of wildfires and volcanic eruptions on the atmosphere. NASA

The Stratospheric Aerosol and Gas Experiment III-ISS (SAGE III-ISS) measures ozone and other gases and tiny particles in the atmosphere, called aerosols, that together act as Earth’s sunscreen. The instrument can distinguish between clouds and aerosols in the atmosphere. A study showed that aerosols dominate Earth’s tropical upper troposphere and lower stratosphere, a transition region between the two atmospheric levels. Continuous monitoring and identification of these layers of the atmosphere helps quantify their effect on Earth’s climate.8

An early remote sensing system, ISS SERVIR Environmental Research and Visualization System (ISERV), automatically took images of Earth to help scientists assess and monitor disasters and other significant events. Researchers reported that this type of Earth observation is critical for applications such as mapping land use and assessing carbon biomass and ocean health.9

John Love, ISS Research Planning Integration Scientist
Expedition 71

Search this database of scientific experiments to learn more about those mentioned above.

Citations:

1 Weidberg N, Lopez Chiquillo L, Roman S, Roman M, Vazquez E, et al. Assessing high resolution thermal monitoring of complex intertidal environments from space: The case of ECOSTRESS at Rias Baixas, NW Iberia. Remote Sensing Applications: Society and Environment. 2023 November; 32101055. DOI: 10.1016/j.rsase.2023.101055.

2 Doughty CE, Keany JM, Wiebe BC, Rey-Sanchez C, Carter KR, et al. Tropical forests are approaching critical temperature thresholds. Nature. 2023 August 23; 621105-111. DOI: 10.1038/s41586-023-06391-z.

3 Richard EC, Harber D, Coddington OM, Drake G, Rutkowski J, et al. SI-traceable spectral irradiance radiometric characterization and absolute calibration of the TSIS-1 Spectral Irradiance Monitor (SIM). Remote Sensing. 2020 January; 12(11): 1818. DOI: 10.3390/rs12111818.

4 Coddington OM, Richard EC, Harber D, Pilewskie P, Chance K, et al. The TSIS-1 hybrid solar reference spectrum. Geophysical Research Letters. 2021 April 26; 48(12): e2020GL091709. DOI: 10.1029/2020GL091709

5 Dubayah R, Armston J, Healey S, Bruening JM, Patterson PL, et al. GEDI launches a new era of biomass inference from space. Environmental Research Letters. 2022 August; 17(9): 095001. DOI: 10.1088/1748-9326/ac8694.

6 Thorpe A, Green RD, Thompson DR, Brodrick PG, Chapman DK, et al. Attribution of individual methane and carbon dioxide emission sources using EMIT observations from space. Science Advances. 2023 November 17; 9(46): eadh2391. DOI: 10.1126/sciadv.adh2391.

7 Cusworth DH, Thorpe A, Miller CE, Ayasse AK, Jiorle R, et al. Two years of satellite-based carbon dioxide emission quantification at the world’s largest coal-fired power plants. Atmospheric Chemistry and Physics. 2023 November 24; 23(22): 14577-14591. DOI: 10.5194/acp-23-14577-2023.

8 Bhatta S, Pandit AK, Loughman R, Vernier J. Three-wavelength approach for aerosol-cloud discrimination in the SAGE III/ISS aerosol extinction dataset. Applied Optics. 2023 May; 62(13): 3454-3466. DOI: 10.1364/AO.485466.

9 Kansakar P, Hossain F. A review of applications of satellite earth observation data for global societal benefit and stewardship of planet earth. Space Policy. 2016 May; 3646-54.

Keep Exploring Discover More Topics

Latest News from Space Station Research

Station Science 101: Earth and Space Science

Climate Change

NASA is a global leader in studying Earth’s changing climate.

Space Station Research and Technology

Categories: NASA

Hubble Goes Hunting for Small Main Belt Asteroids

Thu, 04/18/2024 - 10:00am

5 min read

Hubble Goes Hunting for Small Main Belt Asteroids

Like boulders, rocks, and pebbles scattered across a landscape, asteroids come in a wide range of sizes. Cataloging asteroids in space is tricky because they are faint and they don’t stop to be photographed as they zip along their orbits around the Sun.

Astronomers recently used a trove of archived images taken by NASA’s Hubble Space Telescope to visually snag a largely unseen population of smaller asteroids in their tracks. The treasure hunt required perusing 37,000 Hubble images spanning 19 years. The payoff was finding 1,701 asteroid trails, with 1,031 of the asteroids previously uncatalogued. About 400 of these uncatalogued asteroids are below 1 kilometer in size.

This Hubble Space Telescope image of the barred spiral galaxy UGC 12158 looks like someone took a white marking pen to it. In reality it is a combination of time exposures of a foreground asteroid moving through Hubble’s field-of-view, photobombing the observation of the galaxy. Several exposures of the galaxy were taken, what is evidence in the dashed pattern.

The asteroid appears as a curved trail due to parallax: because Hubble is not stationary, but orbiting Earth, and this gives the illusion that the faint asteroid is swimming along a curved trajectory. The uncharted asteroid is in inside the asteroid belt in our solar system, and hence is 10 trillion times closer to Hubble than the background galaxy.

Rather than a nuisance, this type of data are useful to astronomers for doing a census of the asteroid population in our solar system.

NASA, ESA, Pablo García Martín (UAM); Image Processing: Joseph DePasquale (STScI); Acknowledgment: Alex Filippenko (UC Berkeley)
Download this image

Volunteers from around the world known as “citizen scientists” contributed to the identification of this asteroid bounty. Professional scientists combined the volunteers’ efforts with machine learning algorithm to identify the asteroids. It represents a new approach to finding asteroids in astronomical archives spanning decades, which may be effectively applied to other datasets, say the researchers.

“We are getting deeper into seeing the smaller population of main belt asteroids. We were surprised with seeing such a large number of candidate objects,” said lead author Pablo García Martín of the Autonomous University of Madrid, Spain. “There was some hint of this population existing, but now we are confirming it with a random asteroid population sample obtained using the whole Hubble archive. This is important for providing insights into the evolutionary models of our solar system.”

The large, random sample offers new insights into the formation and evolution of the asteroid belt. Finding a lot of small asteroids favors the idea that they are fragments of larger asteroids that have collided and broken apart, like smashed pottery. This is a grinding-down process spanning billions of years.

An alternative theory for the existence of smaller fragments is that they formed that way billions of years ago. But there is no conceivable mechanism that would keep them from snowballing up to larger sizes as they agglomerated dust from the planet-forming circumstellar disk around our Sun. “Collisions would have a certain signature that we can use to test the current main belt population,” said co-author Bruno Merín of the European Space Astronomy Centre, in Madrid, Spain .

Amateur Astronomers Teach AI to Find Asteroids

Because of Hubble’s fast orbit around the Earth, it can capture wandering asteroids through their telltale trails in the Hubble exposures. As viewed from an Earth-based telescope, an asteroid leaves a streak across the picture. Asteroids “photobomb” Hubble exposures by appearing as unmistakable, curved trails in Hubble photographs.

As Hubble moves around the Earth, it changes its point of view while observing an asteroid, which also moves along its own orbit. By knowing the position of Hubble during the observation and measuring the curvature of the streaks, scientists can determine the distances to the asteroids and estimate the shapes of their orbits.

The asteroids snagged mostly dwell in the main belt, which lies between the orbits of Mars and Jupiter. Their brightness is measured by Hubble’s sensitive cameras. And comparing their brightness to their distance allows for a size estimate. The faintest asteroids in the survey are roughly one forty-millionth the brightness of the faintest star that can be seen by the human eye.

“Asteroid positions change with time, and therefore you cannot find them just by entering coordinates, because at different times, they might not be there,” said Merín. “As astronomers we don’t have time to go looking through all the asteroid images. So we got the idea to collaborate with over 10,000 citizen-science volunteers to peruse the huge Hubble archives.”

In 2019 an international group of astronomers launched the Hubble Asteroid Hunter, a citizen-science project to identify asteroids in archival Hubble data. The initiative was developed by researchers and engineers at the European Science and Technology Centre (ESTEC) and the European Space Astronomy Centre’s science data center (ESDC), in collaboration with the Zooniverse platform, the world’s largest and most popular citizen-science platform, and Google.

This graph is based on Hubble Space Telescope archival data that was used to identify a largely unseen population of very small asteroids in their tracks. The asteroids were not the intended targets, but instead photobombed background stars and galaxies in Hubble images. The comprehensive treasure hunt required perusing 37,000 Hubble images spanning 19 years. This was accomplished by using “citizen science” volunteers and artificial intelligence algorithms. The payoff was finding 1,701 asteroid trails of previously undetected asteroids. Pablo García Martín (UAM), Elizabeth Wheatley (STScI)
Download this image

A total of 11,482 citizen-science volunteers, who provided nearly 2 million identifications, were then given a training set for an automated algorithm to identify asteroids based on artificial intelligence. This pioneering approach may be effectively applied to other datasets.

The project will next explore the streaks of previously unknown asteroids to characterize their orbits and study their properties, such as rotation periods. Because most of these asteroid streaks were captured by Hubble many years ago, it is not possible to follow them up now to determine their orbits.

The findings are published in the journal Astronomy and Astrophysics.

To learn how you can participate in citizen science projects related to NASA, visit https://science.nasa.gov/citizen-science/. Participation is open to everyone around the world, not limited to U.S. citizens or residents.

The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.

Learn More:
Hubble Sees Nearby Asteroids Photobombing Distant Galaxies


Tracking Evolution in the Asteroid Belt


Uncovering Icy Objects in the Kuiper Belt

Media Contact:

Claire Andreoli
NASA’s Goddard Space Flight CenterGreenbelt, MD
claire.andreoli@nasa.gov

Ray Villard
Space Telescope Science Institute, Baltimore, MD

Science Contact:
Pablo García Martín
Autonomous University of Madrid, Madrid, Spain

Share

Details

Last Updated

Apr 18, 2024

Editor Andrea Gianopoulos

Related Terms Keep Exploring Discover More Topics From NASA

Hubble Space Telescope

Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


Galaxies Stories


Asteroids


Citizen Science

Categories: NASA

OSDR hosts Blue Origin Erika Wagner

Wed, 04/17/2024 - 8:13pm
Open Science Data Repository Team Hosts Blue Origin’s Dr Erika Wagner at the Meet the Expert Seminar Series Focused on Flight Integrators

Friday, March 29, 2024—The Open Science Data Repository hosted the sixth presentation showcasing flight integrators in the “Meet the Expert” series. This series is targeted for the Open Science Analysis Working Group (AWG) community to aide their space biology experiments. In this latest presentation, Dr Erika Wagner—a Senior Director of Emerging Market Development for Blue Origin—provided an introduction to Blue Origin, and how to participate in conducting microgravity research on their platforms. She also spoke a bit to her personal journey from biomedical engineering to aerospace. This meeting included a one-hour presentation that was attended by 26 AWG members followed by a networking social happy hour where AWG members continued to connect with the expert as well as each other.

Keep Exploring Discover More Topics From NASA NASA Biological & Physical Sciences

BPS administers NASA’s: BPS partners with the research community and a wide range of organizations to accomplish its mission. Grants…

International Space Station

Human Research Program

Ames Research Center

Categories: NASA

NASA’s TESS Returns to Science Operations

Wed, 04/17/2024 - 6:34pm

2 min read

NASA’s TESS Returns to Science Operations

NASA’s TESS (Transiting Exoplanet Survey Satellite) has returned to work after science observations were suspended on April 8, when the spacecraft entered into safe mode. All instruments are powered on and, following the successful download of previously collected science data stored in the mission’s recorder, are now making new science observations.

Analysis of what triggered the satellite to enter safe mode is ongoing.

The TESS mission is a NASA Astrophysics Explorer operated by MIT in Cambridge, Massachusetts. Launched in 2018, TESS has been scanning almost the entire sky looking for planets beyond our solar system, known as exoplanets. The TESS mission has also uncovered other cosmic phenomena, including star-shredding black holes and stellar oscillations. Read more about TESS discoveries at nasa.gov/tess.

Media contact:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

April 11, 2024 NASA’s TESS Temporarily Pauses Science Observations

NASA’s TESS (Transiting Exoplanet Survey Satellite) entered into safe mode April 8, temporarily interrupting science observations. The team is investigating the root cause of the safe mode, which occurred during scheduled engineering activities. The satellite itself remains in good health.

The team will continue investigating the issue and is in the process of returning TESS to science observations in the coming days.

The TESS mission is a NASA Astrophysics Explorer operated by MIT in Cambridge, Massachusetts. Launched in 2018, TESS has been scanning almost the entire sky looking for planets beyond our solar system, known as exoplanets. The TESS mission has also uncovered other cosmic phenomena, including star-shredding black holes and stellar oscillations. Read more about TESS discoveries at nasa.gov/tess.

Media Contact:
Claire Andreoli
(301) 286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share

Details

Last Updated

Apr 17, 2024

Related Terms
Categories: NASA

The Marshall Star for April 17, 2024

Wed, 04/17/2024 - 3:25pm
18 Min Read The Marshall Star for April 17, 2024 The Full Experience: NASA, Marshall, and Arkansas Celebrate Total Solar Eclipse

By Celine Smith

More than 100,000 people from across the world gathered April 8 in Russellville, Arkansas, to witness an astronomical syzygy – the alignment of the Sun, Moon, and Earth – creating a solar eclipse with totality lasting 4 minutes and 12 seconds.

Team members from NASA’s Marshall Space Flight Center and others traveled to Arkansas to provide educational opportunities related to the eclipse. Experts from NASA’s Stennis Space Center, Kennedy Space Center, and NASA Headquarters, along with representatives of the Arkansas Air National Guard and the Paris Observatory in Muedon, France, joined the Marshall team.

The April 8 total solar eclipse reveals the red-glowing loops of solar prominences, large, bright features of plasma extending outward from the Sun’s surface.NASA/Joel Kowsky

“I’ve conducted outreach before, but nothing on this scale,” said Patrick Koehn, heliophysics research and analysis lead at NASA Headquarters. “The logistics were on another level, it was impressive to see it come together, and I’m thrilled we engaged so many people.”

In the days leading up to the eclipse, NASA hosted exhibits and outreach activities for the public and gave presentations for students at Arkansas Tech University and the Russellville School District. Visitors were also given an opportunity to meet retired NASA astronaut Mike Massimino, who signed autographs and greeted the crowds.

Crowds from across the world gather to watch NASA presentations in Russellville, Arkansas, prior to viewing the total solar eclipse April 8. NASA/Christopher Blair

Marshall Center Director Joseph Pelfrey also attended this celestial experience, giving remarks at the Russellville watch party about the eclipse and the work of Marshall’s Heliophysics and Planetary Science Branch.

“Thanks to our collaboration with the city of Russellville, we helped host one of the agency’s most successful eclipse events,” Pelfrey said. “People came from across the nation and the world to share the experience with us. It was incredible to witness my first total solar eclipse alongside the Marshall team in Arkansas.”

Bob Loper, NASA Marshall Space Flight Center research astrophysicist, conducts an eclipse presentation for students at the Center for the Arts in Russellville, Arkansas, on April 5. NASA/Christopher Blair

Russellville was one of the cities featured in NASA’s live eclipse broadcast, 2024 Total Solar Eclipse: Through the Eyes of NASA. The three-hour broadcast covered the path of the eclipse across 15 states, from Texas to Maine, garnering more than one million live viewers. Currently, the broadcast has more than 13 million views. Russellville was noted for its clear skies, providing spectators with one of the most visible sightings of the eclipse.

The 2024 solar eclipse was especially spectacular due to the prominences visible during totality. Solar protected cameras captured the fiery red arcs around the edge of the Moon and Sun.

Marshall Center Director Joseph Pelfrey, left, greets Russellville, Arkansas, Mayor Fred Teague in front of NASA tents set up for visitors for the April 8 eclipse event.

“This was my first total solar eclipse, and it was an awesome experience,” said Bob Loper, research astrophysicist at Marshall. “It was incredible to see phenomena I’ve spent my career studying – actually seeing solar prominences of the Sun was an experience I’ll never forget.”

View more photos of the April 8 eclipse from NASA.

Smith, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

Chad Summers Named Director of Test Laboratory for Marshall’s Engineering Directorate

Chad Summers has been named as the director of the Test Laboratory for the Engineering Directorate at NASA’s Marshall Space Flight Center, effective April 21.

An integral part of the Engineering Directorate, the Test Laboratory encompasses a wide range of specialized capabilities NASA uses to conduct testing for space flight hardware research, development, qualification, acceptance, and anomaly resolution. As director, Summers will provide executive leadership for all aspects of the Laboratory, including workforce, budget, infrastructure, and operations for testing.

Chad Summers has been named as the director of the Test Laboratory for the Engineering Directorate at NASA’s Marshall Space Flight Center, effective April 21. NASA

Summers has been the chief of the Structural Design and Analysis Division at Marshall since 2019. In that role, he supervised a division of civil service and contractor engineers to assure the successful design, development, and integration of large, complex launch vehicles and spacecraft systems to meet NASA’s Human Exploration and Science Mission objectives. From 2018 to 2019, Summers was the division’s deputy chief.

From 2015 to 2018, he was chief of the Systems Requirements and Verification branch. Summers led the Systems Design and Definition branch from 2011 to 2015. From 2007 to 2011, he was chief of the Systems Requirements, Interfaces, and Verification branch. Summers was deputy chief of the Engine Systems and Main Propulsion Systems branch from 2004 to 2007.

Summers has almost 30 years of experience at NASA and worked at both Kennedy Space Center and Stennis Space Center prior to coming to Marshall in 2001 as a test operations manager in the Next Generation Launch Technology Project Office.

He has received several of the agency’s highest awards, including NASA’s Outstanding Leadership Medal, Exceptional Service Medal, Marshall Director’s Commendation, and multiple Group Achievement and Special Service awards.

A native of Titusville, Florida, Summers received his bachelor’s degree in mechanical engineering from the University of Central Florida. He lives in Huntsville with his wife, Jennifer.

› Back to Top

Public Invited to NASA’s 30th Anniversary of International Rover Competition

NASA will celebrate the 30th anniversary of the Human Exploration Rover Challenge when the competition returns to the U.S. Space & Rocket Center’s Aviation Challenge Course in Huntsville April 19-20. The event is free and open to the public with rover excursions occurring each day from 7:30 a.m. to 3 p.m. or until the last rover completes the obstacle course. 

NASA selected 72 student teams in October to begin an engineering design challenge to build human-powered rovers that will compete at the course near the agency’s Marshall Space Flight Center.

Students from Alabama A&M University compete during NASA’s 2023 Human Exploration Rover Challenge. The 2024 competition takes place April 19-20 at the U.S. Space & Rocket Center’s Aviation Challenge course in Huntsville. NASA/Charles Beason

The public is invited to watch more than 600 students from around the world attempt to navigate a complex obstacle course by piloting a human-powered vehicle of their own design and production.

Participating teams represent 42 colleges and universities and 30 high schools from 24 states, the District of Columbia, Puerto Rico, and 13 other nations from around the world. NASA’s handbook has complete proposal guidelines and task challenges.

To conclude the 2024 season, NASA will host an in-person awards ceremony April 20 at 5 p.m. inside the Space Camp Operations Center at the rocket center. NASA and industry representatives will present multiple awards highlighting team successes throughout the past eight-month-long engineering design project, including awards for best rover design, best pit crew award, best social media presence, and many other accomplishments. 

The Human Exploration Rover Challenge tasks high school, college, and university students around the world to design, build, and test their lightweight, human-powered rovers on a course simulating lunar and Martian terrain, all while completing mission-focused science tasks. Eligible teams compete to be among the top three finishers in their divisions, and to win awards for best vehicle design, best rookie team, and more.

The challenge annually draws hundreds of students from around the world and reflects the goals of NASA’s Artemis campaign, which will land the first woman and first person of color on the Moon. 

The event was launched in 1994 as the NASA Great Moonbuggy Race – a collegiate competition to commemorate the 25th anniversary of the Apollo 11 lunar landing. It expanded in 1996 to include high school teams, evolving again in 2014 into the NASA Human Exploration Rover Challenge. Since its inception, more than 15,000 students have participated. Many former competitors now work in the aerospace industry, including with NASA.

The Human Exploration Rover Challenge is managed by NASA’s Southeast Regional Office of STEM Engagement at Marshall and is one of eight Artemis Student Challenges. NASA’s Office of STEM Engagement uses challenges and competitions to further the agency’s goal of encouraging students to pursue degrees and careers in science, technology, engineering, and mathematics.  

› Back to Top

First-of-its-kind SLS Payload Adapter Finishes Assembly at Marshall

Teams at NASA’s Marshall Space Flight Center completed a new payload adapter test article and readied it for structural testing, set to begin later this spring. This marks a critical milestone on the journey to the hardware’s debut on the upgraded Block 1B configuration of NASA’s SLS (Space Launch System) rocket with Artemis IV.

The composite payload adapter is an evolution from the Orion stage adapter used in the Block 1 configuration of the first three Artemis missions.

Find out more about SLS.

› Back to Top

Altitude Chamber Gets Upgrade for Artemis II, Spacecraft Testing Begins

Before the Orion spacecraft is stacked atop NASA’s powerful SLS (Space Launch System) rocket ahead of the Artemis II mission, engineers will put it through a series of rigorous tests to ensure it is ready for lunar flight. In preparation for testing, teams at the agency’s Kennedy Space Center have made significant upgrades to the altitude chamber where testing will occur.  

Several of the tests take place inside one of two altitude chambers in the high bay of the Neil A. Armstrong Operations and Checkout (O&C) Building at Kennedy. These tests, which began on April 10, include checking out electromagnetic interference and electromagnetic compatibility, which demonstrate the capability of the spacecraft when subjected to internally and externally generated electromagnetic energy and verify that all systems perform as they would during the mission.  

On April 4, a team lifts the Artemis II Orion spacecraft into a vacuum chamber inside the Operations and Checkout Building at NASA’s Kennedy Space Center, where it will undergo electromagnetic compatibility and interference testing.Photo credit: NASA/Amanda Stevenson

To prepare for the tests, the west altitude chamber was upgraded to test the spacecraft in a vacuum environment that simulates an altitude of up to 250,000 feet. These upgrades re-activated altitude chamber testing capabilities for the Orion spacecraft at Kennedy. Previous vacuum testing on the Orion spacecraft for Artemis I took place at NASA’s Glenn Research Center. Teams also installed a 30-ton crane in the O&C to lift and lower the Orion crew and service module stack into the chamber, lift and lower the chamber’s lid, and move the spacecraft across the high bay.  

On April 4, teams loaded the Artemis II spacecraft into the altitude chamber. This event marks the first time, since the Apollo testing, that a spacecraft designed for human exploration of space has entered the chamber for testing. After testing is complete, the spacecraft will return to the Final Assembly and Systems Testing, or FAST, cell in the O&C for further work. Later this summer, teams will lift Orion back into the altitude chamber to conduct a test that simulates as close as possible the conditions in the vacuum of deep space. 

Originally used to test environmental and life support systems on the lunar and command modules during the Apollo Program, the interior of each altitude chamber measures 33 feet in diameter and 44 feet high and was designed to simulate the vacuum equivalent of up to 200,000 feet in a deep space environment. Both chambers were rated for astronaut crews to operate flight systems during tests. 

After Apollo, the chambers were used for leak tests on pressurized modules delivered by the Space Shuttle Program for the International Space Station. 

Additional upgrades to the west chamber include a new oxygen deficiency monitoring system that provides real-time monitoring of the oxygen levels and a new airflow system. New LED lights replaced the previous lighting system, and equipment from the Apollo days was removed. A pressure control system was added to the chamber that provides precise control of pressure levels. Two new pumps remove the air from the chamber to create a vacuum. New guardrails and service platforms replaced the older platforms inside the chamber. 

A new control room overlooks the upgraded chamber. It contains several workstations and communication equipment. The chamber control and monitoring system was upgraded to handle operation of all the remotely controlled hardware and subsystems that make up the vacuum testing capability. 

“It was an amazing opportunity to lead a diverse and exceptional team to re-activate a capability for testing the NASA’s next generation spacecraft that will carry humans back to the Moon,” said Marie Reed, West Altitude Chamber Reactivation Project Manager. “The team of more than 70 aerospace professionals, included individuals from NASA, Lockheed Martin, Artic Slope Research Corps, Jacobs Engineering, and every discipline area imaginable. This project required long hours of dedication and exceptional coordination to enable the successful turn-around and activation in time for this Artemis II spacecraft testing.” 

NASA’s Artemis II mission will carry four astronauts aboard the agency’s Orion spacecraft on an approximately 10-day test flight around the Moon and back to Earth, the first crewed flight under Artemis that will test Orion’s life support systems ahead of future missions. Under the Artemis campaign, NASA will return humanity to the lunar surface, this time sending humans to explore the lunar South Pole region.  

For time lapse footage of the Artemis II lift into the vacuum chamber visit: Artemis II Orion Vac Chamber Lift and Load Operations 

› Back to Top

Media Get Close-Up of NASA’s Jupiter-Bound Europa Clipper

Engineers at NASA’s Jet Propulsion Laboratory are running final tests and preparing the agency’s Europa Clipper spacecraft for the next leg of its journey: launching from NASA’s Kennedy Space Center. Europa Clipper, which will orbit Jupiter and focus on the planet’s ice-encased moon Europa, is expected to leave JPL later this spring. Its launch period opens Oct. 10.

Members of the media put on “bunny suits” – outfits to protect the massive spacecraft from contamination – to see Europa Clipper up close in JPL’s historic Spacecraft Assembly Facility on April 11. Project Manager Jordan Evans, Launch-to-Mars Mission Manager Tracy Drain, Project Staff Scientist Samuel Howell, and Assembly, Test, and Launch Operations Cable Harness Engineer Luis Aguila were on the clean room floor, while Deputy Project Manager Tim Larson, and Mission Designer Ricardo Restrepo were in the gallery above to explain the mission and its goals.

Members of the media visited a clean room at JPL on April 11 to get a close-up look at NASA’s Europa Clipper spacecraft and interview members of the mission team. The spacecraft is expected to launch in October on a six-year journey to the Jupiter system, where it will study the ice-encased moon Europa.NASA/JPL-Caltech

Planning of the mission began in 2013, and Europa Clipper was officially confirmed by NASA as a mission in 2019. The trip to Jupiter is expected to take about six years, with flybys of Mars and Earth. Reaching the gas giant in 2030, the spacecraft will orbit Jupiter while flying by Europa dozens of times, dipping as close as 16 miles from the moon’s surface to gather data with its powerful suite of science instruments. The information will help scientists learn about the ocean beneath the moon’s icy shell, map Europa’s surface composition and geology, and hunt for any potential plumes of water vapor that may be venting from the crust.

“After over a decade of hard work and problem-solving, we’re so proud to show the nearly complete Europa Clipper spacecraft to the world,” Evans said. “As critical components came in from institutions across the globe, it’s been exciting to see parts become a greater whole. We can’t wait to get this spacecraft to the Jupiter system.”

At the event, a cutaway model showing the moon’s layers and a globe of the moon helped journalists learn why Europa is such an interesting object of study. On hand with the details were Project Staff Scientist and Assistant Science Systems Engineer Kate Craft from the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, and, from JPL, Project Scientist Robert Pappalardo, Deputy Project Scientist Bonnie Buratti, and Science Communications Lead Cynthia Phillips.

Beyond Earth, Europa is considered one of the most promising potentially habitable environments in our solar system. While Europa Clipper is not a life-detection mission, its primary science goal is to determine whether there are places below the moon’s icy surface that could support life.

When the main part of the spacecraft arrives at Kennedy Space Center in a few months, engineers will finish preparing Europa Clipper for launch on a SpaceX Falcon Heavy rocket, attaching its giant solar arrays and carefully tucking the spacecraft inside the capsule that rides on top of the rocket. Then Europa Clipper will be ready to begin its space odyssey.

Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its surface interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.

Managed by Caltech in Pasadena, California, JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory (APL) for NASA’s Science Mission Directorate. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center. The Planetary Missions Program Office at NASA’s Marshall Space Flight Center executes program management of the Europa Clipper mission.

› Back to Top

Hubble Spots a Galaxy Hidden in a Dark Cloud

The subject of an image taken with the NASA/ESA Hubble Space Telescope is the spiral galaxy IC 4633, located 100 million light-years away from us in the constellation Apus. IC 4633 is a galaxy rich in star-forming activity and hosts an active galactic nucleus at its core. From our point of view, the galaxy is tilted mostly towards us, giving astronomers a fairly good view of its billions of stars.

This Hubble image features the spiral galaxy IC 4633. ESA/Hubble & NASA, J. Dalcanton, Dark Energy Survey/DOE/FNAL/DECam/CTIO/NOIRLab/NSF/AURA; Acknowledgement: L. Shatz)

However, we can’t fully appreciate the features of this galaxy – at least in visible light – because it’s partially concealed by a stretch of dark dust (lower-right third of the image). This dark nebula is part of the Chamaeleon star-forming region, itself located only around 500 light-years from us, in a nearby part of our Milky Way galaxy. The dark clouds in the Chamaeleon region occupy a large area of the southern sky, covering their namesake constellation but also encroaching on nearby constellations, like Apus. The cloud is well-studied for its treasury of young stars, particularly the cloud Cha I, which both Hubble and the NASA/ESA/CSA James Webb Space Telescope have imaged.

The cloud overlapping IC 4633 lies east of the well-known Cha I, II, and III, and is also known as MW9 and the South Celestial Serpent. Classified as an integrated flux nebula (IFN) – a cloud of gas and dust in the Milky Way galaxy that’s not near to any single star and is only faintly lit by the total light of all the galaxy’s stars – this vast, narrow trail of faint gas that snakes over the southern celestial pole is much more subdued looking than its neighbors. Hubble has no problem making out the South Celestial Serpent, though this image captures only a tiny part of it.

› Back to Top

NASA’s Dragonfly Rotorcraft Mission to Saturn’s Moon Titan Confirmed

NASA has confirmed its Dragonfly rotorcraft mission to Saturn’s organic-rich moon Titan. The decision allows the mission to progress to completion of final design, followed by the construction and testing of the entire spacecraft and science instruments.

“Dragonfly is a spectacular science mission with broad community interest, and we are excited to take the next steps on this mission,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters. “Exploring Titan will push the boundaries of what we can do with rotorcraft outside of Earth.”

Artist’s concept of Dragonfly soaring over the dunes of Saturn’s moon Titan. NASA/Johns Hopkins APL/Steve Gribben

In early 2023, the mission successfully passed all the success criteria of its Preliminary Design Review. At that time, however, the mission was asked to develop an updated budget and schedule to fit into the current funding environment. This updated plan was presented and conditionally approved in November 2023, pending the outcome of the fiscal year 2025 budget process. In the meantime, the mission was authorized to proceed with work on final mission design and fabrication to ensure that the mission stayed on schedule.

With the release of the president’s fiscal year 2025 budget request, Dragonfly is confirmed with a total lifecycle cost of $3.35 billion and a launch date of July 2028. This reflects a cost increase of about two times the proposed cost and a delay of more than two years from when the mission was originally selected in 2019. Following that selection, NASA had to direct the project to replan multiple times due to funding constraints in fiscal years 2020 through 2022. The project incurred additional costs due to the COVID-19 pandemic, supply chain increases, and the results of an in-depth design iteration. To compensate for the delayed arrival at Titan, NASA also provided additional funding for a heavy-lift launch vehicle to shorten the mission’s cruise phase.

The rotorcraft, targeted to arrive at Titan in 2034, will fly to dozens of promising locations on the moon, looking for prebiotic chemical processes common on both Titan and the early Earth before life developed. Dragonfly marks the first time NASA will fly a vehicle for science on another planetary body. The rotorcraft has eight rotors and flies like a large drone.

Dragonfly is being designed and built under the direction of the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, which manages the mission for NASA. Elizabeth Turtle of APL is the principal investigator. The team includes key partners at NASA’s Goddard Space Flight Center; Lockheed Martin Space in Littleton, Colorado; NASA’s Ames Research Center; NASA’s Langley Research Center; Penn State University in State College, Pennsylvania; Malin Space Science Systems in San Diego, California; Honeybee Robotics in Pasadena, California; NASA’s Jet Propulsion Laboratory; CNES (Centre National d’Etudes Spatiales) in Paris; the German Aerospace Center (DLR) in Cologne, Germany; and JAXA (Japan Aerospace Exploration Agency) in Tokyo.

Dragonfly is the fourth mission in NASA’s New Frontiers Program, managed by NASA’s Marshall Space Flight Center for the agency’s Science Mission Directorate.

› Back to Top

Categories: NASA

NASA’s Near Space Network Enables PACE Climate Mission to ‘Phone Home’

Wed, 04/17/2024 - 1:53pm

The PACE (Plankton, Aerosol, Cloud, ocean Ecosystem) mission has delivered its first operational data back to researchers, a feat made possible in part by innovative, data-storing technology from NASA’s Near Space Network, which introduced two key enhancements for PACE and other upcoming science missions.

As a satellite orbits in space, its systems generate critical data about the spacecraft’s health, location, battery life, and more. All of this occurs while the mission’s science instruments capture images and data supporting the satellite’s overall objective.

To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

Animation of NASA's PACE mission transmitting data to Earth through NASA's Near Space Network. NASA/Kasey Dillahay

This data is then encoded and sent back to Earth via radio waves through NASA’s Near Space Network and Deep Space Network — but not without challenges.

One challenge is extreme distances, where disruptions or delays are common. Satellite disruptions are similar to what internet users experience on Earth with buffering or faulty links. If a disruption occurs, Delay/Disruption Tolerant Networking, or DTN, can safely store and forward the data once a path opens.

NASA’s Near Space Network integrated DTN into four new antennas and the PACE spacecraft to showcase the benefit this technology can have for science missions. The network, which supports communications for space-based mission within 1.2 million miles of Earth, is constantly enhancing its capabilities to support science and exploration missions.

DTN is the future of space communications, providing robust protection of data that could be lost due to a disruption.”

Kevin Coggins

Deputy Associate Administrator for NASA SCaN

“DTN is the future of space communications, providing robust protection of data that could be lost due to a disruption,” said Kevin Coggins, deputy associate administrator for NASA’s Space Communications and Navigation (SCaN) program. “PACE is the first operational science mission to leverage DTN, and we are using it to transmit data to mission operators monitoring the batteries, orbit, and more. This information is critical to mission operations.”

PACE, a satellite located about 250 miles above Earth, is collecting data to help researchers better understand how the ocean and atmosphere exchange carbon dioxide, measure atmospheric variables associated with air quality and climate, and monitor ocean health by studying phytoplankton — tiny plants and algae.

NASA’s PACE satellite’s Ocean Color Instrument (OCI) detects light across a hyperspectral range, which gives scientists new information to differentiate communities of phytoplankton – a unique ability of NASA’s newest Earth-observing satellite. This first image released from OCI identifies two different communities of these microscopic marine organisms in the ocean off the coast of South Africa on Feb. 28, 2024. The central panel of this image shows Synechococcus in pink and picoeukaryotes in green. The left panel of this image shows a natural color view of the ocean, and the right panel displays the concentration of chlorophyll-a, a photosynthetic pigment used to identify the presence of phytoplankton. NASA

While PACE is the first operational science user of DTN, demonstrations of the technology have been done previously on the International Space Station.

In addition to DTN, the Near Space Network worked with commercial partner, Kongsberg Satellite Services in Norway to integrate four new antennas into the network to support PACE.

These new antennas, in Fairbanks, Alaska; Wallops Island, Virginia; Punta Arenas, Chile; and Svalbard, Norway, allow missions to downlink terabytes of science data at once. Just as scientists and engineers constantly improve their instrument capabilities, NASA also advances its communications systems to enable missions near Earth and in deep space.

As PACE orbits Earth, it will downlink its science data 12 to 15 times a day to three of the network’s new antennas. Overall, the mission will send down 3.5 terabytes of science data each day.

The Near Space Network’s new antennas in Alaska, Chile, Norway, and Virginia. These were developed in partnership with KSAT. NASA

Network capability techniques like DTN and the four new antennas are the latest enhancements to the Near Space Network’s catalog of services to support science missions, human spaceflight, and technology experiments.

 “NASA’s Near Space Network now has unprecedented flexibility to get scientists and operations managers more of the precious information they need to ensure their mission’s success,” said Coggins.

An artistic rendering of multiple Earth-observing satellites around the globe using NASA’s Near Space Network to send back critical data. NASA/Kasey Dillahay

In addition to these new capabilities, the network is also increasing the number of commercial antennas within its portfolio. In 2023, NASA issued the Near Space Network Services request for proposal to seek commercial providers for integration into the network’s expanding portfolio. With an increasing capacity, the network can support additional science missions and downlink opportunities.

The Near Space Network is funded by NASA’s Space Communications and Navigation (SCaN) program office at NASA Headquarters in Washington and operated out of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

By Katherine Schauer
NASA’s Goddard Space Flight Center, Greenbelt, Md.

About the AuthorKatherine Schauer

Katherine Schauer is a writer for the Space Communications and Navigation (SCaN) program office and covers emerging technologies, commercialization efforts, exploration activities, and more.

Share Details Last Updated Apr 17, 2024 EditorJamie AdkinsContactKatherine Schauerkatherine.s.schauer@nasa.govLocationGoddard Space Flight Center Related Terms 4 Min Read NASA’s Near Space Network Enables PACE Climate Mission to ‘Phone Home’ An artistic rendering of the PACE spacecraft sending data down over radio frequency links to a Near Space Network antenna. The science images shown are real photos from the PACE mission. Credits: NASA/Kasey Dillahay Explore More 3 min read NASA Seeks Commercial Near Space Network Services

NASA is seeking commercial communication and navigation service providers for the Near Space Network.

Article 1 year ago
3 min read NASA Enables Future of Science Observation through Tri-band Antennas Article 1 year ago 2 min read Working in Tandem: NASA’s Networks Empower Artemis I Article 2 years ago
Categories: NASA

NASA Photographer Honored for Thrilling Inverted In-Flight Image

Wed, 04/17/2024 - 1:37pm

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA research pilot Nils Larson and photographer Jim Ross complete aerobatic maneuvers in a NASA Armstrong Flight Research Center in Edwards, California owned T-34C aircraft during a proficiency flight. NASA/Jim Ross

Riding in the back seat of a car can be boring. Riding in the back of a NASA aircraft is exhilarating, especially for photographers capturing NASA’s story. Jim Ross, photo lead at NASA’s Armstrong Flight Research Center in Edwards, California, was awarded first place for an image he took while flying upside down in a two-seat T-34C research aircraft.

In the photo, which was announced as the NASA Photo of the Year 2023 in the People category on April 15, 2024. Ross captures NASA research pilot Nils Larson in full flight gear, while the aircraft is doing aerobatic maneuvers. Most of us would struggle to keep our bearings, let alone operate a camera and frame a perfectly balanced image. NASA Armstrong photographers do this every flight day.

“When we fly proficiency flights, my mind is always thinking about what kind of photo I can take that will share what I am experiencing in the aircraft,” Ross said. “This photo was one that I feel is able to tell that story.” It’s telling the story that makes Ross’s work so important to NASA. Much of what NASA works on can only be witnessed by researchers and scientists, but having it capture in photo and video allows us to share the images with the world.

Jim Ross, photo lead at NASA’s Armstrong Flight Research Center in Edwards, California, took a photo of an aerobatic maneuver from the back seat of a T-34C that was selected as first place in the NASA Photo of the Year 2023 Contest in the People category.NASA/Genaro Vavuris

Ross began his aviation photography career in 1989 when he joined the photography staff at NASA’s Armstrong (then Dryden) Flight Research Center, now known as NASA Armstrong. He became the photo lead in 1997, a title he retains. In his 30 years of flying, he has flown on more than 900 missions and has about 1,100 flight hours in aircraft including T-33, T-34, T-38, F-15, F-16, F-18, KC-10, KC-135, C-12, C-20A, Boeing 747SP, and helicopters.

NASA previously recognized Ross for his work with the agency’s Public Service Medal and the Exceptional Public Achievement Medal. NASA also made a photo book of his work titled, “NASA Photo One,” which highlights 100 photos of his career. He also won the Best of the Best award from the Aviation Week & Space Technology photo contest in 2001. His work has appeared in many publications, including Aviation Week & Space Technology, National Geographic, and Air & Space Smithsonian.

Share Details Last Updated Apr 17, 2024 Related Terms Explore More 6 min read Kate A. McGinnis: Ready to “Go” with PACE Testing Article 1 day ago 5 min read Shawnta M. Ball Turns Obstacles into Opportunities in Goddard’s Education Office Article 7 days ago 3 min read NASA Langley Team to Study Weather During Eclipse Using Uncrewed Vehicles Article 2 weeks ago Keep Exploring Discover More Topics From NASA

Armstrong Flight Research Center

NASA Images

Armstrong People

Aeronautics

Categories: NASA

NASA to Hoist Its Sail: Solar Sail Mission Gets Ready for Launch

Wed, 04/17/2024 - 1:12pm
An artist’s concept of NASA’s Advanced Composite Solar Sail System spacecraft in orbit.NASA/Aero Animation/Ben Schweighart

A NASA mission testing a new way of navigating our solar system is ready to hoist its sail into space – not to catch the wind, but the propulsive power of sunlight. The Advanced Composite Solar Sail System is targeting launch on Tuesday, April 23 (Wednesday, April 24 in New Zealand) aboard a Rocket Lab Electron rocket from the company’s Launch Complex 1 on the Mahia Peninsula of New Zealand.

Rocket Lab’s Electron rocket will deploy the mission’s CubeSat about 600 miles above Earth – more than twice the altitude of the International Space Station. To test the performance of NASA’s Advanced Composite Solar Sail System, the spacecraft must be in a high enough orbit for the tiny force of sunlight on the sail – roughly equivalent to the weight of a paperclip resting on your palm – to overcome atmospheric drag and gain altitude.

After a busy initial flight phase, which will last about two months and includes subsystems checkout, the microwave oven-sized CubeSat will deploy its reflective solar sail. The weeks-long test consists of a series of pointing maneuvers to demonstrate orbit raising and lowering, using only the pressure of sunlight acting on the sail.

Stay tuned for updates as NASA’s Advanced Composite Solar Sail System sets out to prove its ability to sail across space, increasing access and enabling low-cost missions to the Moon, Mars, and beyond.

NASA’s Ames Research Center in California’s Silicon Valley manages the project and designed and built the onboard camera diagnostic system. NASA’s Langley Research Center in Langley, Virginia, designed and built the deployable composite booms and solar sail system. NASA’s Small Spacecraft Technology (SST) program office, within the agency’s Space Technology Mission Directorate (STMD), funds and manages the mission. STMD’s Game Changing Development program developed the deployable composite boom technology. Rocket Lab USA, Inc of Long Beach, California, is providing launch services.

Share Details Last Updated Apr 17, 2024 Related Terms
Categories: NASA

NASA Announces Winners of Power to Explore Challenge

Wed, 04/17/2024 - 11:56am
The winners of NASA’s 2024 Power to Explore Student Challenge are: 9-year-old Raine Lin, left, 12-year-old Aadya Karthik, and 18-year-old Thomas Liu. Credit: NASA/Dave Lam

NASA announced the winners on Wednesday of the third annual Power to Explore Challenge, a national writing competition designed to teach K-12 students about the power of radioisotopes for space exploration.

The competition asked students to learn about NASA’s Radioisotope Power Systems (RPS), “nuclear batteries” the agency uses to explore some of the most extreme destinations in the solar system and beyond. In 250 words or less, students wrote about a mission of their own enabled by these space power systems and described their own power to achieve their mission goals.

“The Power to Explore Challenge is the perfect way to inspire students – our Artemis Generation – to reach for the stars and beyond and help NASA find new ways to use radioisotopes to power our exploration of the cosmos,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington.

Entries were split into three groups based on grade level, and a winner was chosen from each. The three winners, along with a guardian, are invited to NASA’s Glenn Research Center in Cleveland for a VIP tour of its world-class research facilities.

The winners are:

  • Rainie Lin, Lexington, Kentucky, kindergarten through fourth grade
  • Aadya Karthik, Redmond, Washington, fifth through eighth grade
  • Thomas Liu, Ridgewood, New Jersey, ninth through 12th grade

“Congratulations to this year’s winners and participants – together, we discover and explore for the benefit of all,” Fox said.

The Power to Explore Challenge offered students the opportunity to learn about space power, celebrate their strengths, and interact with NASA’s diverse workforce. This year’s contest received nearly 1,787 submitted entries from 48 states and Puerto Rico.

Every student who submitted an entry received a digital certificate and an invitation to the Power Up virtual event held on March 15 that announced the 45 national semifinalists. Additionally, the national semifinalists received a NASA RPS prize pack.

NASA announced three finalists in each age group (nine total) during Total Eclipse Fest 2024 in Cleveland on April 8, a day when millions of Americans saw a brief glimpse of life without sunlight, creating an opportunity to shed light on how NASA could power missions without the Sun’s energy at destinations such as deep lunar craters or deep space. Finalists also were invited to discuss their mission concepts with a NASA scientist or engineer during a virtual event.

The challenge is funded by the NASA Science Mission Directorate’s RPS Program Office and administered by Future Engineers under the NASA Open Innovation Services 2 contract. This contract is managed by the NASA Tournament Lab, a part of the Prizes, Challenges, and Crowdsourcing Program in NASA’s Space Technology Mission Directorate.

For more information on radioisotope power systems visit:

https://www.nasa.gov/rps

-end-

Karen Fox / Charles Blue
Headquarters, Washington
301-286-6284 / 202-802-5345
karen.c.fox@nasa.gov / charles.e.blue@nasa.gov

Kristin Jansen
Glenn Research Center, Cleveland
216-296-2203
kristin.m.jansen@nasa.gov

Categories: NASA

NASA Invites Media for Climate Update, New Earth Missions

Wed, 04/17/2024 - 10:57am
For a media briefing in advance of Earth Day, NASA will share info about next steps for its Earth research program, as well as highlight our newest Earth-observing satellite PACE (Plankton, Aerosol, Cloud, ocean Ecosystem). This image from PACE shows two different communities of phytoplankton in the ocean off the coast of South Africa on Feb. 28, 2024.Credit: NASA

In anticipation of Earth Day, NASA invites media to a briefing at the agency’s headquarters on Friday, April 19, at 11 a.m. EDT. The event will share updates on NASA’s climate science and early data from the agency’s ocean-watching PACE (Plankton, Aerosol, Cloud, ocean Ecosystem) mission, as well as reveal upcoming Earth airborne missions.

The speakers include:

  • NASA Administrator Bill Nelson
  • Karen St. Germain, division director, NASA Earth Sciences Division
  • Tom Wagner, associate director for Earth Action

The briefing will air live on NASA+, NASA Television, and the agency’s website.

To attend the briefing in person in the James E. Webb Auditorium at 300 E St. SW, Washington, or to participate via teleconference, media should RSVP no later than 9 a.m. Friday to Liz Vlock at elizabeth.a.vlock@nasa.gov. NASA’s media accreditation policy is online.

Media and the public are also invited to participate in NASA’s Earth Day celebration:  “Water Touches Everything.” Attendees will be able to explore the complex connections between sea, air, land, and climate through a mix of in-person and virtual activities, talks, and trivia. The celebration begins Thursday, April 18 at 9 a.m. EDT and continues through April 19 until 5 p.m., both online and in person at the NASA Earth Information Center.

For more information on NASA’s Earth Science Division visit:

https://www.nasa.gov/earth

-end-

Liz Vlock
Headquarters, Washington
202-358-1600
elizabeth.a.vlock@nasa.gov

Share Details Last Updated Apr 17, 2024 LocationNASA Headquarters Related Terms
Categories: NASA

Tech Today: Taking Earth’s Pulse with NASA Satellites

Wed, 04/17/2024 - 10:49am

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) This natural-color image of mountains of central Pennsylvania taken by Landsat 8 shows the colors of changing leaves and the unique topography of the region. Thanks to more than 50 years of planetary observation from low-Earth orbit, it’s possible to see natural changes and those engineered by humans.Credit: NASA

Natural disasters like volcanic eruptions, floods, and tornados can dramatically change the surface of Earth to the point where alterations are visible in space. Changes driven by human actions and interventions, such as mining and deforestation, are also visible in satellite imagery.

For over 50 years, NASA’s Landsat satellites have recorded our planet’s changing surface. Now, terraPulse Inc., a North Potomac, Maryland-based company, applies artificial intelligence to create meaningful maps to help academic institutions, nongovernmental organizations, and businesses understand the many impacts of climate change.

By combining data from multiple NASA and European satellites, terraPulse helps businesses make data-driven decisions regarding ecological impacts. That same data helps scientists understand environmental changes and the processes driving them, which can provide practical information to local decision-makers for infrastructure planning and disaster preparedness.

Measurements taken from space are still undergoing significant research and development. NASA’s Earth Sciences Division funds several remote sensing initiatives to expand our understanding of the impact of land cover change, including a terraPulse effort using FitBits to track and assess the health of wild deer and the impacts of their habitat change.

NASA’s Goddard Space Flight Center in Greenbelt, Maryland, which manages many of the agency’s Earth-monitoring satellite missions, supports a comprehensive view of our planet. Industries are looking to satellite data to plan for resilience to climate change by monitoring worldwide facilities, identifying manageable risk factors, and more.

Read More Share Details Last Updated Apr 17, 2024 Related Terms Explore More 2 min read NASA’s TESS Returns to Science Operations

NASA’s TESS (Transiting Exoplanet Survey Satellite) has returned to work after science observations were suspended…

Article 5 hours ago
4 min read NASA’s Near Space Network Enables PACE Climate Mission to ‘Phone Home’ Article 10 hours ago 5 min read Astronauts To Patch Up NASA’s NICER Telescope

NASA is planning to repair NICER (Neutron star Interior Composition Explorer), an X-ray telescope on…

Article 13 hours ago
Keep Exploring Discover Related Topics

Earth Observations

Technology Transfer & Spinoffs

Climate Change

Missions

Categories: NASA

Astronauts To Patch Up NASA’s NICER Telescope

Wed, 04/17/2024 - 10:43am

4 min read

Astronauts To Patch Up NASA’s NICER Telescope

NASA is planning to repair NICER (Neutron star Interior Composition Explorer), an X-ray telescope on the International Space Station, during a spacewalk later this year. It will be the fourth science observatory in orbit serviced by astronauts.

In May 2023, scientists discovered that NICER had developed a “light leak.” Unwanted sunlight was entering the instrument and reaching the telescope’s sensitive detectors. While the team took immediate steps to mitigate the impact on observations, they also began thinking about a potential repair.

“The sunlight interferes with NICER’s ability to collect viable X-ray measurements during the station’s daytime,” said Zaven Arzoumanian, NICER’s science lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Nighttime observations are unaffected, and the telescope continues to produce incredible science. Hundreds of published papers have used NICER since the mission began. Blocking some of the light leaking in would allow us to return to more normal operations around the clock.”

This image, obtained June 8, 2018, shows NASA’s NICER (Neutron star Interior Composition Explorer) on the International Space Station, where it studies neutron stars and other X-ray sources. NICER is about the size of a washing machine. The sunshades of its X-ray concentrators are visible as an array of circular features. NASA
Download high-resolution images and videos from NASA’s Scientific Visualization Studio.

Arzoumanian presented efforts to address the issue during a talk on Friday, April 12, at the 21st meeting of the High Energy Astrophysics Division of the American Astronomical Society in Horseshoe Bay, Texas.

NICER is located near the station’s inner starboard solar panels. From that perch, it looks out at the X-ray sky, collecting data on many cosmic phenomena, like regular pulses from superdense stellar remnants called neutron stars and “light echoes” from flaring black holes. Observing these objects helps answer questions about their nature and behavior and increases our understanding of matter and gravity. In 2017, NICER also demonstrated the use of pulsing neutron stars in our galaxy to serve as navigational beacons for future deep space exploration through a program called SEXTANT (Station Explorer for X-ray Timing and Navigation Technology).

The telescope has 56 aluminum X-ray concentrators. Each concentrator has a set of nested mirrors, designed to skip X-rays into a detector. In front of the concentrator lies a thin filter, called a thermal shield, that blocks out sunlight. The concentrator is topped by a hollow circular piece of carbon composite, called a sunshade, with six segments that resemble a sliced pie. The sunshade is designed to keep the concentrators cool in sunlight and protect the delicate thermal shields. After the light leak developed, photos revealed several small areas of damage in some of the shields, though what caused them is still unclear.

“We didn’t design NICER for mission servicing. It was installed robotically, and we operate it from the ground,” said Keith Gendreau, NICER’s principal investigator at Goddard. “The possibility of a repair has been an exciting challenge. We considered both spacewalk and robotic solutions, puzzling out how to install patches using what’s already present on the telescope and in space station toolkits.”

The International Space Station appears in this photograph taken by Expedition 56 crew members from a Soyuz spacecraft after undocking on Oct. 4, 2018. NICER is the small white box standing above the station’s main truss at far right, adjacent to the inner solar panel. NASA/Roscosmos

After many months of consideration, the spacewalk was selected as the path forward. NASA’s Hubble Space Telescope and Solar Maximum Mission, as well as AMS (Alpha Magnetic Spectrometer, also on the station) are the only other science observatories repaired by astronauts in orbit.

NICER’s solution is straightforward. Five pie piece-shaped wedges will slot into the sunshades above the areas with the greatest damage and lock into place. The patches are designed to take advantage of an existing piece of astronaut equipment, called a T-handle tool.

“While we worked hard to ensure the patches are mechanically simple, most repair activities in space are very complicated,” said Steve Kenyon, NICER’s mechanical lead at Goddard. “We’ve been conducting tests to confirm the repair work will be both an effective fix for NICER’s light leak and completely safe for the astronauts on the spacewalk and the space station.”

The patches are currently scheduled to launch to the space station aboard Northrop Grumman’s 21st commercial resupply services mission later this year. Astronauts will complete their installation during a spacewalk, along with other tasks.

NICER is an Astrophysics Mission of Opportunity within NASA’s Explorers Program, which provides frequent flight opportunities for world-class scientific investigations from space utilizing innovative, streamlined, and efficient management approaches within the heliophysics and astrophysics science areas. NASA’s Space Technology Mission Directorate supports the SEXTANT component of the mission, demonstrating pulsar-based spacecraft navigation.

NICER also collaborates in automated tandem with JAXA’s (Japan Aerospace Exploration Agency’s) experiment MAXI (Monitor of All-sky X-ray Image) to rapidly observe stars and other objects that flare unpredictably, advancing scientific understanding of our dynamic universe.

By Jeanette Kazmierczak
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media Contact:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share

Details

Last Updated

Apr 17, 2024

Editor Jeanette Kazmierczak Location Goddard Space Flight Center

Related Terms Explore More

5 min read NASA’s NICER Telescope Sees Hot Spots Merge on a Magnetar

Lee esta nota de prensa en español aquí. For the first time, NASA’s Neutron star…



Article


2 years ago

9 min read NASA’s NICER Probes the Squeezability of Neutron Stars

Matter in the hearts of neutron stars ­– dense remnants of exploded massive stars –…



Article


3 years ago

5 min read NASA’s NICER Finds X-ray Boosts in the Crab Pulsar’s Radio Bursts

A global science collaboration using data from NASA’s Neutron star Interior Composition Explorer (NICER) telescope on…



Article


3 years ago

Categories: NASA

NASA’s Ingenuity Mars Helicopter Team Says Goodbye … for Now

Tue, 04/16/2024 - 8:54pm
NASA’s Ingenuity Mars Helicopter, right, stands near the apex of a sand ripple in an image taken by Perseverance on Feb. 24, about five weeks after the rotorcraft’s final flight. Part of one of Ingenuity’s rotor blades lies on the surface about 49 feet (15 meters) west of helicopter (left of center in the image).NASA/JPL-Caltech/LANL/CNES/CNRS

The final downlink shift by the Ingenuity team was a time to reflect on a highly successful mission — and to prepare the first aircraft on another world for its new role.

Engineers working on NASA’s Ingenuity Mars Helicopter assembled for one last time in a control room at the agency’s Jet Propulsion Laboratory in Southern California on Tuesday, April 16, to monitor a transmission from the history-making helicopter. While the mission ended Jan. 25, the rotorcraft has remained in communication with the agency’s Perseverance Mars rover, which serves as a base station for Ingenuity. This transmission, received through the antennas of NASA’s Deep Space Network, marked the final time the mission team would be working together on Ingenuity operations.

Now the helicopter is ready for its final act: to serve as a stationary testbed, collecting data that could benefit future explorers of the Red Planet.

Throughout its mission on the Red Planet, NASA’s Ingenuity Mars Helicopter received thousands of electronic postcards filled with well wishes from all over the world via the mission’s website. In this video, members of the helicopter team read some of those messages. Credit: NASA/JPL-Caltech 

“With apologies to Dylan Thomas, Ingenuity will not be going gently into that good Martian night,” said Josh Anderson, Ingenuity team lead at JPL. “It is almost unbelievable that after over 1,000 Martian days on the surface, 72 flights, and one rough landing, she still has something to give. And thanks to the dedication of this amazing team, not only did Ingenuity overachieve beyond our wildest dreams, but also it may teach us new lessons in the years to come.”

Originally designed as a short-lived technology demonstration mission that would perform up to five experimental test flights over 30 days, the first aircraft on another world operated from the Martian surface for almost three years, flew more than 14 times farther than the distance expected, and logged more than two hours of total flight time.

Ingenuity’s mission ended after the helicopter experienced a hard landing on its last flight, significantly damaging its rotor blades. Unable to fly, the rotorcraft will remain at “Valinor Hills” while the Perseverance rover drives out of communications range as it continues to explore the western limb of Jezero Crater.

Bytes and Cake

The team enjoyed some “Final Comms” chocolate cake while reviewing the latest data from over 189 million miles (304 million kilometers) away. The telemetry confirmed that a software update previously beamed up to Ingenuity was operating as expected. The new software contains commands that direct the helicopter to continue collecting data well after communications with the rover have ceased.

Engineers working on NASA’s Ingenuity together monitored a transmission from the history-making helicopter in a JPL control room on April 16. They confirmed the operation of a software patch that will allow the helicopter to act as a stationary testbed and collect data that could benefit future Mars explorers.NASA/JPL-Caltech

With the software patch in place, Ingenuity will now wake up daily, activate its flight computers, and test the performance of its solar panel, batteries, and electronic equipment. In addition, the helicopter will take a picture of the surface with its color camera and collect temperature data from sensors placed throughout the rotorcraft. Ingenuity’s engineers and Mars scientists believe such long-term data collection could not only benefit future designers of aircraft and other vehicles for the Red Planet, but also provide a long-term perspective on Martian weather patterns and dust movement.

During this final gathering, the team received a farewell message from Ingenuity featuring the names of people who worked on the mission. Mission controllers at JPL sent the message to Perseverance the day before, which handed it off to Ingenuity so that it could transmit the farewell back to Earth.

Decades of Room

If a critical electrical component on Ingenuity were to fail in the future, causing data collection to stop, or if the helicopter eventually loses power because of dust accumulation on its solar panel, whatever information Ingenuity has collected will remain stored on board. The team has calculated Ingenuity’s memory could potentially hold about 20 years’ worth of daily data.

“Whenever humanity revisits Valinor Hills — either with a rover, a new aircraft, or future astronauts — Ingenuity will be waiting with her last gift of data, a final testament to the reason we dare mighty things,” said Ingenuity’s project manager, Teddy Tzanetos of JPL. “Thank you, Ingenuity, for inspiring a small group of people to overcome seemingly insurmountable odds at the frontiers of space.”

Tzanetos and other Ingenuity alumni are currently researching how future Mars helicopters — including the Mars Science Helicopter concept — could benefit explorations of the Red Planet and beyond.

More About the Mission

The Ingenuity Mars Helicopter was built by JPL, which also manages the project for NASA Headquarters. It is supported by NASA’s Science Mission Directorate. NASA’s Ames Research Center in California’s Silicon Valley and NASA’s Langley Research Center in Hampton, Virginia, provided significant flight performance analysis and technical assistance during Ingenuity’s development. AeroVironment Inc., Qualcomm, and SolAero also provided design assistance and major vehicle components. Lockheed Space designed and manufactured the Mars Helicopter Delivery System. At NASA Headquarters, Dave Lavery is the program executive for the Ingenuity Mars helicopter.

For more information about Ingenuity:

https://mars.nasa.gov/technology/helicopter

News Media Contacts

DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov

Karen Fox / Alana Johnson
NASA Headquarters, Washington
301-286-6284 / 202-358-1501
karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov

2024-044

Share Details Last Updated Apr 16, 2024 Related Terms Explore More 3 min read Comet Geyser: Perseverance’s 24th Rock Core

After investigating the high-standing bedrock at the Bunsen Peak workspace deep within the Margin Unit,…

Article 10 hours ago
3 min read NASA’s Dragonfly Rotorcraft Mission to Saturn’s Moon Titan Confirmed

NASA has confirmed its Dragonfly rotorcraft mission to Saturn’s organic-rich moon Titan. The decision allows…

Article 10 hours ago
4 min read NASA Observations Find What Helps Heat Roots of ‘Moss’ on Sun

Did you know the Sun has moss? Due to its resemblance to the earthly plants,…

Article 11 hours ago
Categories: NASA

A Clinical Decision Support System for Earth-independent Medical Operations

Tue, 04/16/2024 - 6:53pm

Deep space exploration requires a paradigm shift in astronaut medical support toward Earth-independent medical operations. Currently, astronauts rely on real-time communication with ground-based medical providers. However, as the distance from Earth increases, so do communication delays and disruptions. Deep space exploration crews will need to autonomously detect, diagnose, treat, and prevent medical conditions. One potential solution is to augment the long duration exploration crew’s knowledge, skills, and abilities with a digital clinical decision support system, or CDSS. The Exploration Medical Capability (ExMC) element of NASA’s Human Research Program is investigating the feasibility and value of advanced capabilities to promote and enhance EIMO.

Main findings: The ExMC research team has produced a CDSS concept in which medical data would be continuously gathered, through both passive and active monitoring, and delivers real-time guidanance. This helps improve patient outcomes and reduce the workload of health maintenance.

Impact: The assistive technology of ExMC’s envisioned CDSS stands to significantly enhance a crew’s medical capability. Private applications for this approach are currently being considered by commercial space flight programs, a timely example of how ARC Space Biosciences research benefits the entire space sector.

Reference: Russell, B., Burian, B., …, Beard, B., Martin, K., Pletcher, D., … The value of a spaceflight clinical decision support system for earth-independent medical operations. Nature: NPJ Microgravity 9, 46 (2023).

Keep Exploring Discover More Topics From NASA NASA Biological & Physical Sciences

BPS administers NASA’s: BPS partners with the research community and a wide range of organizations to accomplish its mission. Grants…

International Space Station

Humans In Space

Ames Research Center

Categories: NASA