I can calculate the motions of the heavenly bodies, but not the madness of people

— Sir Isaac Newton

NASA - Breaking News

Syndicate content
Official National Aeronautics and Space Administration Website
Updated: 8 hours 35 min ago

X-59 Fires Up its Engine for First Time on its Way to Takeoff

Wed, 11/06/2024 - 12:21pm

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA’s X-59 quiet supersonic research aircraft sits in its run stall at Lockheed Martin’s Skunk Works facility in Palmdale, California, firing up its engine for the first time. These engine-run tests start at low power and allow the X-59 team to verify the aircraft’s systems are working together while powered by its own engine. The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to supersonic flight over land by making sonic booms quieter.NASA/Carla Thomas

Lee esta historia en español aquí.

NASA’s Quesst mission marked a major milestone with the start of tests on the engine that will power the quiet supersonic X-59 experimental aircraft.

These engine-run tests, which began Oct. 30, allow the X-59 team to verify the aircraft’s systems are working together while powered by its own engine. In previous tests, the X-59 used external sources for power. The engine-run tests set the stage for the next phase of the experimental aircraft’s progress toward flight.

The X-59 team is conducting the engine-run tests in phases. In this first phase, the engine rotated at a relatively low speed without ignition to check for leaks and ensure all systems are communicating properly. The team then fueled the aircraft and began testing the engine at low power, with the goal of verifying that it and other aircraft systems operate without anomalies or leaks while on engine power.

Lockheed Martin test pilot Dan Canin sits in the cockpit of NASA’s X-59 quiet supersonic research aircraft in a run stall at Lockheed Martin’s Skunk Works facility in Palmdale, California prior to its first engine run. These engine-run tests featured the X-59 powered by its own engine, whereas in previous tests, the aircraft depended on external sources for power. The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to supersonic flight over land by making sonic booms quieter.NASA/Carla Thomas

“The first phase of the engine tests was really a warmup to make sure that everything looked good prior to running the engine,” said Jay Brandon, NASA’s X-59 chief engineer. “Then we moved to the actual first engine start. That took the engine out of the preservation mode that it had been in since installation on the aircraft. It was the first check to see that it was operating properly and that all the systems it impacted – hydraulics, electrical system, environmental control systems, etc. – seemed to be working.”

The X-59 will generate a quieter thump rather than a loud boom while flying faster than the speed of sound. The aircraft is the centerpiece of NASA’s Quesst mission, which will gather data on how people perceive these thumps, providing regulators with information that could help lift current bans on commercial supersonic flight over land.

The engine, a modified F414-GE-100, packs 22,000 pounds of thrust, which will enable the X-59 to achieve the desired cruising speed of Mach 1.4 (925 miles per hour) at an altitude of approximately 55,000 feet. It sits in a nontraditional spot – atop the aircraft — to aid in making the X-59 quieter.

Engine runs are part of a series of integrated ground tests needed to ensure safe flight and successful achievement of mission goals. Because of the challenges involved with reaching this critical phase of testing, the X-59’s first flight is now expected in early 2025. The team will continue progressing through critical ground tests and address any technical issues discovered with this one-of-a-kind, experimental aircraft. The X-59 team will have a more specific first flight date as these tests are successfully completed.

The testing is taking place at Lockheed Martin’s Skunk Works facility in Palmdale, California. During later phases, the team will test the aircraft at high power with rapid throttle changes, followed by simulating the conditions of an actual flight.

NASA’s X-59 quiet supersonic research aircraft sits in its run stall at Lockheed Martin’s Skunk Works facility in Palmdale, California, prior to its first engine run. Engine runs are part of a series of integrated ground tests needed to ensure safe flight and successful achievement of mission goals. The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to supersonic flight over land by making sonic booms quieter.NASA/Carla Thomas

“The success of these runs will be the start of the culmination of the last eight years of my career,” said Paul Dees, NASA’s deputy propulsion lead for the X-59. “This isn’t the end of the excitement but a small steppingstone to the beginning. It’s like the first note of a symphony, where years of teamwork behind the scenes are now being put to the test to prove our efforts have been effective, and the notes will continue to play a harmonious song to flight.”

After the engine runs, the X-59 team will move to aluminum bird testing, where data will be fed to the aircraft under both normal and failure conditions. The team will then proceed with a series of taxi tests, where the aircraft will be put in motion on the ground. These tests will be followed by final preparations for first flight.

Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 1 min read NASA Awards Contract for Refuse and Recycling Services Article 6 days ago 5 min read We Are All Made of Cells: Space and the Immune System Article 7 days ago 2 min read NASA Brings Drone and Space Rover to Air Show Article 1 week ago Keep Exploring Discover More Topics From NASA

Missions

Humans In Space

Quesst: The Vehicle

Explore NASA’s History

Share Details Last Updated Nov 06, 2024 EditorLillian GipsonContactMatt Kamletmatthew.r.kamlet@nasa.gov Related Terms
Categories: NASA

NASA Knows – How Can I Get Involved With NASA Research?

Wed, 11/06/2024 - 12:04pm

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

NASA provides a variety of pathways for those outside the agency to contribute to authentic and meaningful research. Whether you’re a student pursuing a degree in STEM (science, technology, engineering, or mathematics), an educator looking for new ways to engage your classroom, or a citizen scientist enthusiastic about sharing your observations, there’s a wide array of opportunities to get involved in NASA research.

Citizen scientists around the world participate in environmental observation and measurement efforts through GLOBE.NASA Everybody

People from all around the world can make contributions to NASA research through citizen science projects and other opportunities available to the public.

  • Share your observations and take measurements in your part of the world through GLOBE (Global Learning and Observations to Benefit the Environment), an international science and education initiative that engages students, teachers, and the public in collecting and analyzing environmental data.
  • Do you have a relevant idea for human health science research that could be performed on the future Gateway lunar space station? Follow these steps to share your idea for consideration.
  • The Prizes, Challenges, and Crowdsourcing program through NASA’s Space Technology Mission Directorate invites citizen scientists to develop innovations in recycling material waste on deep space missions, develop aids/devices for navigating on the lunar surface during future Artemis missions, and more.
  • Do you have the “right stuff” to participate in a simulated deep space mission? NASA’s HERA (the Human Exploration Research Analog) is seeking healthy subjects to participate in 45-day simulations to study the physiological and psychological effects of isolation and confinement on humans to help prepare for future missions to the Moon and Mars.
  • Visit the NASA Citizen Science webpage for more opportunities to discover the secrets of the universe, search for life elsewhere, and improve life on Earth and in space.
This collage features the winning designs in the 2024 Dream with Us Design Challenge, which asks students to dream of innovations for the future of aviation.NASA Middle and High School Students

Students can gain valuable experience while making a difference in the future of aeronautics and exploration.

  • Rising high school juniors and seniors are eligible to apply for the four-week Gene Lab for High School Students training program sponsored by NASA’s Ames Research Center in Silicon Valley, California. The program focuses on collecting and analyzing complex biological data such as genetic codes, and computational biology.
  • Through the annual TechRise Student Challenge offered by NASA’s Space Technology Mission Directorate, U.S. students in grades 6 to 12 form teams and design an experiment to fly on a suborbital flight platform such as a high-altitude balloon.
  • Interested in aviation? The Dream With Us Design Challenge through NASA’s Aeronautics Research Mission Directorate invites students in grades 6 to 12 to envision new innovations that will improve the safety, sustainability, and accessibility of aviation systems and technology.
  • Through NASA internships, U.S. students ages 16 and up can boost their research experience and contribute to NASA’s work with the guidance of an agency mentor.
Melissa Venedicto, a Ph.D. student at Florida International University in Miami, studies materials for potential future spaceflight through NASA’s MUREP Institutional Research Opportunity (MIRO).NASA Undergraduate and Graduate Students

NASA offers a variety of research opportunities for college students preparing to launch their own exciting careers in STEM.

  • NASA’s Established Program to Stimulate Competitive Research (EPSCoR) grants competitive awards to enable college and university students within specific U.S. jurisdictions to participate in cutting-edge research projects that address NASA’s challenges and needs.
  • The National Space Grant College and Fellowship Project (Space Grant), is a national network of colleges and universities comprising a total of 52 consortia across the U.S. These consortia fund several research opportunities for students attending member colleges and universities. Look up your state’s Space Grant consortium website to discover available opportunities.
  • NASA internships are available in a wide range of opportunities for undergraduate and graduate students, enabling meaningful contributions to NASA’s missions as well as authentic experience as a part of the agency’s world-class workforce.
  • Through the University Student Research Challenge, students are invited to propose their ideas describing innovative new approaches to tackling one of six major research areas as outlined by NASA’s Aeronautics Research Mission Directorate.
  • Students can take part in valuable studies of the ever-changing Earth system through NASA’s Earth Science Division’s Early Career Research (ECR) program. ECR includes the eight-week Student Airborne Research Program, the Climate Change Research Initiative, and more.
  • College students at Minority Serving Institutions can contribute to the agency’s exploration goals through many opportunities offered by NASA’s Minority University Research and Education Project (MUREP).
Educators of grades K-8 take part in a workshop hosted by NASA’s Next Gen STEM.NASA Educators

NASA provides opportunities for educators to participate in authentic aerospace research, as well as to engage their students in research in the classroom.

  • Space Grant offers a variety of opportunities for educators, from curriculum enhancement and faculty development to grants enabling teachers to bring NASA research into the classroom. Look up your state’s Space Grant consortium website to discover available opportunities.
  • NASA welcomes interns with professional teaching experience to help foster the education and curiosity of students who will shape the future workforce. Visit NASA Internships to learn more and find current opportunities.
  • Through NASA’s Climate Change Research Initiative, part of the agency’s Earth Science Division’s Early Career Research Program, high school STEM educators can join a research team led by NASA scientists to focus on a research area related to climate change.
There’s More to Explore

Explore available NASA STEM learning experiences, such as internship roles, student competitions, or engagements with NASA researchers, through NASA’s STEM Gateway platform. Visit NASA’s Learning Resources webpage for the latest news and resources from the agency’s Office of STEM Engagement.

Keep Exploring Discover More STEM Topics From NASA

NASA STEM Engagement Funding Opportunities

For Colleges and Universities

About STEM Engagement at NASA

NASA EXPRESS Newsletter Sign-up

Categories: NASA

Sols 4355-4356: Weekend Success Brings Monday Best

Wed, 11/06/2024 - 4:04am
Curiosity Navigation

3 min read

Sols 4355-4356: Weekend Success Brings Monday Best NASA’s Mars rover Curiosity acquired this image of the contact science target “Black Bear Lake” from about 7 centimeters away (about 3 inches), using its Mars Hand Lens Imager (MAHLI). The MAHLI, located on the turret at the end of the rover’s robotic arm, used an onboard focusing process to merge multiple images of the same target into a composite image, on Nov. 3, 2024 – sol 4353, or Martian day 4,353 of the Mars Science Laboratory Mission – at 21:36:01 UTC. NASA/JPL-Caltech/MSSS

Earth planning date: Monday, Nov. 4, 2024

After a spooky week last week, it’s great to see all our weekend plans succeed as planned! We don’t take success for granted as a rover going on 13 years. With all of the science at our fingertips and all the battery power we could need, the team took right advantage of this two-sol touch-and-go Monday plan. We have a bedrock DRT target for APXS and MAHLI named “Epidote Peak” and a MAHLI-only target of a crushed rock we drove over named “Milly’s Foot Path.”

APXS data is better when it’s cold, so we’ve planned the DRT brushing and APXS to start our first sol about 11:14 local Gale time. MAHLI images are usually better in the afternoon lighting, so we’ll leave the arm unstowed and spend some remote science time beforehand, about 12:15 local time. ChemCam starts that off with a LIBS raster over a bedrock block with some interesting light and dark layering, named “Albanita Meadows” and seen here in the the upper-right-ish of this Navcam workspace frame. ChemCam will then take a long-distance RMI mosaic of a portion of the upper Gediz Vallis ridge to the north. Mastcam continues the remote science with an Albanita Meadows documentation image, a 21-frame stereo mosaic of some dark-toned upturned blocks about 5 meters away (about 16 feet), a four-frame stereo mosaic of some polygonal fracture patterns about 20 meters away (about 66 feet), and a mega 44-frame stereo mosaic of Wilkerson butte, upper Gediz Vallis ridge, “Fascination Turret,” and “Pinnacle Ridge” in the distance. That’s a total of 138 Mastcam images! With remote sensing complete, the RSM will stow itself about 14:00 local time to make time for MAHLI imaging. 

Between about 14:15 and 14:30 local time, MAHLI will take approximately 64 images of Epidote Peak and Milly’s Foot Path. Most of the images are being acquired in full shadow, so there is uniform lighting and saturation in the images. We’ll stow the arm at about 14:50 and begin our drive! This time we have an approximately 34-meter drive to the northwest (about 112 feet), bringing us almost all the way to the next dark-toned band in the sulfate unit. But no matter what happens with the drive, we’ll still do some remote science on the second sol including a Mastcam tau observation, a ChemCam LIBS in-the-blind (a.k.a AEGIS: Autonomous Exploration for Gathering Increased Science), and some Navcam movies of the sky and terrain. 

Written by Natalie Moore, Mission Operations Specialist at Malin Space Science Systems

Share

Details

Last Updated

Nov 06, 2024

Related Terms Explore More

3 min read Sols 4352-4354: Halloween Fright Night on Mars

Article


1 day ago

2 min read Sols 4350-4351: A Whole Team Effort

Article


5 days ago

2 min read Sols 4348-4349: Smoke on the Water

Article


6 days ago

Keep Exploring Discover More Topics From NASA

Mars

Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


All Mars Resources

Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


Rover Basics

Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


Mars Exploration: Science Goals

The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

Categories: NASA

Beyond the Console: Kenneth Attocknie’s Mission to Bridge Cultures at NASA

Tue, 11/05/2024 - 4:28pm

From the Mission Control Center to community celebrations, Kenneth Attocknie blends safety expertise with a commitment to cultural connection. 

For the past 25 years at NASA, Attocknie has dedicated his career to safeguarding the International Space Station and supporting real-time mission operations at Johnson Space Center in Houston.  

As a principal safety engineer in the Safety and Mission Assurance Directorate, Attocknie ensures the safe operation of the space station’s environmental control and life support system. This system is vital for maintaining the life-sustaining environment aboard the orbiting laboratory— a critical foundation for similar systems planned for future Artemis missions. 

Official portrait of Kenneth Attocknie.NASA/Bill Stafford

As a contractor with SAIC, Attocknie has served as a flight controller, astronaut crew office engineer, and astronaut crew instructor. He joined NASA just as the first two modules of the space station, Zarya and Unity, connected in space on Dec. 6, 1998.  

“I’ve supported the space station ever since and have been blessed to witness the remarkable progression of this amazing orbiting experiment,” he said. “I feel I have found a way to contribute positively to NASA’s mission: to improve life for all people on our planet.” 

He also contributed to closing out the Space Shuttle Program and worked in system safety for the Constellation program. 

As part of SAIC’s Employee Resource Group, Attocknie supports the Mathematics, Engineering, Science Achievement project, which uses project-based learning to inspire high school students from underrepresented communities to pursue careers in science, technology, engineering, and mathematics. He continues to advocate for Native Americans as a member of the American Indian Science and Engineering Society, helping NASA engage with college students across Indian Country. 

Flight controller Kenneth Attocknie on console in the Blue Flight Control Room during Expedition 11. NASA/Mark Sowa

Attocknie strives to contribute to a space exploration legacy that uplifts and unites cultures, paving the way for a future in human spaceflight that honors and empowers all. 

A member of the Comanche and Caddo tribes of Oklahoma, he has made it his mission to create a cross-cultural exchange between NASA and Native communities to provide opportunities for Natives to visit Johnson.  

One of his proudest moments was organizing a Native American Heritage Month event with NASA’s Equal Opportunity and Diversity Office. The celebration brought together Native dancers and singers from Oklahoma and Texas to honor their heritage at Johnson.  

“Seeing the Johnson community rally around this event was amazing,” said Attocknie. “It was a profound experience to share and celebrate my culture here.” 

A traditional dance exhibition during a Native American cultural celebration at NASA’s Johnson Space Center in Houston. NASA/Allison Bills

Overcoming challenges and setbacks has been part of his NASA experience as well. “Finding and achieving my purpose is always an ongoing journey,” he said. “Accepting what might seem like a regression is the first step of growth. There’s always a lesson to be found, and every disappointment can fuel a new ambition and direction. Ride the waves, be humble, learn lessons, and above all, always keep going.” 

He believes that NASA’s mission is deeply connected to diversity and inclusion. “You can’t truly benefit humankind if you don’t represent humankind,” said Attocknie. “The status quo may feel comfortable, but it leads to stagnation and is the antithesis of innovation.” 

Kenneth Attocknie (middle) celebrates his Native American culture with the Caddo tribe of Oklahoma.NASA/Allison Bills

Attocknie’s hope for the Artemis Generation? “A healthier planet, society, and the desire to pass on lessons of stewardship for our environment. All life is precious.” 

He sees NASA as a gateway to a brighter future: “NASA can truly harness its influence to be an example for our planet, not only in the new heavenly bodies we journey to but also in the new human spirits we touch.” 

Categories: NASA

Bundling the Best of Heliophysics Education: DigiKits for Physics and Astronomy Teachers

Tue, 11/05/2024 - 3:13pm
Learn

  1. Home
  2. Bundling the Best of…
  • For Educators
  •  

    3 min read

    Bundling the Best of Heliophysics Education: DigiKits for Physics and Astronomy Teachers

    For nearly a decade, the American Association of Physics Teachers (AAPT) has been working to bring together resources through its DigiKits–multimedia collections of vetted high-quality resources for teachers and their students. These resources are toolkits, allowing teachers to pick and choose interesting content to support their instruction. As a partner with the NASA Heliophysics Education Activation Team (HEAT), this work has directly supported the bundling of digital content around heliophysics lessons created by the AAPT team.

    As an example, AAPT’s most recent DigiKit publication, Auroral Currents Science (Figure 1), was developed for educators of advanced high school students and university physics/astronomy majors. DigiKits materials are collected by digital content specialist, Caroline Hall, who searches for high-quality, open digital content and checks it for accuracy and accessibility. The Auroral Currents DigiKit centers around a lecture tutorial that gives students the opportunity to practice and extend their knowledge of magnetic fields produced by current-carrying wires, and relating those understandings to auroral currents – the primary phenomenon underlying the dramatic auroral light shows seen in the sky over the past months.

    The corresponding DigiKit includes a collection of relevant simulations, videos/animations, and other teacher resources for background that can help to teach the content in the primary lesson. The DigiKit highlights NASA’s forthcoming Electrojet Zeeman Imaging Explorer (EZIE) mission, including an animation of the relationship between the Earth and space, an explanation of Earth’s electrojets and a visualization of the spacecraft. It also includes links to NASA’s ongoing Magnetospheric Multiscale spacecraft video explanation of magnetic reconnection, among many other useful resources that can be shown in the classroom or explored individually by students. Unique to this DigiKit are recent science news articles covering 2024’s spectacular auroral displays.

    The light in the aurora comes from atoms in the ionosphere that have been excited by collisions with electrons that were accelerated between 6000 km and 20000 km above Earth’s surface. Those electrons carry electric currents from space along the magnetic field, but the currents flow horizontally some distance through the ionosphere at about 100-150 km in altitude before returning to space. We call those currents the ionospheric electrojets, and we can see the magnetic effects of the electrojets because electric currents are the source of magnetic fields. The AAPT digikit allows students to explore the magnetic signature of the electrojets and determine the size and location of the currents.

    As a result of participation in NASA HEAT, AAPT has produced ten DigiKits, all linked below and available alongside the collection of other tutorials/core resources on the AAPT NASA HEAT page. Although the DigiKits are directed toward teachers, and the lessons are intended for standard classroom contexts, the resources can also be a great introduction to NASA-related concepts and modern science ideas for the general public.

    Mechanics

    Light and Optics

    Magnetism

    Eclipses

    Are you an educator curious to learn more? Register for AAPT’s monthly mini webinar series, with the next event on November 9, 2024, featuring the Auroral Currents DigiKit core activity.

    NASA HEAT is part of the NASA Science Activation Program portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn

    Figure 1: Cover image of Auroral Currents DigiKit. Caroline Hall/AAPT NASA-HEAT Share

    Details

    Last Updated

    Nov 05, 2024

    Editor NASA Science Editorial Team

    Related Terms Explore More

    3 min read Professional Learning: Using Children’s Books to Build STEM Habits of Mind

    Article


    1 day ago

    4 min read Final Venus Flyby for NASA’s Parker Solar Probe Queues Closest Sun Pass

    Article


    1 day ago

    2 min read Sadie Coffin Named Association for Advancing Participatory Sciences/NASA Citizen Science Leaders Series Fellow

    Article


    1 day ago

    Keep Exploring Discover More Topics From NASA

    James Webb Space Telescope

    Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


    Perseverance Rover

    This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


    Parker Solar Probe

    On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


    Juno

    NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

    Categories: NASA

    U.S. Navy Fleet Training Launch to be Conducted at NASA Wallops

    Tue, 11/05/2024 - 2:52pm

    1 min read

    Preparations for Next Moonwalk Simulations Underway (and Underwater) This September 2024 aerial photograph shows the coastal launch range at NASA’s Wallops Flight Facility on Virginia’s Eastern Shore. Wallops is the agency’s only owned-and-operated launch range.Courtesy Patrick J. Hendrickson; used with permission

    A rocket-propelled target is scheduled to launch from NASA’s Wallops Flight Facility in Virginia during a window Thursday, Nov. 7 to Friday, Nov. 8 between 9:30 a.m. and 2:30 p.m. EST both days as part of a U.S. Navy Fleet Training exercise.

    No real-time launch status updates will be available. The launch will not be livestreamed nor will launch status updates be provided during the countdown. The rocket launch may be visible from the Chesapeake Bay region.

    Share Details Last Updated Nov 05, 2024 LocationWallops Flight Facility Related Terms Explore More 1 min read NASA Wallops to Support Sounding Rocket Launch for U.S. Navy Fleet Training Article 4 months ago 5 min read To Study Atmosphere, NASA Rockets Will Fly into Oct. Eclipse’s Shadow

    UPDATE: The three rockets comprising the APEP mission launched on Saturday, Oct. 14th at 10:00am,…

    Article 1 year ago
    3 min read NASA Wallops Offers Career Inspiration to Delmarva Students Article 8 months ago
    Categories: NASA

    From Campus to Cosmos: NASA Grants Boost Student, University Innovation

    Tue, 11/05/2024 - 8:16am

    5 min read

    Preparations for Next Moonwalk Simulations Underway (and Underwater) Nicholas Bitner from Candeska Cikana Community College, left, and Jesse Rhoades from the University of North Dakota (UND), right, are pictured in UND’s BiPed lab, where their students test and capture motion data for the Mapi Hapa. Walter Criswell, UND Today

    Human exploration on the lunar surface is no small feat. It requires technologists and innovators from all walks of life to tackle many challenges, including feet. 

    From designing astronaut boots, addressing hazardous Moon dust, and researching new ways to land on Mars, NASA is funding valuable research through M-STAR (Minority University Research and Education Project’s (MUREP) Space Technology Artemis Research). The M-STAR program provides opportunities for students and faculty at Minority Serving Institutions to participate in space technology development through capacity building and research grants. With more than $11.5 million awarded since 2020, M-STAR aims to ensure NASA isn’t leaving any potential solution behind. 

    Best Foot Forward  Candeska Cikana Community College uses selective laser sintering, a type of 3D-printing in which heat and pressure form specific structures using layers of powdered material. Shown here, a student works to remove excess material, in this case a powdered form of nylon with carbon fibers, to reveal a prototype of the “Mapi Hapa,” or “sky shoe.” Candeska Cikana Community College

    Supportive boots are required for astronauts who will perform long duration Artemis missions on the Moon. With astronaut foot health in mind, students and faculty of North Dakota’s Candeska Cikana Community College in Fort Totten and the University of North Dakota in Grand Forks are designing a solution for extravehicular activity Moon boots. The project, called Mapi Hapa, proposes a 3D printed device that helps astronauts achieve the range of motion that takes place in the ankle when you draw your toe back towards the shin. 

    Candeska Cikana Community College is a tribal college that serves the Spirit Lake Nation, including the Dakota, Lakota, Sisseton, Wahpeton, and Yanktonai peoples.  

    Nicholas Bitner, an instructor at Candeska Cikana and graduate student at the University of North Dakota, notes the unique skills that tribal students possess. “Their perspective, which is unlike that of any other student body, thrives on building with their hands and taking time to make decisions.” 

    Bitner also attributes many opportunities and successes of their program to M-STAR and its partnership which exemplifies the dire importance of consistent funding. 

    “Given the relationships, we have been able to expand our capabilities and our lab, but it has also given us funding. We were able to hire all our students in the engineering department as lab technicians. So, they get paid to do the research that they are a part of, and not only do they have that psychological ownership, but they also have a good paying job that looks nice on their resumes.”  

    In addition to addressing astronaut foot health, M-STAR funding is helping develop solutions to combat lunar regolith, or Moon dust, which can damage landers, spacesuits, and human lungs, if inhaled. 

    Lunar Dust Development 

    With M-STAR, New Mexico State University in Las Cruces developed affordable, reliable lunar regolith simulants to help test lunar surface technologies. The team also designed testing facilities that mimic environmental conditions on the Moon.   

    New Mexico State has already started sharing their simulants, including with a fellow M-STAR awardee. An M-STAR project selected in 2023 from the University of Maryland Eastern Shore in Princess Anne uses the simulants to help test their experience in smart agriculture to test applications for crop production on the Moon. 

    University of Maryland, Eastern Shore explores the possibility of growing crops in lunar regolith by mixing varying proportions of lunar regolith simulant, horse manure, and potting soil. The lunar regolith simulant was provided by fellow M-STAR awardee at New Mexico State University in in Las Cruces.Stephanie Yeldell/NASA

    Douglas Cortez, associate professor in civil engineering at New Mexico State, believes different perspectives are essential to maximizing solutions.  

    “There are hundreds of people working at Minority Serving Institutions that are used to looking at the world in a completely different way,” said Cortez. “When they start looking at the same problem and parameters, they come up with very different solutions.” 

    As we look to sustainable presence on the Moon, NASA also has its sights set on Mars and M-STAR is helping develop technologies to inform crewed Martian exploration.  

    Stick the Landing 

    San Diego State University in California was awarded funding for research on Mars entry, descent, and landing technologies. The team aims to achieve optimal trajectory by developing onboard algorithms that guide vehicles to descent autonomously. 

    The M-STAR research opportunities have been invaluable to students like Chris Davami and his teammates working to develop improved methods to land on Mars.  

    Christopher Davami, who supported San Diego State University’s 2021 M-STAR project, is pictured here at NASA’s Langley Research Center, where he was selected for internships supporting research in aeroelasticity, atmospheric flight, and entry systems research.NASA

    “I would definitely not have been able to have these opportunities with NASA if it weren’t for M-STAR,” said Davami. “M-STAR helped pay for my education, which helped me save a lot in student loans. I probably wouldn’t be going to graduate school right now if I did not have this opportunity. This program enabled me to keep pursuing my research and continue doing what I love.” 

    Following his contributions to the M-STAR-funded project, Davami was awarded a NASA Space Technology Graduate Research Opportunity in 2023 on his work in autonomous end-to-end trajectory planning and guidance constrained entry and precision power decent.  

    Through efforts like M-STAR, NASA aims to seed the future workforce and prepare colleges and universities to win other NASA research opportunities. When it comes to the advancement of space technology, people of different backgrounds and skillsets are needed to achieve what was once known as impossible. Not only can the diversification of ideas spark fundamental innovations in space, but it can also help students apply these technological advancements to solving problems here on Earth. 

    To learn more about M-STAR visit: 

    https://go.nasa.gov/442k76s

    by: Gabrielle Thaw, NASA’s Space Technology Mission Directorate 

    Facebook logo @NASATechnology @NASA_Technology Keep Exploring Discover More Topics From NASA

    Space Technology Mission Directorate

    Student & STEM Opportunities

    NASA Grants to Strengthen Diversity in Engineering, STEM Fields

    Get Involved

    Share Details Last Updated Nov 05, 2024 EditorLoura Hall Related Terms
    Categories: NASA

    NASA Science, Cargo Launch on 31st SpaceX Resupply Mission to Station

    Mon, 11/04/2024 - 10:04pm
    The SpaceX Falcon 9 rocket carrying the Dragon spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Tuesday, Nov. 4, on the company’s 31st commercial resupply services mission for the agency to the International Space Station. Liftoff was at 9:29 p.m. EST. Dragon will deliver several new experiments, including the Coronal Diagnostic Experiment, to examine solar wind and how it forms. Dragon also delivers Antarctic moss to observe the combined effects of cosmic radiation and microgravity on plants. Other investigations aboard include a device to test cold welding of metals in microgravity, and an investigation that studies how space impacts different materials.Credit: SpaceX

    Following a successful launch of NASA’s SpaceX 31st commercial resupply mission, new scientific experiments and cargo for the agency are bound for the International Space Station.

    The SpaceX Dragon spacecraft, carrying more than 6,000 pounds of supplies to the orbiting laboratory, lifted off at 9:29 p.m. EST Monday, on the company’s Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

    Live coverage of the spacecraft’s arrival will begin at 8:45 a.m. Tuesday, Nov. 5, on NASA+ and the agency’s website. Learn how to watch NASA content through a variety of platforms, including social media.

    The spacecraft is scheduled to autonomously dock at approximately 10:15 a.m. to the forward port of the space station’s Harmony module.

    The resupply mission will support dozens of research experiments conducted during Expedition 72. In addition to food, supplies, and equipment for the crew, Dragon will deliver several new experiments, including the Coronal Diagnostic Experiment, to examine solar wind and how it forms. Dragon also delivers Antarctic moss to observe the combined effects of cosmic radiation and microgravity on plants. Other investigations aboard include a device to test cold welding of metals in microgravity and an investigation that studies how space impacts different materials.

    These are just a sample of the hundreds of investigations conducted aboard the orbiting laboratory in the areas of biology and biotechnology, physical sciences, and Earth and space science. Such research benefits humanity and lays the groundwork for future human exploration through the agency’s Artemis campaign, which will send astronauts to the Moon to prepare for future expeditions to Mars.

    The Dragon spacecraft is scheduled to remain at the space station until December when it will depart the orbiting laboratory and return to Earth with research and cargo, splashing down off the coast of Florida.

    Learn more about space station activities by following @space_station and @ISS_Research on X, as well as the ISS Facebook, ISS Instagram, and the space station blog.

    Learn more about the commercial resupply mission at:

    https://www.nasa.gov/mission/nasas-spacex-crs-31

    -end-

    Claire O’Shea / Josh Finch
    Headquarters, Washington
    202-358-1100
    joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov

    Stephanie Plucinsky / Steven Siceloff
    Kennedy Space Center, Fla.
    321-876-2468
    stephanie.n.plucinsky@nasa.gov / steven.p.siceloff@nasa.gov

    Sandra Jones
    Johnson Space Center, Houston
    281-483-5111
    sandra.p.jones@nasa.gov

    Share Details Last Updated Nov 05, 2024 EditorJennifer M. DoorenLocationNASA Headquarters Related Terms
    Categories: NASA

    Sols 4352-4354: Halloween Fright Night on Mars

    Mon, 11/04/2024 - 7:26pm
    Curiosity Navigation

    3 min read

    Sols 4352-4354: Halloween Fright Night on Mars NASA’s Mars rover Curiosity acquired this image of the target surface feature nicknamed “Reds Meadow,” using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm. Curiosity captured the image Oct. 31, 2024, at 19:09:10 UTC, on sol 4350 — Martian day 4,350 of the Mars Science Laboratory Mission. NASA/JPL-Caltech/MSSS

    Earth planning date: Friday, Nov. 1, 2024

    Yesterday evening (Thursday) was Halloween for many of us here on Earth. My neighborhood in eastern Canada was full of small (and not so small!) children, running around in the dark collecting sweets and candy but also getting scared by the ghostly decorations hung at each house. Little did we suspect that our poor rover on Mars was also getting spooked. Curiosity completed about a meter (about 3 feet) of the planned drive before becoming unsettled … scared, if you will! … when its left front wheel got hung up on a rock and stopped moving.

    Luckily, we understood this kind of frightened behavior and were able to resume planning today as per usual. That meter was enough to give us a whole new set of targets to choose from. As APXS Strategic Planner this week, I had chosen darker-looking targets in the workspace — “Ladder Lake” and “Reds Meadow” (shown in the accompanying MAHLI image) — earlier in the week. I was happy that bumping backwards by a meter allowed us to reach some of the more typical pale colored bedrock at “Eureka Valley” and a second APXS analysis on “Black Bear Lake,” which is a mixture of both pale bedrock and some darker layers. MAHLI added in a bonus set of images on “Stag Dome,” focusing on small, rougher patches on the pale bedrock.

    ChemCam is taking advantage of the short bump, too, adding a passive observation on the brushed Reds Meadow target, analyzed by APXS and MAHLI in Monday’s plan. A ChemCam LIBS target “Hoist Ridge” focuses on a small vertical face of dark material. Two long distance images planned for ChemCam’s Remote Micro Imager (RMI) look at the distribution of rocks along the Gediz Vallis ridge in the distance.

    Mastcam is taking several mosaics this weekend (must have gotten extra energy from the Halloween sugar!). Close to the rover, Mastcam will acquire single-frame images of the targets Hoist Ridge and Eureka Valley, and a small mosaic of some surficial troughs just a little further away. Moving further afield, a small 3×1 mosaic (three images in one row) will image the same area as the ChemCam RMI of the Gediz Vallis ridge, and a larger 9×2 mosaic will focus on the faraway yardang unit, where we hopefully will be in a few years.

    Then for the really big images: Mastcam will image the whole landscape in a special 360-degree view, so big it needs to be broken into two parts. The first will have 43×4 frames, the second 34×5 frames. These mosaics are huge, so we save them for when we are at a really good vantage point to allow us to capture as much detail as possible for science and engineering planning.

    As ever, we continue our environmental monitoring of conditions, with Mastcam and Navcam movies and images looking at dust in the atmosphere above and around us in Gale crater, and watching out for dust devils.

    Written by Catherine O’Connell-Cooper, Planetary Geologist at University of New Brunswick

      Share

      Details

      Last Updated

      Nov 04, 2024

      Related Terms Explore More

      2 min read Sols 4350-4351: A Whole Team Effort

      Article


      4 days ago

      2 min read Sols 4348-4349: Smoke on the Water

      Article


      5 days ago

      2 min read A Spooky Soliday: Haunting Whispers from the Martian Landscape

      Article


      5 days ago

      Keep Exploring Discover More Topics From NASA

      Mars

      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources

      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics

      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals

      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      Categories: NASA

      Lagniappe for November 2024

      Mon, 11/04/2024 - 4:17pm
      6 Min Read Lagniappe for November 2024 Explore the November 2024 issue, highlighting a milestone for future Artemis testing, a key step to expand NASA Stennis Range Operations work, and more!

      Explore Lagniappe for November 2024 featuring:

      • NASA Stennis Takes Key Step in Expanding its Range Operations Work
      • NASA Stennis Plants Artemis Moon Tree
      • NASA Employees Complete Agency Leadership Program
      Gator Speaks Gator SpeaksNASA/Stennis

      The month of October is known for becoming cooler in these parts, and there sure were plenty of recent cool moments for NASA Stennis that set the tone for the future.

      Last month, the center marked a milestone for testing a new SLS (Space Launch System) rocket stage to fly on future Artemis missions to the Moon and beyond.

      Crews safely lifted and installed the interstage simulator component that will be used for future testing of NASA’s exploration upper stage on the B-2 side of the Thad Cochran Test Stand.

      Why does this matter?

      When the new upper stage is ready to fly following testing at NASA Stennis, it will allow NASA to send astronauts and larger payloads to the Moon on a single mission.

      It is expected to fly on Artemis IV when astronauts will live and work in humanity’s first lunar space station, Gateway.

      How exciting! This mission will make possible new opportunities for science and preparation for human missions to Mars.

      The massive interstage simulator component lifted and installed at NASA Stennis is 103 tons, or 206,000 pounds. When you learn about the exploration upper stage, and how it functions, it makes sense. The upper stage is powered by four engines and provides more than 97,000 pounds of thrust.

      Speaking of missions to the Moon, have you ever asked yourself why are we returning to the Moon?

      A few goals NASA has set for Artemis missions include: preparing for future exploration missions deeper into space – including Mars – by developing and proving new technologies and capabilities, while learning how to live and operate on the lunar surface; finding and using water and other critical resources needed for long-term exploration; and investigating the Moon’s mysteries to learn more about Earth and the universe for the benefit of all.

      These long-term plans build on more than 50 years of NASA’s experience and are reigniting everyone’s passion for discovery.

      I believe it because the grandgators have been talking NASA nonstop lately.

      All of this culminates with inspiring the Artemis Generation and encouraging young people to pursue studies and careers in science, technology, engineering, and mathematics.

      Throughout the month of October, NASA Stennis representatives have been doing just that, sharing the cool ways NASA explores, innovates, and inspires all of humanity and the Artemis Generation.

      Such stops have included Congressman Bennie Thompson’s College and Career Fair in Greenville, Mississippi, located in the Yazoo-Mississippi Delta area, bordering the state of Arkansas; Cruisin’ the Coast, where car enthusiasts from over 37 states and Canada drive to the Mississippi Gulf Coast annually; and various college and career fairs throughout Pearl River County and Hancock County, areas where many NASA Stennis employees live.

      October indeed was a cool month, and November has started off that way, too. NASA Stennis representatives participated in the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, one of Pensacola’s largest events with more than 150,000 in attendance.

      It marked just the fifth time in history that the U.S. Air Force Thunderbirds and U.S. Navy Blue Angels have flown together. This event also celebrated the 55th anniversary of NASA’s lunar landing.

      Pretty cool, huh?

      > Back to Top

      NASA Stennis Top News NASA Stennis Achieves Milestone in Preparation for Future Artemis Testing

      NASA’s Stennis Space Center near Bay St. Louis, Mississippi, achieved a key milestone this week for testing a new SLS (Space Launch System) rocket stage to fly on future Artemis missions to the Moon and beyond.

      Read More About the Interstage Simulator Lift NASA Stennis Takes Key Step in Expanding its Range Operations Work

      NASA’s Stennis Space Center near Bay St. Louis, Mississippi, has entered into an agreement with Skydweller Aero Inc. for the company to operate its solar-powered autonomous aircraft in the site’s restricted airspace, a key step towards achieving a strategic center goal.

      Read More About the Agreement with Skydweller Aero NASA Stennis Conducts Water Flush at Fred Haise Test Stand Crews conduct a planned flame deflector water flow system flush on the Fred Haise Test Stand at NASA’s Stennis Space Center on Oct. 22, following the recent completion of upgrades to the High Pressure Industrial Water Facility’s underground piping network. The flush, a periodic procedure to ensure system functionality and performance, involves flowing 150,000 gallons or more per minute from the High Pressure Industrial Water Facility to the stand. It also continues stand preparations for testing RS-25 flight engines for use on future Artemis missions to the Moon and beyond. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin Crews conduct a planned flame deflector water flow system flush on the Fred Haise Test Stand at NASA’s Stennis Space Center on Oct. 22, following the recent completion of upgrades to the High Pressure Industrial Water Facility’s underground piping network. The flush, a periodic procedure to ensure system functionality and performance, involves flowing 150,000 gallons or more per minute from the High Pressure Industrial Water Facility to the stand. It also continues stand preparations for testing RS-25 flight engines for use on future Artemis missions to the Moon and beyond. NASA/Danny Nowlin Crews conduct a planned flame deflector water flow system flush on the Fred Haise Test Stand at NASA’s Stennis Space Center on Oct. 22, following the recent completion of upgrades to the High Pressure Industrial Water Facility’s underground piping network. The flush, a periodic procedure to ensure system functionality and performance, involves flowing 150,000 gallons or more per minute from the High Pressure Industrial Water Facility to the stand. It also continues stand preparations for testing RS-25 flight engines for use on future Artemis missions to the Moon and beyond. NASA/Danny Nowlin Crews conduct a planned flame deflector water flow system flush on the Fred Haise Test Stand at NASA’s Stennis Space Center on Oct. 22, following the recent completion of upgrades to the High Pressure Industrial Water Facility’s underground piping network. The flush, a periodic procedure to ensure system functionality and performance, involves flowing 150,000 gallons or more per minute from the High Pressure Industrial Water Facility to the stand. It also continues stand preparations for testing RS-25 flight engines for use on future Artemis missions to the Moon and beyond. NASA/Danny Nowlin NASA Employees Complete Agency Leadership Program Eli Ouder, left, and Thom Rich are pictured at NASA Headquarters in Washington on Oct. 23 after graduating from the NASA ASPIRE Program. Ouder is the procurement officer for NASA’s Stennis Space Center and NASA Shared Services Center. Rich is the associate director of the NASA Stennis Center Operations Directorate. The two were part of the first cohort in the new 18-month leadership program to prepare NASA leaders for executive leadership roles in the future. NASA NASA Stennis Plants Artemis Moon Tree NASA employees plant an Artemis Moon Tree at NASA’s Stennis Space Center on Oct. 29 to celebrate NASA’s successful Artemis I mission as the agency prepares for a return around the Moon with astronauts on Artemis II. NASA/Danny Nowlin Read More About the Artemis Moon Tree NASA Stennis Crews Continue Exploration Upper Stage Preparations A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center.  The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023. Since then, crews have prepared the structures, which will align with the two EUS umbilical locations, for umbilical plate installation. In addition to helping during installation prior to hot fire testing, the umbilical support structures route the vehicle side command, control, and data electrical connections to the ground systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges. Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NASA/Danny Nowlin A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center.  The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023. Since then, crews have prepared the structures, which will align with the two EUS umbilical locations, for umbilical plate installation. In addition to helping during installation prior to hot fire testing, the umbilical support structures route the vehicle side command, control, and data electrical connections to the ground systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges. Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NASA/Danny Nowlin A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center.  The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023. Since then, crews have prepared the structures, which will align with the two EUS umbilical locations, for umbilical plate installation. In addition to helping during installation prior to hot fire testing, the umbilical support structures route the vehicle side command, control, and data electrical connections to the ground systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges. Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center.  The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023. Since then, crews have prepared the structures, which will align with the two EUS umbilical locations, for umbilical plate installation. In addition to helping during installation prior to hot fire testing, the umbilical support structures route the vehicle side command, control, and data electrical connections to the ground systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges. Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center.  The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023. Since then, crews have prepared the structures, which will align with the two EUS umbilical locations, for umbilical plate installation. In addition to helping during installation prior to hot fire testing, the umbilical support structures route the vehicle side command, control, and data electrical connections to the ground systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges. Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NASA/Danny Nowlin A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center.  The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023. Since then, crews have prepared the structures, which will align with the two EUS umbilical locations, for umbilical plate installation. In addition to helping during installation prior to hot fire testing, the umbilical support structures route the vehicle side command, control, and data electrical connections to the ground systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges. Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NASA/Danny Nowlin A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center.  The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023. Since then, crews have prepared the structures, which will align with the two EUS umbilical locations, for umbilical plate installation. In addition to helping during installation prior to hot fire testing, the umbilical support structures route the vehicle side command, control, and data electrical connections to the ground systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges. Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NASA/Danny Nowlin A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center.  The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023. Since then, crews have prepared the structures, which will align with the two EUS umbilical locations, for umbilical plate installation. In addition to helping during installation prior to hot fire testing, the umbilical support structures route the vehicle side command, control, and data electrical connections to the ground systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges. Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NASA/Danny Nowlin A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center.  The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023. Since then, crews have prepared the structures, which will align with the two EUS umbilical locations, for umbilical plate installation. In addition to helping during installation prior to hot fire testing, the umbilical support structures route the vehicle side command, control, and data electrical connections to the ground systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges. Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin A pair of umbilical support structures needed for future testing of NASA’s exploration upper stage (EUS) were installed in the B-2 position of the Thad Cochran Test Stand on Oct. 30-31 at NASA’s Stennis Space Center.  The support structures arrived from NASA’s Michoud Assembly Facility in New Orleans via the unique NASA Stennis seven-and-a-half-mile canal system in 2023. Since then, crews have prepared the structures, which will align with the two EUS umbilical locations, for umbilical plate installation. In addition to helping during installation prior to hot fire testing, the umbilical support structures route the vehicle side command, control, and data electrical connections to the ground systems, as well as most the commodity connections, such as liquid hydrogen, liquid oxygen, hydrogen vent, helium bottle fill pressure, and purges. Prior to its initial flight, the EUS unit will undergo a series of Green Run tests at NASA Stennis to ensure all systems are ready to go. The test series will culminate with a hot fire of the stage’s four RL10 engines, made by lead SLS engines contractor L3 Harris. The new upper stage will enable NASA to carry larger payloads on Artemis missions to the Moon and beyond. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin

      > Back to Top

      Center Activities LSU Engineering Students Visit NASA Stennis Members of the Society for the Advancement of Material and Process Engineering at Louisiana State University stand at the Thad Cochran Test Stand during a visit to NASA Stennis on Oct. 4. The Thad Cochran Test Stand (B-2) is where future Green Run testing of NASA’s exploration upper stage will take place ahead of future Artemis missions to the Moon and beyond. The mission of the Society for the Advancement of Material and Process Engineering at LSU is to provide enhanced educational opportunities by delivering information on new and advanced materials and processing technology. NASA/Danny Nowlin U.S. Ambassador Visits NASA Stennis Heide Fulton, U.S. Ambassador to the Oriental Republic of Uruguay, visits NASA Stennis on Oct. 8 to meet with site leadership and tour test complex facilities. During her visit, Fulton met with NASA Stennis Director John Bailey and other leaders of the center and the NASA Shared Services Center located onsite. She also toured the rocket propulsion test complex, visiting the B-2 side of the Thad Cochran Test Stand, where she was briefed by B-2 Stand Director Ryan Roberts about NASA Stennis testing for the SLS (Space Launch System) rocket and NASA’s Artemis missions to the Moon and beyond. Uruguay is one of 45 nations who have signed the Artemis Accords, which establish a practical set of principles to guide space exploration cooperation among nations. The country became the 36th nation to sign the Artemis Accords during a Washington, D.C. ceremony in February. Ambassador Fulton was joined on the visit by Cmdr. Brendan Rok, chief of the U.S. Navy Office of Defense Cooperation at the U.S. Embassy in Montevideo, Uruguay; and Leah Thorstenson, foreign policy advisor with the U.S. Marines Corps. Forces South.NASA/Danny Nowlin Heide Fulton, U.S. Ambassador to the Oriental Republic of Uruguay, visits NASA Stennis on Oct. 8 to meet with site leadership and tour test complex facilities. During her visit, Fulton met with NASA Stennis Director John Bailey and other leaders of the center and the NASA Shared Services Center located onsite. She also toured the rocket propulsion test complex, visiting the B-2 side of the Thad Cochran Test Stand, where she was briefed by B-2 Stand Director Ryan Roberts about NASA Stennis testing for the SLS (Space Launch System) rocket and NASA’s Artemis missions to the Moon and beyond. Uruguay is one of 45 nations who have signed the Artemis Accords, which establish a practical set of principles to guide space exploration cooperation among nations. The country became the 36th nation to sign the Artemis Accords during a Washington, D.C. ceremony in February. Ambassador Fulton was joined on the visit by Cmdr. Brendan Rok, chief of the U.S. Navy Office of Defense Cooperation at the U.S. Embassy in Montevideo, Uruguay; and Leah Thorstenson, foreign policy advisor with the U.S. Marines Corps. Forces South. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin Heide Fulton, U.S. Ambassador to the Oriental Republic of Uruguay, visits NASA Stennis on Oct. 8 to meet with site leadership and tour test complex facilities. During her visit, Fulton met with NASA Stennis Director John Bailey and other leaders of the center and the NASA Shared Services Center located onsite. She also toured the rocket propulsion test complex, visiting the B-2 side of the Thad Cochran Test Stand, where she was briefed by B-2 Stand Director Ryan Roberts about NASA Stennis testing for the SLS (Space Launch System) rocket and NASA’s Artemis missions to the Moon and beyond. Uruguay is one of 45 nations who have signed the Artemis Accords, which establish a practical set of principles to guide space exploration cooperation among nations. The country became the 36th nation to sign the Artemis Accords during a Washington, D.C. ceremony in February. Ambassador Fulton was joined on the visit by Cmdr. Brendan Rok, chief of the U.S. Navy Office of Defense Cooperation at the U.S. Embassy in Montevideo, Uruguay; and Leah Thorstenson, foreign policy advisor with the U.S. Marines Corps. Forces South.NASA/Danny Nowlin NASA Stennis Highlights Return to the Moon in Louisiana NASA Stennis representatives inspire the Artemis Generation Oct. 12 at the Wild Things event celebrating National Wildlife Refuge Week in Lacombe, Louisiana. Participants played a game to identify different phases of the Moon and learned more about NASA’s return to the Moon. The event was hosted by Friends of Louisiana Wildlife Refuges, Inc. and Southeast Louisiana National Wildlife Refuges Complex at Bayou Lacombe Center, headquarters for the nine National Wildlife Refuges in southeast Louisiana.NASA/Lacy Thompson NASA Stennis representatives inspire the Artemis Generation Oct. 12 at the Wild Things event celebrating National Wildlife Refuge Week in Lacombe, Louisiana. Participants played a game to identify different phases of the Moon and learned more about NASA’s return to the Moon. The event was hosted by Friends of Louisiana Wildlife Refuges, Inc. and Southeast Louisiana National Wildlife Refuges Complex at Bayou Lacombe Center, headquarters for the nine National Wildlife Refuges in southeast Louisiana.NASA/Lacy Thompson NASA Stennis representatives inspire the Artemis Generation Oct. 12 at the Wild Things event celebrating National Wildlife Refuge Week in Lacombe, Louisiana. Participants played a game to identify different phases of the Moon and learned more about NASA’s return to the Moon. The event was hosted by Friends of Louisiana Wildlife Refuges, Inc. and Southeast Louisiana National Wildlife Refuges Complex at Bayou Lacombe Center, headquarters for the nine National Wildlife Refuges in southeast Louisiana. NOTE: Right click on photo to open full image in new tab.NASA/Lacy Thompson NASA Stennis representatives inspire the Artemis Generation Oct. 12 at the Wild Things event celebrating National Wildlife Refuge Week in Lacombe, Louisiana. Participants played a game to identify different phases of the Moon and learned more about NASA’s return to the Moon. The event was hosted by Friends of Louisiana Wildlife Refuges, Inc. and Southeast Louisiana National Wildlife Refuges Complex at Bayou Lacombe Center, headquarters for the nine National Wildlife Refuges in southeast Louisiana. NOTE: Right click on photo to open full image in new tab.NASA/Lacy Thompson NASA Stennis representatives inspire the Artemis Generation Oct. 12 at the Wild Things event celebrating National Wildlife Refuge Week in Lacombe, Louisiana. Participants played a game to identify different phases of the Moon and learned more about NASA’s return to the Moon. The event was hosted by Friends of Louisiana Wildlife Refuges, Inc. and Southeast Louisiana National Wildlife Refuges Complex at Bayou Lacombe Center, headquarters for the nine National Wildlife Refuges in southeast Louisiana. NOTE: Right click on photo to open full image in new tab.NASA/Lacy Thompson NASA Stennis Hosts Office of the Chief Information Officer Teams The NASA Office of the Chief Information Officer Integrated Design and Assurance Systems team are shown at the Thad Cochran Test Stand during a tour of NASA Stennis on Oct. 9. To accomplish NASA’s vision, the agency depends heavily on many things and information technology is key among them. Information technology capabilities enable NASA’s discoveries, allow sharing of mission data, improve workforce productivity, and increase mission quality, resilience, and cost-effectiveness. To enable success for NASA’s mission portfolio, the Office of the Chief Information Officer goals are to deliver great customer experiences; achieve consistent operational excellence; transform NASA through information and technology; and ensure proactive, resilient cybersecurity – all delivered by an exceptional team.NASA/Danny Nowlin Members of the NASA Office of the Chief Information Officer Strategy and Architecture Office team are shown at the Thad Cochran Test Stand during a tour of NASA Stennis on Oct. 31. The NASA team visited NASA Stennis as part of an annual face-to-face meeting. The Strategy and Architecture Office collaboratively develops and manages Information Technology strategy and architecture to meet NASA’s current and future needs, driving transformation, innovation, informed investment planning, and processes to measure and communicate results. Development includes NASA’s Information Technology Strategic Plan, integrated roadmaps, future-state business capabilities and services, and data-driven investment guidance. NASA/Danny Nowlin Start Your Engines: NASA Stennis Cruises on the Coast NASA Stennis representatives inspire the Artemis Generation and share NASA Stennis’ rich history of propulsion testing with attendees from over 37 U.S. states and Canada during the 28th Annual Cruisin’ the Coast car show along the Mississippi Gulf Coast Oct. 10-12. NASA provided a virtual reality space experience, and participants were welcomed to the exhibit by life size cardboard cutouts of the Artemis II crew. Artemis II, targeted for 2025, is the first crewed test of the SLS (Space Launch System) rocket and Orion spacecraft, which will carry NASA astronauts Reid Wiseman (commander), Victor Glover (pilot), and Christina Koch (mission specialist), and Canadian Space Agency astronaut Jeremy Hansen (mission specialist) around the Moon. All RS-25 engines that help power NASA’s SLS rocket are tested and proven flightworthy at NASA Stennis prior to use on Artemis missions.NASA/Samone Wilson NASA Stennis representatives inspire the Artemis Generation and share NASA Stennis’ rich history of propulsion testing with attendees from over 37 U.S. states and Canada during the 28th Annual Cruisin’ the Coast car show along the Mississippi Gulf Coast Oct. 10-12. NASA provided a virtual reality space experience, and participants were welcomed to the exhibit by life size cardboard cutouts of the Artemis II crew. Artemis II, targeted for 2025, is the first crewed test of the SLS (Space Launch System) rocket and Orion spacecraft, which will carry NASA astronauts Reid Wiseman (commander), Victor Glover (pilot), and Christina Koch (mission specialist), and Canadian Space Agency astronaut Jeremy Hansen (mission specialist) around the Moon. All RS-25 engines that help power NASA’s SLS rocket are tested and proven flightworthy at NASA Stennis prior to use on Artemis missions. NOTE: Right click on photo to open full image in new tab.NASA/Samone Wilson NASA Stennis representatives inspire the Artemis Generation and share NASA Stennis’ rich history of propulsion testing with attendees from over 37 U.S. states and Canada during the 28th Annual Cruisin’ the Coast car show along the Mississippi Gulf Coast Oct. 10-12. NASA provided a virtual reality space experience, and participants were welcomed to the exhibit by life size cardboard cutouts of the Artemis II crew. Artemis II, targeted for 2025, is the first crewed test of the SLS (Space Launch System) rocket and Orion spacecraft, which will carry NASA astronauts Reid Wiseman (commander), Victor Glover (pilot), and Christina Koch (mission specialist), and Canadian Space Agency astronaut Jeremy Hansen (mission specialist) around the Moon. All RS-25 engines that help power NASA’s SLS rocket are tested and proven flightworthy at NASA Stennis prior to use on Artemis missions.NASA/Samone Wilson NASA Stennis representatives inspire the Artemis Generation and share NASA Stennis’ rich history of propulsion testing with attendees from over 37 U.S. states and Canada during the 28th Annual Cruisin’ the Coast car show along the Mississippi Gulf Coast Oct. 10-12. NASA provided a virtual reality space experience, and participants were welcomed to the exhibit by life size cardboard cutouts of the Artemis II crew. Artemis II, targeted for 2025, is the first crewed test of the SLS (Space Launch System) rocket and Orion spacecraft, which will carry NASA astronauts Reid Wiseman (commander), Victor Glover (pilot), and Christina Koch (mission specialist), and Canadian Space Agency astronaut Jeremy Hansen (mission specialist) around the Moon. All RS-25 engines that help power NASA’s SLS rocket are tested and proven flightworthy at NASA Stennis prior to use on Artemis missions. NOTE: Right click on photo to open full image in new tab.NASA/Samone Wilson NASA Stennis representatives inspire the Artemis Generation and share NASA Stennis’ rich history of propulsion testing with attendees from over 37 U.S. states and Canada during the 28th Annual Cruisin’ the Coast car show along the Mississippi Gulf Coast Oct. 10-12. NASA provided a virtual reality space experience, and participants were welcomed to the exhibit by life size cardboard cutouts of the Artemis II crew. Artemis II, targeted for 2025, is the first crewed test of the SLS (Space Launch System) rocket and Orion spacecraft, which will carry NASA astronauts Reid Wiseman (commander), Victor Glover (pilot), and Christina Koch (mission specialist), and Canadian Space Agency astronaut Jeremy Hansen (mission specialist) around the Moon. All RS-25 engines that help power NASA’s SLS rocket are tested and proven flightworthy at NASA Stennis prior to use on Artemis missions.NASA/Samone Wilson Stennis Hosts Family Day at INFINITY NASA Stennis’ sitewide employees and their guests attend the annual NASA Stennis Family Day at INFINITY Science Center, the official visitor center of NASA Stennis, on Oct. 19. Attendees had the opportunity to journey through the INFINITY exhibits and enjoy additional activities provided by participating organizations of the NASA Stennis federal city. NASA/Danny Nowlin NASA Stennis’ sitewide employees and their guests attend the annual NASA Stennis Family Day at INFINITY Science Center, the official visitor center of NASA Stennis, on Oct. 19. Attendees had the opportunity to journey through the INFINITY exhibits and enjoy additional activities provided by participating organizations of the NASA Stennis federal city. NASA/Danny Nowlin NASA Stennis’ sitewide employees and their guests attend the annual NASA Stennis Family Day at INFINITY Science Center, the official visitor center of NASA Stennis, on Oct. 19. Attendees had the opportunity to journey through the INFINITY exhibits and enjoy additional activities provided by participating organizations of the NASA Stennis federal city. NASA/Danny Nowlin NASA Stennis’ sitewide employees and their guests attend the annual NASA Stennis Family Day at INFINITY Science Center, the official visitor center of NASA Stennis, on Oct. 19. Attendees had the opportunity to journey through the INFINITY exhibits and enjoy additional activities provided by participating organizations of the NASA Stennis federal city. NASA/Danny Nowlin NASA Stennis’ sitewide employees and their guests attend the annual NASA Stennis Family Day at INFINITY Science Center, the official visitor center of NASA Stennis, on Oct. 19. Attendees had the opportunity to journey through the INFINITY exhibits and enjoy additional activities provided by participating organizations of the NASA Stennis federal city. NASA/Danny Nowlin NASA Stennis’ sitewide employees and their guests attend the annual NASA Stennis Family Day at INFINITY Science Center, the official visitor center of NASA Stennis, on Oct. 19. Attendees had the opportunity to journey through the INFINITY exhibits and enjoy additional activities provided by participating organizations of the NASA Stennis federal city. NASA/Danny Nowlin Java with John: Brewing Conversations and Connection with NASA Stennis Employees NASA Stennis Director John Bailey hosts a Java with John session with Office of Procurement employees on Oct. 15. Java with John is an employee-led discussion in a casual environment aimed at fostering a culture in which employees are welcome to share what matters most to them at work.NASA/Danny Nowlin NASA Stennis Director John Bailey hosts a Java with John session with Office of Procurement employees on Oct. 15. Java with John is an employee-led discussion in a casual environment aimed at fostering a culture in which employees are welcome to share what matters most to them at work.NASA/Danny Nowlin NASA Stennis Director John Bailey hosts a Java with John session with Office of Procurement employees on Oct. 15. Java with John is an employee-led discussion in a casual environment aimed at fostering a culture in which employees are welcome to share what matters most to them at work.NASA/Danny Nowlin NASA Stennis Director John Bailey hosts a Java with John session with Center Operations Directorate and Office of Communications employees on Oct. 23. Java with John is an employee-led discussion in a casual environment aimed at fostering a culture in which employees are welcome to share what matters most to them at work.NASA/Danny Nowlin NASA Stennis Director John Bailey hosts a Java with John session with Center Operations Directorate and Office of Communications employees on Oct. 23. Java with John is an employee-led discussion in a casual environment aimed at fostering a culture in which employees are welcome to share what matters most to them at work.NASA/Danny Nowlin NASA Attends Blue Angels Airshow NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NOTE: Right click on photo to open full image in new tab.NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NOTE: Right click on photo to open full image in new tab.NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show Nov. 1-2, following STEM engagement activities on Oct. 31. NASA’s exhibit at the air show honors the 55th anniversary of the Apollo 11 lunar landing and showcases the agency’s mission to inspire the world through discovery. NASA/Stennis NASA Attends Picayune Street Fair NASA Stennis representatives engage with the Artemis Generation at the Picayune Street Fair in Picayune, Mississippi on Nov. 2-3. The south Mississippi NASA center is located less than 15 miles from Picayune with many employees living in the community. NASA Stennis tests all RS-25 engines to help power NASA’s SLS (Space Launch System) rocket on Artemis missions. The NASA center is also preparing to conduct a full series of tests on the agency’s exploration upper stage to demonstrate it is ready to fly on future Artemis missions. With the Artemis campaign, NASA will land the first woman and the first person of color on the Moon, using innovative technologies to explore more of the lunar surface than ever. NOTE: Right click on photo to open full image in new tab.NASA/Stennis NASA Stennis representatives engage with the Artemis Generation at the Picayune Street Fair in Picayune, Mississippi on Nov. 2-3. The south Mississippi NASA center is located less than 15 miles from Picayune with many employees living in the community. NASA Stennis tests all RS-25 engines to help power NASA’s SLS (Space Launch System) rocket on Artemis missions. The NASA center is also preparing to conduct a full series of tests on the agency’s exploration upper stage to demonstrate it is ready to fly on future Artemis missions. With the Artemis campaign, NASA will land the first woman and the first person of color on the Moon, using innovative technologies to explore more of the lunar surface than ever. NASA/Stennis NASA Stennis representatives engage with the Artemis Generation at the Picayune Street Fair in Picayune, Mississippi on Nov. 2-3. The south Mississippi NASA center is located less than 15 miles from Picayune with many employees living in the community. NASA Stennis tests all RS-25 engines to help power NASA’s SLS (Space Launch System) rocket on Artemis missions. The NASA center is also preparing to conduct a full series of tests on the agency’s exploration upper stage to demonstrate it is ready to fly on future Artemis missions. With the Artemis campaign, NASA will land the first woman and the first person of color on the Moon, using innovative technologies to explore more of the lunar surface than ever. NOTE: Right click on photo to open full image in new tab.NASA/Stennis NASA Stennis representatives engage with the Artemis Generation at the Picayune Street Fair in Picayune, Mississippi on Nov. 2-3. The south Mississippi NASA center is located less than 15 miles from Picayune with many employees living in the community. NASA Stennis tests all RS-25 engines to help power NASA’s SLS (Space Launch System) rocket on Artemis missions. The NASA center is also preparing to conduct a full series of tests on the agency’s exploration upper stage to demonstrate it is ready to fly on future Artemis missions. With the Artemis campaign, NASA will land the first woman and the first person of color on the Moon, using innovative technologies to explore more of the lunar surface than ever. NASA/Stennis

      > Back to Top

      NASA in the News

      > Back to Top

      Employee Profile: Tessa Keating Tessa Keating is a public affairs specialist in the Office of Communications at NASA’s Stennis Space Center. Keating plans onsite logistics, serves as a protocol officer, and coordinates the Space Flight Awareness Program for NASA Stennis and the NASA Shared Services Center.NASA/Danny Nowlin

      Every task at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, is not simply work for Tessa Keating – it is a meaningful step toward a part of something great.

      Read More About Tessa Keating

      > Back to Top

      Additional Resources Subscription Info

      Lagniappe is published monthly by the Office of Communications at NASA’s Stennis Space Center. The NASA Stennis office may be contacted by at 228-688-3333 (phone); ssc-office-of-communications@mail.nasa.gov (email); or NASA OFFICE OF COMMUNICATIONS, Attn: LAGNIAPPE, Mail code IA00, Building 1111 Room 173, Stennis Space Center, MS 39529 (mail).

      The Lagniappe staff includes: Managing Editor Lacy Thompson, Editor Bo Black, and photographer Danny Nowlin.

      To subscribe to the monthly publication, please email the following to ssc-office-of-communications@mail.nasa.gov – name, location (city/state), email address.

      Explore More 4 min read Lagniappe for October 2024 Article 1 month ago 7 min read Lagniappe for September 2024 Article 2 months ago 5 min read Lagniappe for August 2024 Article 3 months ago
      Categories: NASA

      From Logistics to Legacy: NASA Employee is a Part of Something Great

      Mon, 11/04/2024 - 4:09pm

      4 min read

      Preparations for Next Moonwalk Simulations Underway (and Underwater) Tessa Keating is a public affairs specialist in the Office of Communications at NASA’s Stennis Space Center. Keating plans onsite logistics, serves as a protocol officer, and coordinates the Space Flight Awareness Program for NASA Stennis and the NASA Shared Services Center.NASA/Danny Nowlin

      Every task at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, is not simply work for Tessa Keating – it is a meaningful step toward a part of something great.

      “It has been a dream career. I count it an honor to share the NASA story and humbled to know our team witnesses a part of history,” said Keating, a NASA public affairs specialist in the NASA Stennis Office of Communications. “Every day is an opportunity to contribute to the NASA legacy that will last beyond today. “

      Keating plans onsite logistics, serves as a protocol officer, and coordinates the Space Flight Awareness Program for NASA Stennis and the NASA Shared Services Center. In fact, she organized much of the recent Space Flight Awareness Silver Snoopy Award ceremony at NASA Stennis in August, except for one part. As the ceremony finished, NASA Stennis Director John Bailey said one more award was to be given.

      No one was more surprised than the logistics coordinator herself when Keating’s family joined her on stage. The 21-year NASA Stennis employee was honored for her outstanding contributions in sharing the NASA story of exploring the secrets of the universe for the benefit of all with a diverse audience and for equipping everyone with a broader knowledge and appreciation of the center’s vital role within NASA.

      “I am not sure I will ever be able to top that in my NASA career,” Keating said.

      It became a full-circle moment that she described as a great honor. The Silver Snoopy is the astronauts’ personal award and is presented to less than 1 percent of the total NASA workforce. Reid Wiseman, a NASA astronaut and commander for the upcoming Artemis II mission around the Moon, presented the award to Keating, along with a lapel pin flown aboard NASA’s Artemis I mission.

      As NASA returns to the Moon for scientific discovery, economic benefits, and inspiration for the Artemis Generation, Keating says it will be extra-special watching Wiseman and the Artemis II crew lay the groundwork for future milestones.

      Keating helped lay the groundwork ahead of the successful Artemis I mission. She served as lead logistics for onsite guest operations in 2021 when NASA conducted the most powerful propulsion test in more than 40 years at NASA Stennis. A full-duration hot fire of the first SLS (Space Launch System) core stage and its four RS-25 engines culminated a year-long series of integrated tests. Keating coordinated the viewing of the hot fire for some 200 agency leaders and guests, despite restricted settings due to COVID-19.  

      “It was truly a highlight. I had grown up hearing my parents and grandparents talk about engines that were tested during the Apollo era, and I had never experienced something of that magnitude,” Keating said. “I was able to live it, feel it, and watch the next part of NASA history onsite.”

      For Keating, the groundwork for a NASA career came following graduation with a bachelor’s degree in Journalism from William Carey University and a master’s degree in Communications from The University of Southern Mississippi, both schools in Hattiesburg, Mississippi. Having grown up in Pearl River County, Mississippi, for most of her life, she knew about NASA Stennis. However, she did not think she could ever work at the center because her strengths were in areas beyond math and science.

      Following some additional exploration and conversations with influential people in her life, Keating discovered she, in fact, could be a part of something great at NASA Stennis.

      “The possibilities are endless at NASA when you allow yourself to put your best foot forward and research the many opportunities that are available. There is always room for various types of studies,” Keating said. “I credit where I am in my career to God and to the people who have helped to guide my path. I will be forever grateful.” 

      Learn more about the people who work at NASA Stennis
      Categories: NASA

      NASA Stennis Plants Artemis Moon Tree

      Mon, 11/04/2024 - 3:59pm

      3 min read

      Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA employees plant an Artemis Moon Tree at NASA’s Stennis Space Center on Oct. 29 to celebrate NASA’s successful Artemis I mission as the agency prepares for a return around the Moon with astronauts on Artemis II. NASA/Danny Nowlin

      A tree-planting ceremony at NASA’s Stennis Space Center on Oct. 29 celebrated NASA’s successful Artemis I mission as the agency prepares for a return around the Moon with astronauts on Artemis II.

      “We already have a thriving Moon Tree from the Apollo years onsite,” NASA Stennis Director John Bailey said. “It is exciting to add trees for our new Artemis Generation as it continues the next great era of human space exploration.”

      NASA’s Office of STEM Engagement Next Gen STEM Project partnered with U.S. Department of Agriculture (USDA) Forest Service to fly five species of tree seeds aboard the Orion spacecraft during the successful uncrewed Artemis I test flight in 2022 as part of a national STEM Engagement and conservation education initiative. 

      The Artemis Moon Tree species included sweetgums, loblolly pines, sycamores, Douglas-firs, and giant sequoias. The seeds from the first Artemis mission have been nurtured by the USDA into seedlings to be a source of inspiration for the Artemis Generation.

      The Moon Tree education initiative is rooted in the legacy of Apollo 14 Moon Tree seeds flown in lunar orbit over 50 years ago by the late Stuart Roosa, a NASA astronaut and Mississippi Coast resident.

      NASA Stennis and the NASA Shared Services Center (NSSC), located at the site, planted companion trees during the Oct. 29 ceremony. Bailey and NSSC Executive Director Anita Harrell participated in a joint planting ceremony attended by a number of employees from each entity.

      The American sweetgum trees are the second and third Moon Trees at the south Mississippi site. In 2004, ASTRO CAMP participants planted a sycamore Moon Tree to honor the 35th anniversary of Apollo 11 and the first lunar landing on July 20, 1969.

      The road to space for both Apollo 14 and Artemis I went through Mississippi. Until 1970, NASA Stennis test fired first, and second stages of the Saturn V rockets used for Apollo.

      NASA Stennis now tests all the RS-25 engines powering Artemis missions to the Moon and beyond. Prior to Artemis I, NASA Stennis tested the SLS (Space Launch System) core stage and its four RS-25 engines.

      The Artemis Moon Trees have found new homes in over 150 communities and counting since last spring, and each of the 10 NASA centers also will plant one.

      As the tree grows at NASA Stennis, so, too, does anticipation for the first crewed mission with Artemis II. Four astronauts will venture around the Moon on NASA’s path to establishing a long-term presence at the Moon for science and exploration.

      The flight will test NASA’s foundational human deep space exploration capabilities – the SLS rocket and Orion spacecraft – for the first time with astronauts.

      Explore More NASA Stennis Image Articles
      Categories: NASA

      Station Science Top News: Nov. 1, 2024

      Mon, 11/04/2024 - 3:42pm

      Bioprinted patches could help wounds heal

      Researchers successfully demonstrated the function of a handheld bioprinter that could provide a simple and effective way to treat wounds in space using human skin cells. Crews could use this technology to treat their own injuries and protect crew health and mission success in the future.

      Spaceflight can affect how wounds heal. The Bioprint FirstAid device tested a process for bioprinting a patch to cover a wound and accelerate healing. In the future, a crew member’s own cells may be used to create personalized patches for treating an injury. The bioprinting device is easy to use, can be tailored to specific needs, has a low failure rate, and its mechanics are electronics- and maintenance-free. This ESA (European Space Agency) investigation was coordinated by the German Aerospace Center (DLR).

      ESA (European Space Agency) astronaut Matthias Maurer demonstrates the Bioprint FirstAid prototype during preflight training. German Aerospace Center/European Space Agency

      Countering post-flight proficiency challenges

      The day they return from spaceflight, astronauts demonstrate significant impairments in fine motor control and the ability to multitask in simulated flying and driving challenges. This finding could help develop countermeasures so crew members can safely land and conduct early operations on the Moon and Mars.

      Manual Control used a battery of tests to examine how spaceflight affects cognitive, sensory, and motor function after landing. Researchers concluded that subtle physiological changes that occur during spaceflight degrade post-flight performance. Subsequent tests showed recovery of performance once exposed to the task, suggesting that simulation training immediately before a task could be an effective countermeasure. Researchers also suggest limiting dual or competing tasks during mission-critical phases.

      A simulator used to test crew members’ ability to fly and drive after spaceflight. NASA

      Gamma-ray telescope resilient to space radiation

      Researchers found that the station’s Glowbug gamma-ray telescope could perform in the space radiation environment for multi-year missions. Radiation can affect these types of instruments, but Glowbug regularly detected gamma ray bursts (GRBs) during its one-year operation. Studying GRBs can help scientists better understand the universe and its origins.

      Glowbug demonstrated technology to detect and characterize cosmic GRBs, primarily short GRBs, which result from mergers of compact binary star systems containing either two neutron stars or a neutron star and a black hole. Short GRBs produce gravitational waves, ripples in space that travel at the speed of light. Studying these gravitational waves could provide insight into the star systems where they originate and the behavior of matter during the mergers.

      Learn more about GRB research here.

      Categories: NASA

      Still Kickin’ Since the ’70s: NASA’s Voyager Mission Keeps Exploring

      Mon, 11/04/2024 - 3:33pm
      This archival photo shows engineers working on NASA’s Voyager 2 spacecraft on March 23, 1977.NASA/JPL-Caltech

      NASA’s Voyager mission launched in the 1970s. Today, it’s making history as it conducts new science. But how are two spacecraft from the ’70s not just surviving, but thriving farther out in space than any other spacecraft has been before?

      A Little Mission Background

      Voyager is a NASA mission made up of two different spacecraft, Voyager 1 and 2, which launched to space on Sept. 5, 1977, and Aug. 20, 1977, respectively. In the decades following launch, the pair took a grand tour of our solar system, studying Jupiter, Saturn, Uranus, and Neptune — one of NASA’s earliest efforts to explore the secrets of the universe. These twin probes later became the first spacecraft to operate in interstellar space — space outside the heliosphere, the bubble of solar wind and magnetic fields emanating from the Sun. Voyager 1 was the first to enter interstellar space in 2012, followed by Voyager 2 in 2018.  

      Today, Voyager continues not just because it can, but because it still has work to do studying interstellar space, the heliosphere, and how the two interact. “We wouldn’t be doing Voyager if it wasn’t taking science data,” said Suzanne Dodd, the mission’s current project manager and the director for the Interplanetary Network at NASA’s Jet Propulsion Laboratory.

      But across billions of miles and decades of groundbreaking scientific exploration, this trailblazing interstellar journey has not been without its trials. So, what’s the Voyager secret to success? 

      In short: preparation and creativity.  

      As NASA’s two Voyager spacecraft travel out into deep space, they carry a small American flag and a Golden Record packed with pictures and sounds — mementos of our home planet. This picture shows John Casani, Voyager project manager in 1977, holding a small Dacron flag that was folded and sewed into the thermal blankets of the Voyager spacecraft before they launched 36 years ago. Below him lie the Golden Record (left) and its cover (right). In the background stands Voyager 2 before it headed to the launch pad. The picture was taken at Cape Canaveral, Fla., on Aug. 4, 1977.NASA/JPL-Caltech We Designed Them Not to Fail

      According to John Casani, Voyager project manager from 1975 to launch in 1977, “we didn’t design them to last 30 years or 40 years, we designed them not to fail.”

      One key driver of the mission’s longevity is redundancy. Voyager’s components weren’t just engineered with care, they were also made in duplicate. 

      According to Dodd, Voyager “was designed with nearly everything redundant. Having two spacecraft — right there is a redundancy.” 

      “We didn’t design them to last 30 years or 40 years, we designed them not to fail.”

      John Casani

      Voyager Project Manager, 1975-1977

      A Cutting-Edge Power Source

      The twin Voyager spacecraft can also credit their longevity to their long-lasting power source. 

      Each spacecraft is equipped with three radioisotope thermoelectric generators. These nuclear “batteries” were developed originally by the U.S. Department of Energy as part of the Atoms for Peace program enacted by President Eisenhower in 1955. Compared to other power options at the time — like solar power, which doesn’t have the reach to work beyond Jupiter — these generators have allowed Voyager to go much farther into space. 

      Each of NASA’s Voyager probes are equipped with three radioisotope thermoelectric generators (RTGs), including the one shown here at NASA’s Kennedy Space Center in Florida. The RTGs provide power for the spacecraft by converting the heat generated by the decay of plutonium-238 into electricity. Launched in 1977, the Voyager mission is managed for NASA by the agency’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California.NASA/JPL-Caltech

      Voyager’s generators continue to take the mission farther than any before, but they also continue to generate less power each year, with instruments needing to be shut off over time to conserve power. 

      Creative Solutions  

      As a mission that has operated at the farthest edges of the heliosphere and beyond, Voyager has endured its fair share of challenges. With the spacecraft now in interstellar space running on software and hardware from the 1970s, Voyager’s problems require creative solutions.  

      Retired mission personnel who worked on Voyager in its earliest days have even come back out of retirement to collaborate with new mission personnel to not just fix big problems but to pass on important mission know-how to the next generation of scientists and engineers.

      “From where I sit as a project manager, it’s really very exciting to see young engineers be excited to work on Voyager. To take on the challenges of an old mission and to work side by side with some of the masters, the people that built the spacecraft,” Dodd said. “They want to learn from each other.” 

      After receiving data about the health and status of Voyager 1 for the first time in five months, members of the Voyager flight team celebrate in a conference room at NASA’s Jet Propulsion Laboratory on April 20. Credit: NASA/JPL-Caltech NASA/JPL-Caltech

      Within just the last couple of years, Voyager has tested the mission team’s creativity with a number of complex issues. Most recently, a fuel tube inside of Voyager 1’s thrusters, which control the spacecraft’s orientation and direction, became clogged. The thrusters allow the spacecraft to point their antennae and are critical to maintaining communications with Earth. Through careful coordination, the mission team was able to remotely switch the spacecraft to a different set of thrusters. 

      These kinds of repairs are extra challenging as a radio signal takes about 22 ½ hours to reach Voyager 1 from Earth and another 22 ½ hours to return. Signals to and from Voyager 2 take about 19 hours each way.

      Voyager’s Interstellar Future

      This brief peek behind the curtain highlights some of Voyager’s history and its secrets to success. 

      The Voyager probes may continue to operate into the late 2020s. As time goes on, continued operations will become more challenging as the mission’s power diminishes by 4 watts every year, and the two spacecraft will cool down as this power decreases. Additionally, unexpected anomalies could impact the mission’s functionality and longevity as they grow older.

      As the mission presses on, the Voyager team grows this legacy of creative problem solving and collaboration while these twin interstellar travelers continue to expand our understanding of the vast and mysterious cosmos we inhabit. 

      Read More Share Details Last Updated Nov 04, 2024 Related Terms
      Categories: NASA

      NASA, Bhutan Conclude Five Years of Teamwork on STEM, Sustainability

      Mon, 11/04/2024 - 3:32pm

      5 min read

      Preparations for Next Moonwalk Simulations Underway (and Underwater) In Punakha, Bhutan, Dr. Aparna Phalke (left) from SERVIR works with a translator to converse with a local chili farmer (center) about his experiences cultivating these fields for over 30 years– including agricultural management practices, market prices, and farming challenges Sarah Cox/SERVIR

      NASA and the Kingdom of Bhutan have been actively learning from each other and growing together since 2019. The seeds planted over those years have ripened into improved environmental conservation, community-based natural resource management, and new remote sensing tools.

      Known for its governing philosophy of “gross national happiness,” [Bhutan] has a constitutional mandate to maintain at least 60% forest cover. The government’s goals include achieving nationwide food security by 2030. 

      Bhutan first approached the U.S. State Department to partner on science, technology, engineering, and mathematics (STEM) opportunities for the country, and NASA was invited to help lead these opportunities. In 2019, Bhutan’s King Jigme Khesar Namgyel Wangchuck visited NASA’s Ames Research Center in Silicon Valley, California, and was introduced to several NASA programs.

      NASA’s Earth scientists and research staff from several complementary programs have helped support Bhutan’s goals by providing data resources and training to make satellite data more useful to communities and decision makers. Bhutan now uses NASA satellite data in its national land management decisions and plans to foster more geospatial jobs to help address environmental issues.

      Supporting Bhutan’s Environmental Decision Makers

      Bhutan’s National Land Commission offers tax breaks to farmers to support food security and economic resilience. However, finding and reaching eligible farmers on the ground can be expensive and time consuming, which means small farmers in remote areas can be missed. 

      A team from SERVIR – a joint NASA-U.S. Agency for International Development initiative – worked with Bhutanese experts to create decision-making tools like the Farm Action Toolkit  (FAcT). The tool uses imagery from the NASA-U.S. Geological Survey Landsat satellites to identify and measure the country’s farmland. SERVIR researchers met with agricultural organizations – including Bhutan’s Ministry of Agriculture and Livestock, National Statistics Bureau, and National Center for Organic Agriculture – to adjust the tool for the country’s unique geography and farming practices. The Land Commission now uses FAcT to identify small farms and bring support to more of the country. 

      NASA also develops local capacity to use Earth data through efforts like the Applied Remote Sensing Training Program (ARSET). In early 2024, ARSET staff worked with SERVIR and Druk Holdings and Investments (DHI) to host a workshop with 46 Bhutanese government personnel. Using tailored local case studies, the teams worked to find ways to better manage natural resources, assist land use planning, and monitor disasters. 

      “We look forward to continuing this collaboration, as there are still many areas where NASA’s expertise can significantly impact Bhutan’s development goals,” said Manish Rai, an analyst with DHI who helped coordinate the workshop. “This collaboration is a two-way street. While Bhutan has benefited greatly from NASA’s support, we believe there are also unique insights and experiences that Bhutan can share with NASA, particularly in areas like environmental conservation and community-based natural resource management.” 

      Dr. Aparna Phalke gives a presentation on NASA technology and the SERVIR program to a group of 100 students at the Royal University of Bhutan College of Natural Resources. Sarah Cox/SERVIR Encouraging Bhutan’s Future Environmental Leaders

      By working with students and educators from primary schools to the university level, Bhutan and NASA have been investing in the country’s future environmental leadership. Supporting educators and “training trainers” have been pillars of this collaboration.

      NASA and Bhutan have worked together to boost the skills of early-career Earth scientists. For example, NASA’s DEVELOP program for undergraduates worked directly with local institutions to create several applied science internships for Bhutanese students studying in the U.S. 

      Tenzin Wangmo, a high school biology teacher in Bhutan, participated in DEVELOP projects focusing on agriculture and water resources. According to Wangmo, the lessons learned from those projects have been helpful in connecting with her students about STEM opportunities and environmental issues. “Most people only think of NASA as going to space, rather than Earth science,” she said. “It was encouraging to my students that there are lots of opportunities for you if you try.”

      NASA is also supporting Bhutan’s future environmental leadership through the GLOBE (Global Learning and Observations to Benefit the Environment) Program. The GLOBE program is a U.S. interagency outreach program that works with teachers to support STEM literacy through hands-on environmental learning. Since 2020, GLOBE has worked through the U.S. State Department and organizations like the Ugyen Wangchuck Institute for Forest Research and Training to support educators at two dozen schools in Bhutan. The program reached more than 650 students with activities like estimating their school’s carbon footprint. 

      This focus on STEM education enables students and professionals to contribute to Bhutan’s specific development goals now and in the future. 

      Sonam Tshering, a student who completed two DEVELOP projects on Bhutanese agriculture while studying at the University of Texas at El Paso, was able to share the value of these efforts at the 2023 United Nations Climate Conference. “By applying satellite data from NASA, we aimed to create actionable insights for our local farmers and our policymakers back in Bhutan,” she said. 

      By Jacob Ramthun and Lena Pranksy, SERVIR Communications Team, and Jonathan O’Brien, ARSET Communications Team

      News Media Contact

      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Ala.
      256.544.0034
      lane.e.figueroa@nasa.gov 

      Share Details Last Updated Nov 04, 2024 Related Terms Explore More 2 min read Sadie Coffin Named Association for Advancing Participatory Sciences/NASA Citizen Science Leaders Series Fellow

      In August, the Association for Advancing Participatory Sciences (AAPS) announced a fellowship opportunity in partnership…

      Article 11 hours ago
      4 min read International SWOT Satellite Spots Planet-Rumbling Greenland Tsunami Article 4 days ago 23 min read The Marshall Star for October 30, 2024 Article 5 days ago Keep Exploring Discover Related Topics

      Missions

      Humans in Space

      Climate Change

      Solar System

      Categories: NASA

      Atlantis Begins 13th Space Trip

      Mon, 11/04/2024 - 1:41pm
      NASA

      Space shuttle Atlantis lifts off in this Nov. 3, 1994, image, with NASA astronauts Donald R. McMonagle, Curtis L. Brown, Jr., Ellen S. Ochoa, Scott E. Parazynski, and Joseph R. Tanner, and ESA (European Space Agency) astronaut Jean-Francois-Clervoy aboard. During the 11-day mission, the crew studied Earth’s atmosphere, gathering data on the Sun’s energy output, the atmosphere’s chemical composition, and how these affect global ozone levels.

      Learn more about the mission.

      Image credit: NASA

      Categories: NASA

      ¿Cómo se investiga en gravedad cero? Preguntamos a una científica de la NASA

      Mon, 11/04/2024 - 1:11pm
      1 Min Read ¿Cómo se investiga en gravedad cero? Preguntamos a una científica de la NASA La astronauta de la NASA Megan McArthur atiende a las células de donantes dentro de la Caja de Guantes de Ciencias en Microgravedad para el estudio Inmunidad Celeste. Credits: NASA

      Realizar experimentos científicos en la Tierra puede ser complicado pero en el espacio es aún más difícil debido a las condiciones de gravedad cero y microgravedad. La gerente de investigaciones comerciales de la Estación Espacial Internacional, Yuri Guinart-Ramírez, te explica cómo en la estación se llevan a cabo cientos de investigaciones científicas en condiciones de microgravedad y cómo los investigadores adaptan sus experimentos e instrumentos para que funcionen adecuadamente en ese entorno.

      Crédito de video: NASA 360

      Quince maneras en que la Estación Espacial Internacional beneficia a la humanidad en la Tierra Descubre más temas de la NASA

      Ciencia en la estación

      NASA en español

      Explora el universo y descubre tu planeta natal con nosotros, en tu idioma.

      Station Benefits for Humanity

      International Space Station

      Share Details Last Updated Nov 04, 2024 Related Terms
      Categories: NASA

      NASA Awards Contract for Refuse and Recycling Services

      Fri, 11/01/2024 - 3:10pm
      Credit: NASA

      NASA has awarded the Custodial and Refuse/Recycle Services contract to Ahtna Integrated Services LLC  of Anchorage, Alaska, to provide trash, waste, and recycling services at the agency’s Ames Research Center in California’s Silicon Valley.

      This is a hybrid contract that includes a firm-fixed-price and an indefinite-delivery/indefinite-quantity portion. The period of performance begins Friday, Nov. 1, with a 60-day phase-in period, followed by a one-year base period, and options to extend performance through November 2029. This contract has a maximum potential value of approximately $24 million.

      Under this contract, the company will perform basic, regularly scheduled custodial and refuse and recycling services at NASA Ames. The company will focus on health and safety, environmental compliance, sanitary cleaning, and customer service.

      For information about NASA and agency programs, visit:

      https://nasa.gov

      -end-

      Hillary Smith
      Ames Research Center, Moffett Field, Calif.                                         
      650-313-1701
      Hillary.smith@nasa.gov

      Categories: NASA

      NASA’s New Edition of Graphic Novel Features Europa Clipper

      Fri, 11/01/2024 - 2:35pm
      A new edition of Issue #4 of Astrobiology: The Story of our Search for Life in the Universe has been released to include the NASA Europa Clipper mission. NASA Astrobiology/Aaron Gronstal

      To celebrate the successful launch of NASA’s Europa Clipper mission, the agency’s Astrobiology program has released a new edition of Issue #4 – Missions to the Outer Solar System – of its graphic history series Astrobiology: The Story of our Search for Life in the Universe.

      Issue #4 tells the story of the outer solar system, from beyond the asteroid belt to the outer reaches of the Sun’s magnetic influence. Gas giants like Jupiter and Saturn are not habitable, but many of their moons raise questions about life’s potential far, far away from the warmth of the Sun.

      One such body is Jupiter’s moon Europa, which contains an ocean of liquid water beneath its icy surface. The Europa Clipper mission is designed to help scientists understand whether this ocean holds key ingredients that could support habitable environments for life as we know it. The spacecraft launched on Oct. 14 and will arrive at Jupiter in 2030.

      Additional content in the fourth edition of Issue #4 also includes ESA’s (European Space Agency) Juice (Jupiter Icy Moons Explorer) mission, which will arrive in the Jovian system in 2031 and collect data on many of Jupiter’s moons, including Ganymede, Europa, Callisto, and Io, that is complementary to Europa Clipper’s investigation.

      Read more about how astrobiologists study the potential for life on worlds like Europa and the exciting data that Europa Clipper will gather by visiting NASA’s Astrobiology website and downloading the new edition.

      Digital wallpaper for phones, desktops, or meeting backgrounds that feature the new Europa Clipper artwork from Issue #4 are also available.

      This wallpaper image featuring NASA’s Europa Clipper mission uses artwork from Issue #4 of the astrobiology graphic history series, Astrobiology: The Story of our Search for Life in the Universe. The image of Jupiter in the background is adapted from imagery taken by NASA’s Juno Mission (Exotic Marble, 2019, NASA/JPL-Caltech/SwRI/MSSS/Prateek Sarpal/©CCNCSA) NASA Astrobiology/Aaron Gronstal

      For more information on NASA’s Astrobiology program, visit:

      https://science.nasa.gov/astrobiology

      -end-

      Karen Fox / Molly Wasser

      Headquarters, Washington

      202-358-1600

      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov 

      Share

      Details

      Last Updated

      Nov 01, 2024

      Related Terms Explore More

      3 min read Europa Trek: NASA Offers a New Guided Tour of Jupiter’s Ocean Moon

      NASA Science Activation’s Solar System Treks collaborated with Astrobiology SciComm Guild SMEs to create enhancements…



      Article


      1 week ago

      5 min read NASA: New Insights into How Mars Became Uninhabitable

      Article


      4 weeks ago

      4 min read NASA’s Instruments Capture Sharpest Image of Earth’s Radiation Belt

      Article


      1 month ago

      Categories: NASA

      From Mars Rovers to Factory Assembly Lines

      Fri, 11/01/2024 - 1:53pm

      2 min read

      Preparations for Next Moonwalk Simulations Underway (and Underwater) European company apetito uses Neurala’s vision inspection software to ensure the quality of its prepared meals, such as green bean portions pictured here. The software evolved from code Neurala was developing more than a decade ago, with NASA funding, for a rover that could independently learn to traverse Martian terrain. Credit: Neurala Inc.

      Artificial intelligence software initially designed to learn and analyze Martian terrain is now at the heart of a system to monitor assembly lines on Earth. 

      The vision inspection software from Neurala Inc., an artificial intelligence company in Boston, Massachusetts, works with existing cameras, computers, and even cellphones to monitor the quality of products running along a conveyor belt, for instance.  

      “Our software can learn very quickly on a processor with a very small footprint, a skill we learned working with NASA,” said Neurala cofounder and CEO Massimiliano Versace. “By doing so, we enable vision inspection with whatever components are already available, deploying in minutes. In our exploration of the market, we realized that the manufacturing space had a precise need for this technology.”

      Versace and Neurala (Spinoff 2018) began working with NASA more than a decade ago on a project funded through the Small Business Technology Transfer (STTR) program. NASA was interested in “adaptive bio-inspired navigation for planetary exploration,” and Versace and his team had been working on neural network AI software modeled on the human brain. 

      Focusing on a rover concept that could independently learn to traverse Martian terrain, Neurala went on to win STTR Phase II funding for the project. Additional money from a NASA Center Innovation Fund enabled the Neurala team to adapt its technology to drone navigation and collision avoidance. 

      In both the rover and the drone applications, the Neurala software could run on a small device on the vehicle itself, eliminating the delay of sending signals to a decision maker in another location. Since then, the company developed the software to help monitor assembly lines.

      Onsite computing is an advantage in manufacturing, as well, where an assembly line may have a hundred items passing every minute, making visual inspections for quality control difficult.

      Read More Share Details Last Updated Nov 01, 2024 Related Terms Explore More 2 min read The View from Space Keeps Getting Better  

      After 50 years of Landsat, discovery of new commercial and scientific uses is only accelerating

      Article 3 weeks ago
      2 min read Controlled Propulsion for Gentle Landings 

      A valve designed for NASA rover landings enables effective stage separations for commercial spaceflight

      Article 3 weeks ago
      2 min read Tech Today: Spraying for Food Safety Article 4 weeks ago Keep Exploring Discover Related Topics

      Technology Transfer & Spinoffs

      Rover Basics

      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…

      Artificial Intelligence

      SBIR/STTR Resources

      Categories: NASA