"I have looked farther into space than ever a human being did before me."

— William Herschel

NASA - Breaking News

Syndicate content
Official National Aeronautics and Space Administration Website
Updated: 10 hours 47 sec ago

2024 Associate Administrator Awards Honorees

Thu, 03/06/2025 - 12:38pm

7 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA / Maria Werries

The ARMD 2024 Associate Administrator Awards were presented to NASA employees, contractors, and students or interns who distinguished themselves, either individually or as part of a group, through their overall approach to their work and through results they achieved during the award year.

LEGEND: ARMD NASA CENTERS
ARC = Ames Research Center
AFRC = Armstrong Flight Research Center
GRC = Glenn Research Center
HQ = Headquarters
LaRC = Langley Research Center

Technology and Innovation

Honoree (Individual)
Kenneth R. Lyons, ARC
Kenneth R. Lyons made significant contributions this past year that were successfully applied in advancing NASA’s state-of-the-art unsteady Pressure Sensitive Paint (uPSP) experimental measurement in NASA’s wind tunnels. Lyons was key to the development of innovative data processing capabilities such as custom software drivers necessary to transfer the high-speed uPSP data from NASA’s wind tunnels to its High-End Computer facility – as well as other data management and methodologies overall. The uPSP development team’s principal investigator referred to his work on replacing older legacy systems as a “masterpiece.”

Honoree (Group)
NASA GRX-810 Licensing Team
NASA’s GRX-810 Licensing Team demonstrated exemplary performance by developing a technologically significant new material, meeting community demands for rapid evaluation, and enabling broad industry availability through timely commercialization. The team’s efforts led to successful licensing to multiple parties, pioneering a novel approach for NASA by using co-exclusive licenses, and the negotiation of four co-exclusive licenses with commercial partners. This license structure will increase competition within the marketplace and provide incentive for each company to fast-track product development.
Team Lead: Dr. Timothy M. Smith, GRC
View Group Honorees

Honorable Mention
Shishir Pandya, ARC
Shishir Pandya’s exemplary actions as the formulation and technical lead for the Propulsion/Airframe Integration (PAI) emerging technical challenge were instrumental in creating an actionable project plan that will examine complex aerodynamic interactions between sustainable propulsor technologies – such as open rotor concepts envisioned in programs like General Electric’s Revolutionary Innovation for Sustainable Engines (RISE). Pandya was instrumental in classifying the current PAI analysis capabilities at NASA, and scoping NASA’s, GE’s, and Boeing’s roles and responsibilities for open fan integration studies, both computational and experimental.

Honorable Mention (Group)
Electric Vertical Takeoff and Landing (eVTOL) Propulsion Team

The Revolutionary Vertical Lift and Technology project’s Electric Propulsion Team achieved major accomplishments – successfully completing a technical challenge to improve propulsion system component reliability by demonstrating significant improvements in 100-kilowatt electric motors. Through an integrated interdisciplinary approach including external partner collaborations, the team produced six major technological capabilities towards further development of NASA’s Advanced Air Mobility mission.
Team Lead: Mark Valco, GRC
View Honorable Mention Group Honorees

Honorable Mention (Group)
Self-Aligned Focusing Schlieren Team

The Self-Aligned Focusing Schlieren Team developed a highly innovative and impactful Schlieren system that revolutionizes high-speed flow visualization in aeronautics research by enabling the use of a highly efficient, non-intrusive optical measurement technique in physically constrained environments. This new approach drastically improves efficiency in accurately capturing and analyzing complex, high-speed airflows around advanced aerospace vehicles in a non-intrusive manner – providing precise visualization without requiring the cumbersome alignment procedures of traditional Schlieren systems.
Team Lead: Brett Bathel, LaRC
View Honorable Mention Group Honorees

Leadership and Management Excellence

Honoree
Anthony Nerone, GRC
Anthony Nerone demonstrated strong leadership in formulating and leading the implementation of the Hybrid Thermally Efficient Core project. He has successfully set up a framework to establish a high-performing project team that has been an example for other Aeronautics projects. Nerone’s strong project management has led industry to accelerate the development of advanced engine technologies which have started to see infusion into products – continuing United States leadership in sustainable aviation.

Program and Mission Support

Honoree
Diana Fitzgerald, LaRC (Booz Allen Hamilton)
Diana Fitzgerald has demonstrated innovation, responsiveness, and impact in her contributions to the Transformational Tools and Technologies (TTT) project. Her creative and comprehensive approach to enhancing TTT’s communication processes has significantly improved the efficiency and effectiveness of the project’s operations, enabling ARMD to advance critical strategic capabilities and partnerships. Her dedication has garnered widespread recognition from colleagues and leadership and has had a substantial and measurable impact.

Honoree (Group)
Airspace Operations Safety Program (AOSP) Resource Analyst Group
The AOSP Resource Analyst Group worked tirelessly to skillfully review and analyze the NASA Aeronautics budget – preparing programs and projects for planning, budget, and execution inputs. Their extraordinary performance in numerous AOSP activities building, tracking, and executing milestones resulted in a smooth and transparent execution of the program’s annual budget. The group has gone beyond the call of duty and their hard work and dedication is reflected in their discipline and commitment to NASA through critical, time-sensitive attention to detail and solution-focused problem solving.
Team Leads: Michele Dodson, HQ and Jeffrey Farlin, HQ
View Group Honorees

Honorable Mention (Individual)
Shannon Eichorn, GRC
Shannon Eichorn developed and authored a compelling, creative vision for the future of aeronautics research and of NASA’s working environment. She envisioned and described a future in which NASA’s aeronautics research goals, future technologies, workforce, and capabilities are in synergy to maximize research quality and impact. Eichorn presented this vision to numerous leaders and groups at NASA, and the excitement in the room at each presentation led to engaging follow-on discussions and several workstream groups requested Eichorn to present to their full group. Her efforts inspire not only ARMD, but the entire agency.

High Potentials

Honoree
Matthew Webster, LaRC
Matthew Webster has had significant impact and contributions to meeting goals in the Convergent Aeronautics Solutions and Transformational Tools and Technologies projects. In his short time at NASA, he has rapidly demonstrated exceptional ability to adapt and apply technical expertise across multiple NASA projects to advance towards project technical goals. Webster has shown his leadership ability, providing exceptional skills at creating a healthy team environment enabling the group to successfully meet project goals.

Honorable Mention
Dahlia Pham, ARC
Dhalia Pham’s contributions as a system analyst, researcher, and teammate in support of NASA’s efforts in electrified aircraft propulsion have shown an ability to creatively solve problems, analyze impacts, present results with strong communication skills, and collaborate with and mentor others. Her technical acumen and leadership ability raise the bar, making her an established leader amongst her peers.

Strategic Partnerships

Honoree
Salvatore Buccellato, LaRC
Salvatore Buccellato identified collaborative opportunities in hypersonics research that were mutually beneficial to NASA, the Defense Advanced Research Projects Agency (DARPA), and other non-NASA entities through his program management experience and knowledge of NASA people and capabilities. Buccellato was able to leverage NASA and non-NASA expertise and capabilities, along with DARPA funding, to further mature and advance hypersonic technologies via ground and flight tests with the goal of enabling operational flight systems. His exemplary work helped to significantly advanced hypersonic technologies and its workforce, and are expected to lead to further partnered activities for NASA.

Pushing the Envelope

Honoree (Group)
Advanced Power Electronics Team, GRC
The Advanced Power Electronics Team of the Advanced Air Transport Technology project completed an ambitious design of a prototype flight-packaged, altitude-capable electric motor drive for aviation. Their work pushed past the state of the art in flight motor drives in several areas including power density, efficiency, and power quality – and is a steppingstone towards megawatt-level, cryogenically cooled motor drives. The electric motor design underwent many successful tests and exercises, and the team’s subsequent publications and expertise help the electrified aircraft industry push past several barriers. 
Team Leads: Matthew G. Granger, GRC
View Group Honorees

2024 AA Award Honorees PDF

ARMD Associate Administrator Award

Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASAes Instagram logo @NASA@NASAaero@NASAes Linkedin logo @NASA Keep Exploring Discover More Topics From NASA

Aeronautics Research Mission Directorate

Aeronautics

Drones & You

Green Aviation Tech

Share Details Last Updated Mar 06, 2025 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms
Categories: NASA

2024 AA Awards for Technology and Innovation (Group)

Thu, 03/06/2025 - 11:06am

1 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA GRX-810 Licensing Team, GRC

* Denotes Team Lead

NASA Ames Research Center
John Lawson

NASA Glenn Research Center
Steven M. Arnold
Aaron B. Brister
Robert W. Carter
Robert H. Earp
Timothy P. Gabb
Christopher J. Giuffre
Paul R. Gradl
Jason M. Hanna
Bryan J. Harder
Amy B. Hiltabidel
Dale A. Hopkins
Christopher A. Kantzos
Michael J. Kulis
Geoffrey S. Minter
Brian T. Newbacher
Callista M. Puchmeyer
Richard W. Rauser
Harvey L. Schabes
Timothy M. Smith*
Aaron C. Thompson
Mary F. Wadel
Austin J. Whitt
Laura G. Wilson

NASA’s Marshall Space Flight Center
Paul Gradl

HX5, LLC
Christopher J. Giuffre
Aaron C. Thompson
Austin J. Whitt

University of Toledo
Richard W. Rauser

2024 AA Award Honorees

2024 AA Award Honorees PDF

ARMD Associate Administrator Awards

Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASAes Instagram logo @NASA@NASAaero@NASAes Linkedin logo @NASA Keep Exploring Discover More Topics From NASA

Missions

Artemis

Aeronautics STEM

Explore NASA’s History

Share Details Last Updated Mar 06, 2025 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms
Categories: NASA

2024 AA Awards for Technology and Innovation (Group Honorable Mention)

Thu, 03/06/2025 - 11:05am

1 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) eVTOL Propulsion Team, GRC

* Denotes Team Lead

NASA Glenn Research Center
Aaron D. Anderson
Devin K. Boyle
Jeffryes W. Chapman
Peggy A. Cornell
Timothy P. Dever
Justin P. Elchert
Henry B. Fain
Xavier Collazo Fernandez
Matthew G. Granger
Jonathan M. Gutknecht
Michael C. Halbig
Patrick A. Hanlon
Hashmatullah Hasseeb
David Hausser
Scott A. Hensley
Keith R. Hunker
Michael J. Hurrell
Keith P. Johnson
Greg L. Kimnach
John M. Koudelka
Timothy L. Krantz
Brian P. Malone
Sandi G. Miller
Nuha S. Nawash
Paul M. Nowak
Joseph J. Pinakidis
Meelad Ranaiefar
Trey D. Rupp
David J. Sadey
Jonathan A. Salem
Justin J. Scheidler
Andrew D. Smith
Mark A. Stevens
Thomas F. Tallerico
Linda M. Taylor
Casey J. Theman
Mark J. Valco*
Joseph S. Wisniewski

NASA’s Goddard Space Flight Center
Zachary A. Cameron

Amentum
Francis R. Gaspare
David J. Henrickson
Ryan M. McManamon
Alan J. Revilock

Connecticut Reserve Technologies
Eric H. Baker

HX5 Sierra
Nathan A. Baker
John W. Gresh
George E. Horning
Sigurds L. Lauge
Brett M. Norris
Nicolas Umpierre
Bill J. Vaccareillo
John Veneziano

NASA Financial Support Services
Madeline Duncan

Ohio Aerospace Institute
Mrityunjay Singh

Universities Space Research Association
Paula J. Heimann

2024 AA Award Honorees

2024 AA Award Honorees PDF

ARMD Associate Administrator Awards

Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASAes Instagram logo @NASA@NASAaero@NASAes Linkedin logo @NASA Keep Exploring Discover More Topics From NASA

Missions

Artemis

Aeronautics STEM

Explore NASA’s History

Share Details Last Updated Mar 06, 2025 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms
Categories: NASA

2024 AA Awards for Technology and Innovation (Group Honorable Mention)

Thu, 03/06/2025 - 11:04am

1 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Self-Aligned Focusing Schlieren Team

* Denotes Team Lead

NASA Langley Research Center
Brett F. Bathel*
Wayne E. Page
Josh M. Weisberger

2024 AA Award Honorees

2024 AA Award Honorees PDF

ARMD Associate Administrator Awards

Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASAes Instagram logo @NASA@NASAaero@NASAes Linkedin logo @NASA Keep Exploring Discover More Topics From NASA

Missions

Artemis

Aeronautics STEM

Explore NASA’s History

Categories: NASA

2024 AA Awards for Program and Mission Support (Group)

Thu, 03/06/2025 - 11:03am

1 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Airspace Operations Safety Program (AOSP) Resource Analyst Group

* Denotes Team Lead

NASA Ames Research Center
Warcquel D. Frieson
Mary Nguyen
Sandra E. Ramirez
Tiana (Thuy) D. Vo

NASA Glenn Research Center
Julie A. Blackett

NASA Headquarters
Michele D. Dodson*
Jeffrey S. Farlin*

NASA Langley Research Center
Yolanda Keiller

2024 AA Award Honorees

2024 AA Award Honorees PDF

ARMD Associate Administrator Awards

Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASAes Instagram logo @NASA@NASAaero@NASAes Linkedin logo @NASA Keep Exploring Discover More Topics From NASA

Missions

Artemis

Aeronautics STEM

Explore NASA’s History

Share Details Last Updated Mar 06, 2025 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms
Categories: NASA

ROAMX testing in the Planetary Aeolian Laboratory (PAL) at NASA Ames Research Center 

Wed, 03/05/2025 - 6:53pm
Rotor Optimization for the Advancement of Mars eXploration (ROAMX) hover test stand with ROAMX blades installed in the Planetary Aeolian Laboratory (PAL) low-pressure chamber at NASA Ames Research Center.NASA

During 2024-2025, helicopter blades optimized for Mars were tested in the Planetary Aeolian Laboratory (PAL) at NASA Ames Research Center as part of the Rotor Optimization for the Advancement of Mars eXploration (ROAMX) project.  The experimental test-chamber of the PAL can be depressurized to create atmospheric air pressures of different planetary bodies such as Mars. The full-scale ROAMX blades were spun in hover configuration up to 4000 RPM at an atmospheric density of Mars (approximately 0.015 kilograms per cubic meter).  The Ingenuity blades were also tested in the PAL to compare the performance of the optimized blades against the Ingenuity Mars Helicopter Technology Demonstrator. The test was conducted to validate computational models of the performance of the optimized blades. Simulations show that the optimized ROAMX blades perform significantly better than the Ingenuity blades, allowing helicopters on Mars to fly farther, faster, and carry a science payload. The next phase of testing will occur with higher RPMs and additional collective angles.

Rotor Optimization for the Advancement of Mars eXploration (ROAMX) team members and test stand at NASA Ames Research Center.NASA
Categories: NASA

Sols 4471-4472: Marching Through the Canyon

Wed, 03/05/2025 - 5:34pm
Curiosity Navigation

2 min read

Sols 4471-4472: Marching Through the Canyon NASA’s Mars rover Curiosity acquired this image using its Mast Camera (Mastcam), a close-up of the rover’s Alpha Particle X-Ray Spectrometer (APXS), an instrument that measures the abundance of chemical elements in rocks and soils on the Martian surface. Located on the turret at the end of Curiosity’s robotic arm, APXS is about the size of a cupcake, and this image shows the handwritten markings on the instrument’s sensor head. Curiosity captured this image on March 23, 2024 — sol 4134, or Martian day 4,134 of the Mars Science Laboratory mission — at 21:59:21 UTC. NASA/JPL-Caltech/MSSS

Written by Scott VanBommel, Planetary Scientist at Washington University

Earth planning date: Monday, March 3, 2025

Curiosity continued steady progress through the upper sulfate unit and toward its next major science waypoint: the boxwork structures. Our rover is currently driving south through a local canyon between “Texoli” and “Gould Mesa.” This route may expose the same rock layers observed while climbing along the eastern margin of the Gediz Vallis channel, prompting several science activities in today’s plan. With winter still gripping Gale crater and limiting the power available for science, the team carefully balanced a number of priorities.

The weekend’s drive positioned the rover within reach of light-toned laminated bedrock and gray float rock. We kicked off our two-sol plan by removing dust on a representative bedrock target, “Ramona Trail,” before analyzing with APXS and imaging with MAHLI. ChemCam acquired compositional analyses on a laminated gray float rock, “Josephine Peak,” in addition to long-distance images of Texoli. Mastcam documented key features, capturing images of Josephine Peak, Texoli, “Gobblers Knob,” and “Fort Tejon.” In addition to these science-driven images, Mastcam also acquired two images of APXS before a planned drive of about 21 meters (about 69 feet).

As Curiosity continues toward the boxwork structures, the intricate patterns we observe will provide valuable clues about the history of Mars. While the Mastcam images acquired today of the APXS sensor head won’t directly contribute to the boxwork study, they capture a more human aspect of the mission. With each “APXS horseshoe” image, such as the one featured in this blog from sol 4134, hand-written markings on the APXS sensor head appear alongside Martian terrain, a reminder that this incredible journey is driven by the human touch of a dedicated team on Earth who designed, built, and continue to operate this remarkable spacecraft.

Share

Details

Last Updated

Mar 05, 2025

Related Terms Explore More

2 min read Sols 4468-4470: A Wintry Mix of Mars Science

Article


2 days ago

2 min read Smooshing for Science: A Flat-Out Success

Article


5 days ago

4 min read Sols 4466-4468: Heading Into the Small Canyon

Article


7 days ago

Keep Exploring Discover More Topics From NASA

Mars

Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


All Mars Resources

Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


Rover Basics

Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


Mars Exploration: Science Goals

The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

Categories: NASA

What is a NASA Spinoff? We Asked a NASA Expert: Episode 53

Wed, 03/05/2025 - 5:10pm

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

What is a NASA Spinoff?

Well, to answer that question, we’re going to have to go all the way back to 1958, back to the legislation that originally created the space agency, NASA.

So in that legislation, there’s some forward-looking language that says, “Make sure that all the cool stuff you develop for space doesn’t just get blasted off into the universe, but comes back down to the Earth in the form of practical and terrestrial benefits.”

I’m paraphrasing, of course. The legislation is actually a little bit dry like legislation should be. Since that time, NASA has worked to get the technologies it created into the hands of the public. These become products and services and they save lives, they improve lives, they generate income, they create jobs, they boost the economy, they increase crop yields, they make airplane travel safer, they make train transportation safer.

NASA’s everywhere you look. One example I like to bring up is the camera in your cell phone. That was actually developed at JPL. We were working on a lightweight, high resolution camera for a satellite application, and that became the very first camera on a chip, camera in the cell phone.

We’ve also worked on things like indoor agriculture, which is increasingly important as the world gets denser and people need access to healthy foods.

During the pandemic, some researchers developed a ventilator that had fewer than 100 parts, none of which were required in the supply chain to make other ventilators. We gave that to dozens of companies all around the world to help save lives.

If you check out spinoff.nasa.gov you can find thousands of examples of how NASA is everywhere in your life.

[END VIDEO TRANSCRIPT]

Full Episode List

Full YouTube Playlist

Share Details Last Updated Mar 05, 2025 Related Terms Explore More 1 min read Novel Recuperator Design for Cryogenic Fluid Management System Article 8 hours ago 3 min read NASA Successfully Acquires GPS Signals on Moon  Article 1 day ago 5 min read Fourth Launch of NASA Instruments Planned for Near Moon’s South Pole Article 1 week ago Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

NASA Sets Coverage for Agency’s SpaceX Crew-10 Launch, Docking

Wed, 03/05/2025 - 3:57pm
The crew of NASA’s SpaceX Crew-10 mission pictured during an equipment test at the agency’s Kennedy Space Center in Florida.Credit: SpaceX

Editor’s Note: This advisory was updated March 5, 2025, to correct that media may ask questions by phone only during the mission overview teleconference.

NASA will provide coverage of the upcoming prelaunch and launch activities for the agency’s SpaceX Crew-10 mission to the International Space Station.

Liftoff is targeted for 7:48 p.m. EDT, Wednesday, March 12, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The targeted docking time is approximately 10 a.m., Thursday, March 13.

Coverage of the mission overview teleconference will be available on the agency’s website. The crew news conference, launch, the postlaunch news conference, and docking will be live on NASA+. Learn how to stream NASA content through a variety of platforms, including social media.

The SpaceX Dragon spacecraft will carry NASA astronauts Anne McClain, commander; and Nichole Ayers, pilot; along with mission specialists JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov to the orbiting laboratory for a science mission of about four months. This is the 10th crew rotation mission and the 11th human spaceflight mission for NASA to the space station supported by the Dragon spacecraft since 2020 as part of the agency’s Commercial Crew Program.

The deadline for media accreditation for in person coverage of this launch has passed. The agency’s media credentialing policy is available online. For questions about media accreditation, please email: ksc-media-accreditat@mail.nasa.gov.
Media who need access to NASA live video feeds may subscribe to the agency’s media resources distribution list to receive daily updates and links.

NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):

Friday, March 7

2 p.m. – Crew arrival media event at NASA Kennedy with the following participants:

  • Anne McClain, Crew-10 spacecraft commander, NASA
  • Nichole Ayers, Crew-10 pilot, NASA
  • Takuya Onishi, Crew-10 mission specialist, JAXA
  • Kirill Peskov, Crew-10 mission specialist, Roscosmos

Watch live coverage of the crew arrival media event on NASA Kennedy’s social media accounts.

This event is open to in person media only previously credentialed for this event, and questions will be taken only during the crew news conference scheduled for later that day. Follow @CommercialCrew and @NASAKennedy on X for the latest arrival updates.
5:30 p.m. – Mission overview teleconference at NASA Kennedy (or no earlier than one hour after the completion of the Flight Readiness Review) with the following participants:

  • Ken Bowersox, associate administrator, Space Operations Mission Directorate, NASA Headquarters in Washington
  • Steve Stich, manager, Commercial Crew Program, NASA Kennedy
  • Dana Weigel, manager, International Space Station Program, NASA’s Johnson Space Center in Houston
  • Meg Everett, deputy chief scientist, NASA’s International Space Station Program, NASA Johnson
  • William Gerstenmaier, vice president, Build and Flight Reliability, SpaceX
  • Junichi Sakai, manager, International Space Station Program, JAXA

NASA will provide audio-only coverage of the teleconference.

Media may ask questions via phone only. For the dial-in number and passcode, media should contact the Kennedy newsroom no later than 4 p.m., Friday, March 7, at ksc-newsroom@mail.nasa.gov.
6:30 p.m. – Crew-10 crew news conference (or directly following the completion of the mission overview news conference) with the following participants:

  • Anne McClain, Crew-10 spacecraft commander, NASA
  • Nichole Ayers, Crew-10 pilot, NASA
  • Takuya Onishi, Crew-10 mission specialist, JAXA
  • Kirill Peskov, Crew-10 mission specialist, Roscosmos

Watch live coverage of the mission overview news conference on NASA+.

Media may ask questions via phone only. For the dial-in number and passcode, media should contact the Kennedy newsroom no later than 4 p.m., Friday, March 7, at: ksc-newsroom@mail.nasa.gov.

Wednesday, March 12

3:45 p.m. – Launch coverage begins on NASA+.

7:48 p.m. – Launch

Following the conclusion of launch and ascent coverage, NASA will switch to audio only and continue audio coverage through Thursday, March 13. Continuous coverage resumes on NASA+ at the start of rendezvous and docking and continues through hatch opening and the welcome ceremony.
9:30 p.m. – Postlaunch news conference with the following participants:

  • Ken Bowersox, associate administrator, NASA’s Space Operations Mission Directorate
  • Steve Stich, manager, Commercial Crew Program, NASA Kennedy
  • Dana Weigel, manager, International Space Station Program, NASA Johnson
  • Sarah Walker, director, Dragon Mission Management, SpaceX
  • Mayumi Matsuura, vice president and director general, Human Spaceflight Technology Directorate, JAXA

Watch live coverage of the postlaunch news conference on NASA+.

Media may ask questions in person and via phone. Limited auditorium space will be available for in person participation. For the dial-in number and passcode, please contact the Kennedy newsroom no later than 8:30 p.m., Wednesday, March 12, at ksc-newsroom@mail.nasa.gov.

Thursday, March 13

8:15 a.m. – Arrival coverage begins on NASA+.

10 a.m. – Targeted docking to the forward-facing port of the station’s Harmony module

11:45 a.m. – Hatch opening

12:20 p.m. – Welcome ceremony

All times are estimates and could be adjusted based on real-time operations after launch. Follow the space station blog for the most up-to-date operations information.

Live Video Coverage Prior to Launch

NASA will provide a live video feed of Launch Complex 39A approximately six hours prior to the planned liftoff of the Crew-10 mission. Pending unlikely technical issues, the feed will be uninterrupted until the prelaunch broadcast begins on NASA+, approximately four hours prior to launch. Once the feed is live, find it online at: http://youtube.com/kscnewsroom.

NASA Website Launch Coverage
Launch day coverage of the mission will be available on the NASA website. Coverage will include livestreaming and blog updates beginning no earlier than 3:45 p.m., March 12, as the countdown milestones occur. On-demand streaming video on NASA+ and photos of the launch will be available shortly after liftoff. For questions about countdown coverage, contact the NASA Kennedy newsroom at 321-867-2468. Follow countdown coverage on the commercial crew or Crew-10 blog.

Attend Launch Virtually

Members of the public may register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch.

Watch, Engage on Social Media

Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtags #Crew10 and #NASASocial. You may also stay connected by following and tagging these accounts:

X: @NASA, @NASAKennedy, @NASASocial, @Space_Station, @ISS_Research, @ISS National Lab, @SpaceX, @Commercial_Crew

Facebook: NASA, NASAKennedy, ISS, ISS National Lab

Instagram: @NASA, @NASAKennedy, @ISS, @ISSNationalLab, @SpaceX

Coverage en Espanol

Did you know NASA has a Spanish section called NASA en Espanol? Check out NASA en Espanol on X, Instagram, Facebook, and YouTube for additional mission coverage.

Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: 321-501-8425; antonia.jaramillobotero@nasa.gov; o Messod Bendayan: 256-930-1371; messod.c.bendayan@nasa.gov.

NASA’s Commercial Crew Program has delivered on its goal of safe, reliable, and cost-effective transportation to and from the International Space Station from the United States through a partnership with American private industry. This partnership is changing the arc of human spaceflight history by opening access to low Earth orbit and the International Space Station to more people, more science, and more commercial opportunities. The space station remains the springboard to NASA’s next great leap in space exploration, including future missions to the Moon and, eventually, to Mars.

For more information about the mission, visit:

https://www.nasa.gov/commercialcrew

-end-

Joshua Finch / Jimi Russell
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / james.j.russell@nasa.gov

Steven Siceloff / Stephanie Plucinsky
Kennedy Space Center, Florida
321-867-2468
steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov

Kenna Pell
Johnson Space Center, Houston
281-483-5111
kenna.m.pell@nasa.gov

Share Details Last Updated Mar 05, 2025 LocationNASA Headquarters Related Terms
Categories: NASA

How NASA is Using Virtual Reality to Prepare for Science on Moon

Wed, 03/05/2025 - 3:38pm
Tess Caswell, a stand-in crew member for the Artemis III Virtual Reality Mini-Simulation, executes a moonwalk in the Prototype Immersive Technology (PIT) lab at NASA’s Johnson Space Center in Houston. The simulation was a test of using VR as a training method for flight controllers and science teams’ collaboration on science-focused traverses on the lunar surface. Credit: NASA/Robert Markowitz

When astronauts walk on the Moon, they’ll serve as the eyes, hands, and boots-on-the-ground interpreters supporting the broader teams of scientists on Earth. NASA is leveraging virtual reality to provide high-fidelity, cost-effective support to prepare crew members, flight control teams, and science teams for a return to the Moon through its Artemis campaign.

The Artemis III Geology Team, led by principal investigator Dr. Brett Denevi of the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, participated in an Artemis III Surface Extra-Vehicular VR Mini-Simulation, or “sim” at NASA’s Johnson Space Center in Houston in the fall of 2024. The sim brought together science teams and flight directors and controllers from Mission Control to carry out science-focused moonwalks and test the way the teams communicate with each other and the astronauts.

“There are two worlds colliding,” said Dr. Matthew Miller, co-lead for the simulation and exploration engineer, Amentum/JETSII contract with NASA. “There is the operational world and the scientific world, and they are becoming one.”

NASA mission training can include field tests covering areas from navigation and communication to astronaut physical and psychological workloads. Many of these tests take place in remote locations and can require up to a year to plan and large teams to execute. VR may provide an additional option for training that can be planned and executed more quickly to keep up with the demands of preparing to land on the Moon in an environment where time, budgets, and travel resources are limited.

VR helps us break down some of those limitations and allows us to do more immersive, high-fidelity training without having to go into the field. It provides us with a lot of different, and significantly more, training opportunities.

BRI SPARKS

NASA co-lead for the simulation and Extra Vehicular Activity Extended Reality team at Johnson.

Field testing won’t be going away. Nothing can fully replace the experience crew members gain by being in an environment that puts literal rocks in their hands and incudes the physical challenges that come with moonwalks, but VR has competitive advantages.

The virtual environment used in the Artemis III VR Mini-Sim was built using actual lunar surface data from one of the Artemis III candidate regions. This allowed the science team to focus on Artemis III science objectives and traverse planning directly applicable to the Moon. Eddie Paddock, engineering VR technical discipline lead at NASA Johnson, and his team used data from NASA’s Lunar Reconnaissance Orbiter and planet position and velocity over time to develop a virtual software representation of a site within the Nobile Rim 1 region near the south pole of the Moon. Two stand-in crew members performed moonwalk traverses in virtual reality in the Prototype Immersive Technology lab at Johnson, and streamed suit-mounted virtual video camera views, hand-held virtual camera imagery, and audio to another location where flight controllers and science support teams simulated ground communications.

A screen capture of a virtual reality view during the Artemis III VR Mini-Simulation. The lunar surface virtual environment was built using actual lunar surface data from one of the Artemis III candidate regions. Credit: Prototype Immersive Technology lab at NASA’s Johnson Space Center in Houston.

The crew stand-ins were immersed in the lunar environment and could then share the experience with the science and flight control teams. That quick and direct feedback could prove critical to the science and flight control teams as they work to build cohesive teams despite very different approaches to their work.

The flight operations team and the science team are learning how to work together and speak a shared language. Both teams are pivotal parts of the overall mission operations. The flight control team focuses on maintaining crew and vehicle safety and minimizing risk as much as possible. The science team, as Miller explains, is “relentlessly thirsty” for as much science as possible. Training sessions like this simulation allow the teams to hone their relationships and processes.

Members of the Artemis III Geology Team and science support team work in a mock Science Evaluation Room during the Artemis III Virtual Reality Mini-Simulation at NASA’s Johnson Space Center in Houston. Video feeds from the stand-in crew members’ VR headsets allow the science team to follow, assess, and direct moonwalks and science activities. Credit: NASA/Robert Markowitz

Denevi described the flight control team as a “well-oiled machine” and praised their dedication to getting it right for the science team. Many members of the flight control team have participated in field and classroom training to learn more about geology and better understand the science objectives for Artemis.

“They have invested a lot of their own effort into understanding the science background and science objectives, and the science team really appreciates that and wants to make sure they are also learning to operate in the best way we can to support the flight control team, because there’s a lot for us to learn as well,” Denevi said. “It’s a joy to get to share the science with them and have them be excited to help us implement it all.”

Engineering VR technical discipline lead Eddie Paddock works with team members to facilitate the virtual reality components of the Artemis III Virtual Reality Mini-Simulation in the Prototype Immersive Technology lab at NASA’s Johnson Space Center in Houston. Credit: Robert Markowitz

This simulation, Sparks said, was just the beginning for how virtual reality could supplement training opportunities for Artemis science. In the future, using mixed reality could help take the experience to the next level, allowing crew members to be fully immersed in the virtual environment while interacting with real objects they can hold in their hands. Now that the Nobile Rim 1 landing site is built in VR, it can continue to be improved and used for crew training, something that Sparks said can’t be done with field training on Earth.

While “virtual” was part of the title for this exercise, its applications are very real.

“We are uncovering a lot of things that people probably had in the back of their head as something we’d need to deal with in the future,” Miller said. “But guess what? The future is now. This is now.”

Grier Wilt, left, and Tess Caswell, crew stand-ins for the Artemis III Virtual Reality Mini-Simulation, execute a moonwalk in the Prototype Immersive Technology (PIT) lab at NASA’s Johnson Space Center in Houston. Credit: NASA/Robert Markowitz

Test subject crew members for the Artemis III Virtual Reality Mini-Simulation, including Grier Wilt, left, and Tess Caswell, center, execute a moonwalk in the Prototype Immersive Technology lab at NASA’s Johnson Space Center in Houston. Credit: NASA/Robert Markowitz

Flight director Paul Konyha follows moonwalk activities during the Artemis III Virtual Reality Mini-Simulation at NASA’s Johnson Space Center in Houston. Credit: NASA/Robert Markowitz






Rachel Barry

NASA’s Johnson Space Center

Keep Exploring Discover More Topics From NASA

Astromaterials


Artemis Science

A Time Capsule The Moon is a 4.5-billion-year-old time capsule, pristinely preserved by the cold vacuum of space. It is…


Lunar Craters

Earth’s Moon is covered in craters. Lunar craters tell us the history not only of the Moon, but of our…


Solar System

Categories: NASA

NASA Turns Off 2 Voyager Science Instruments to Extend Mission

Wed, 03/05/2025 - 1:23pm

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) An artist’s concept depicts one of NASA’s Voyager probes. The twin spacecraft launched in 1977.NASA/JPL-Caltech

The farthest-flung human-made objects will be able to take their science-gathering even farther, thanks to these energy-conserving measures.

Mission engineers at NASA’s Jet Propulsion Laboratory in Southern California turned off the cosmic ray subsystem experiment aboard Voyager 1 on Feb. 25 and will shut off Voyager 2’s low-energy charged particle instrument on March 24. Three science instruments will continue to operate on each spacecraft. The moves are part of an ongoing effort to manage the gradually diminishing power supply of the twin probes.

Launched in 1977, Voyagers 1 and 2 rely on a radioisotope power system that generates electricity from the heat of decaying plutonium. Both lose about 4 watts of power each year.

“The Voyagers have been deep space rock stars since launch, and we want to keep it that way as long as possible,” said Suzanne Dodd, Voyager project manager at JPL. “But electrical power is running low. If we don’t turn off an instrument on each Voyager now, they would probably have only a few more months of power before we would need to declare end of mission.”

The two spacecraft carry identical sets of 10 science instruments. Some of the instruments, geared toward collecting data during planetary flybys, were turned off after both spacecraft completed their exploration of the solar system’s gas giants.

The instruments that remained powered on well beyond the last planetary flyby were those the science team considered important for studying the solar system’s heliosphere, a protective bubble of solar wind and magnetic fields created by the Sun, and interstellar space, the region outside the heliosphere. Voyager 1 reached the edge of the heliosphere and the beginning of interstellar space in 2012; Voyager 2 reached the boundary in 2018. No other human-made spacecraft has operated in interstellar space.

Last October, to conserve energy, the project turned off Voyager 2’s plasma science instrument, which measures the amount of plasma — electrically charged atoms — and the direction it is flowing. The instrument had collected only limited data in recent years due to its orientation relative to the direction that plasma flows in interstellar space. Voyager 1’s plasma science instrument had been turned off years ago because of degraded performance.

Interstellar Science Legacy

The cosmic ray subsystem that was shut down on Voyager 1 last week is a suite of three telescopes designed to study cosmic rays, including protons from the galaxy and the Sun, by measuring their energy and flux. Data from those telescopes helped the Voyager science team determine when and where Voyager 1 exited the heliosphere.

Scheduled for deactivation later this month, Voyager 2’s low-energy charged particle instrument measures the various ions, electrons, and cosmic rays originating from our solar system and galaxy. The instrument consists of two subsystems: the low-energy particle telescope for broader energy measurements, and the low-energy magnetospheric particle analyzer for more focused magnetospheric studies.

Both systems use a rotating platform so that the field of view is 360 degrees, and the platform is powered by a stepper motor that provides a 15.7-watt pulse every 192 seconds. The motor was tested to 500,000 steps — enough to guarantee continuous operation through the mission’s encounters with Saturn, which occurred in August 1980 for Voyager 2. By the time it is deactivated on Voyager 2, the motor will have completed more than 8.5 million steps.

“The Voyager spacecraft have far surpassed their original mission to study the outer planets,” said Patrick Koehn, Voyager program scientist at NASA Headquarters in Washington. “Every bit of additional data we have gathered since then is not only valuable bonus science for heliophysics, but also a testament to the exemplary engineering that has gone into the Voyagers — starting nearly 50 years ago and continuing to this day.”

Addition Through Subtraction

Mission engineers have taken steps to avoid turning off science instruments for as long as possible because the science data collected by the twin Voyager probes is unique. With these two instruments turned off, the Voyagers should have enough power to operate for about a year before the team needs to shut off another instrument on both spacecraft.

In the meantime, Voyager 1 will continue to operate its magnetometer and plasma wave subsystem. The spacecraft’s low-energy charged particle instrument will operate through the remainder of 2025 but will be shut off next year.  

Voyager 2 will continue to operate its magnetic field and plasma wave instruments for the foreseeable future. Its cosmic ray subsystem is scheduled to be shut off in 2026.

With the implementation of this power conservation plan, engineers believe the two probes could have enough electricity to continue operating with at least one science instrument into the 2030s. But they are also mindful that the Voyagers have been weathering deep space for 47 years and that unforeseen challenges could shorten that timeline.

Long Distance

Voyager 1 and Voyager 2 remain the most distant human-made objects ever built. Voyager 1 is more than 15 billion miles (25 billion kilometers) away. Voyager 2 is over 13 billion miles (21 billion kilometers) from Earth.

In fact, due to this distance, it takes over 23 hours to get a radio signal from Earth to Voyager 1, and 19½ hours to Voyager 2.

“Every minute of every day, the Voyagers explore a region where no spacecraft has gone before,” said Linda Spilker, Voyager project scientist at JPL. “That also means every day could be our last. But that day could also bring another interstellar revelation. So, we’re pulling out all the stops, doing what we can to make sure Voyagers 1 and 2 continue their trailblazing for the maximum time possible.”

For more information about NASA’s Voyager missions, visit:
https://science.nasa.gov/mission/voyager

News Media Contacts

DC Agle / Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
818-653-6297 / 626-808-2469
agle@jpl.nasa.gov / calla.e.cofield@jpl.nasa.gov

2025-032

Share Details Last Updated Mar 05, 2025 Related Terms Explore More 3 min read University High Knows the Answers at NASA JPL Regional Science Bowl Article 2 days ago 3 min read NASA Uses New Technology to Understand California Wildfires Article 5 days ago 6 min read NASA’s Europa Clipper Uses Mars to Go the Distance Article 1 week ago Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

NASA’s Ethics Program

Wed, 03/05/2025 - 1:02pm

NASA’s Ethics Program provides training and counsel to NASA employees and is responsible for the day-to-day management of the agency-wide ethics program. Headquarters and Center Chief Counsels ethics officials support the ethics program in their respective localities.

A list of ethics officials at each NASA location can be found here: Headquarters and Center Ethics Officials.

Associate General Counsel, General Law Practice Group:
Katie Spear

Agency Counsel for Ethics:
Adam Greenstone

Current Employees

NASA employees have a responsibility to the United States Government and its citizens to place loyalty to the Constitution, laws, and ethics principles above private gain. As NASA employees, we need you to preserve NASA’s core value of integrity through your commitment to ethics and ethical decision-making. If you are faced with a question concerning your ethics obligations as a NASA employee, please contact a NASA ethics official before taking action.

Deferred Resignation and Ethics FAQs

NASA employees who participate in the Office of Personnel Management’s Deferred Resignation Program remain subject to the ethics laws. Please click HERE for frequently asked questions related to the applicable ethics rules and regulations.

Financial Disclosure

As a NASA employee, you may be required to disclose your financial interests for one of two reasons: 1) You are in a position requiring by law that you file a Public Financial Disclosure (OGE Form 278)(PDF) report.  This includes members of the Senior Executive Service (SES); SL or ST employees; holding another position classified above the GS-15 level; holding a “NASA excepted” position above a certain pay level; and Schedule C appointees.  2) Your duties are such that they raise an increased likelihood of a conflict of interest, for which you would file an (OGE Form 450)(PDF) report. If you are in a position subject to Public Financial Disclosure (or acting in one for more than 60 days), then you are subject to the Public Financial Disclosure report in which your report will be publicly available. If you are a General Schedule or other employee required to file OGE Form 450, your financial disclosure requirements will be less complex, and report will be confidential. For specific questions, please contact an ethics official.

Contact Information

If you have questions, please ask an ethics official at your respective center.

Widely Attended Gatherings Determinations

Please click here to access the latest Widely Attended Gatherings Determinations.  If you do not see a determination for the event in which you were invited to attend in your official capacity, please request guidance from your local ethics official.

Outside Activities

NASA employees are subject to regulations regarding outside employment. They are prohibited from engaging in outside activities that conflict with their official duties.  In addition, the NASA Supplemental Standards of Ethical Conduct for NASA Employees, 5 C.F.R. Part 6901, require prior approval for engaging in certain types of outside employment. In these instances, employees should request approval from their local ethics official prior to accepting such outside employment. Click here to access the Request for Approval of Outside Employment and Activities  form.

Note that the NASA Supplemental rules also prohibit NASA employees from engaging in outside employment with a NASA contractor, subcontractor, or grantee in connection with work performed by that entity for NASA; or a party to a Space Act Agreement, Commercial Launch Act agreement, or other agreement to which NASA is a party pursuant to specific statutory authority, if the employment is in connection with work performed under that agreement. 

Employees in a leave status are subject to the same legal parameters. Please reach out to your local ethics official for guidance.

Resources

Prospective Employees

We look forward to welcoming you to NASA! You are joining an organization that works to change the history of humanity and usher in a bold new era or discovery.  We are depending on you to maintain the public trust and to preserve NASA’s ethical culture. Accordingly, NASA employees must comply with ethical standards that relate to outside employment, political activities, and business relationships, among other topics. NASA encourages prospective employees to learn more about these ethical standards along the path of joining our team. If ethics questions arise before or after you join NASA, please contact a NASA ethics official before taking action. What are your obligations? Know the rules. If you have questions, please ask an ethics official at your respective location.

Financial Disclosure

As a NASA employee, you may be required to disclose your financial interests for one of two reasons: 1) You are in a position requiring by law that you file a Public Financial Disclosure (OGE Form 278)(PDF) report.  This includes members of the Senior Executive Service (SES); SL or ST employees; holding another position classified above the GS-15 level; holding a “NASA excepted” position above a certain pay level; and Schedule C appointees.  2) Your duties are such that they raise an increased likelihood of a conflict of interest, for which you would file an (OGE Form 450)(PDF) report. If you are in a position subject to Public Financial Disclosure (or acting in one for more than 60 days), then you are subject to the Public Financial Disclosure report in which your report will be publicly available. If you are a General Schedule or other employee required to file OGE Form 450, your financial disclosure requirements will be less complex, and your report will be confidential. For specific questions, please contact an ethics official.

Resources

Former Employees

The post-government employment ethics statute, 18 U.S.C. § 207, applies to a former NASA employee’s communication with NASA or the Government on behalf of the former employee’s non-federal employer. Former NASA employees should contact a NASA ethics official for advice before communications or otherwise interacting with NASA or the Government on behalf of their new employer because this criminal statute may be implicated.  The Procurement Integrity Act also restricts individuals who were in certain contracting roles from accepting compensated work from certain contractors for a limited period. 

Contact Information

If you have questions, please ask an ethics official at your respective center.

Special Government Employees

A Special Government Employee (SGE) is an officer or employee “who is retained, designated, appointed, or employed to perform, with or without compensation, for not to exceed one hundred and thirty days during any consecutive period of three hundred and sixty-five consecutive days.” 18 U.S.C. § 202. Congress created the SGE category in 1962 to allow the federal Government to obtain the expertise it needs, while allowing experts to continue their private professional lives. As a result, some of the ethics statutes and regulations apply differently to SGEs than they do to regular executive branch employees, and some provisions do not apply at all.

Financial Disclosure

SGEs are required to file a financial disclosure report each year, usually a confidential financial disclosure report (OGE-450). Financial disclosure reporting helps NASA identify any possible financial conflicts of interest. SGEs are notified in advance of when to file.

Ethics Training

SGEs are required to receive annual ethics training by December 31st of each calendar year.

Contact Information

If you are a SGE and have questions, please contact the Headquarters Ethics Team by e-mail at hq-ethicsteam@nasa.gov or by phone at (202) 358-0550.

Resources

~~~~~~~~~~~~~~~~~~

Contact

Office of the General Counsel
NASA Headquarters
300 E Street SW Suite 9V30
Washington, DC 20546
Phone Number (202) 358-2450

Return to OGC Homepage

OGC Disclaimer: The materials within this website do not constitute legal advice. For details read our disclaimer.

Categories: NASA

Novel Recuperator Design for Cryogenic Fluid Management System

Wed, 03/05/2025 - 12:15pm

Cryocoolers are essential systems in many space exploration missions to maintain propellants at cryogenic temperatures. Cryogenic recuperators are a key component of these cryocoolers and dictate the performance of the system. NASA is seeking to reduce the cost and increase the performance of cryogenic recuperators (also called Heat Exchangers) by utilizing Additive Manufacturing (AM) technologies.

Award: $7,000 in total prizes

Open Date: March 5, 2025

Close Date: May 2, 2025

For more information, visit: https://grabcad.com/challenges/novel-recuperator-design-for-cryogenic-fluid-management-system

Categories: NASA

Hubble Captures New View of Colorful Veil

Wed, 03/05/2025 - 12:09pm
ESA/Hubble & NASA, R. Sankrit

In this NASA/ESA Hubble Space Telescope image, Hubble once again lifts the veil on a famous — and frequently photographed — supernova remnant: the Veil Nebula. The remnant of a star roughly 20 times as massive as the Sun that exploded about 10,000 years ago, the Veil Nebula is situated about 2,400 light-years away in the constellation Cygnus. Hubble images of this photogenic nebula were first taken in 1994 and 1997, and again in 2015.

This view combines images taken in three different filters by Hubble’s Wide Field Camera 3, highlighting emission from hydrogen, sulfur, and oxygen atoms. The image shows just a small fraction of the Veil Nebula; if you could see the entire nebula without the aid of a telescope, it would be as wide as six full Moons placed side-by-side.

Although this image captures the Veil Nebula at a single point in time, it helps researchers understand how the supernova remnant evolves over decades. Combining this snapshot with Hubble observations from 1994 will reveal the motion of individual knots and filaments of gas over that span of time, enhancing our understanding of this stunning nebula.

Categories: NASA

NASA’s SpaceX Crew-10 to Explore Deep Space Exercise, Health

Wed, 03/05/2025 - 8:24am
Pictured from left: Roscosmos cosmonaut Kirill Peskov, NASA astronauts Nichole Ayers and Anne McClain, and JAXA (Japan Aerospace Exploration Agency) astronaut mission specialist Takuya Onishi train at SpaceX facilities in Hawthorne, California (Credit: SpaceX).

During NASA’s SpaceX Crew-10 mission to the International Space Station, which is scheduled to launch in March, select members of the four-person crew will participate in exercise and medical research aimed at keeping astronauts fit on future long-duration missions.

Crew members living and working aboard the space station have access to a designated training area outfitted with a weight-lifting system, a stationary bike, and a specialized treadmill called T2. The space station is expansive enough for bulky exercise equipment that helps preserve the health and performance of astronauts in space and when they return to Earth.

However, as NASA looks to explore beyond low Earth orbit, the agency anticipates future spacecraft will not have room for large exercise equipment, like treadmills. Since walking and running are essential parts of workouts aboard the space station, NASA does not fully understand how long-duration spaceflights without a treadmill will impact crews’ health and motor functions. Consequently, NASA researchers are adjusting astronauts’ training regimens, including eliminating the use of the treadmill in some cases, to study ways that maintain crews’ strength, fitness, bone health, and balance.

In an ongoing study called Zero T2, expedition crews are divided into three groups with different workout regimens. One group continues exercising normally, using all the available equipment aboard the orbiting complex. A second group forgoes using the treadmill, relying solely on the other available equipment. While a third group will only exercise using a new, experimental, less bulky workout machine. NASA compares the groups’ health data collected before, during, and after flight to determine if the lack of treadmill use negatively impacts the crews’ fitness, muscle performance, and recovery after return to Earth.

“A treadmill takes up a lot of mass, space, and energy. This is not great for missions to Mars where every kilogram counts,” explained NASA astronaut Matthew Dominick, who participated in the same study while serving as commander of NASA’s SpaceX Crew-8 mission in 2024. “The Zero T2 experiment is helping us figure out if we can go without a treadmill and still be healthy.”

Results of the Zero T2 study will help researchers determine how treadmill-free workouts may affect crew health, which will, in turn, help NASA build realistic exercise protocols for future deep space missions. Additionally, this investigation could support design improvements for exercise devices used to prevent or treat bone, muscle, and cardiovascular health on Earth.

Beyond the Zero T2 study, select NASA crew members will perform additional studies supported by the agency’s Human Research Program during their mission. Participating crew will conduct medical exams, provide biological samples, and document spaceflight-related injuries, among other tasks. 

“Astronauts choose which studies to participate in based on their interests,” explained Cherie Oubre, a NASA scientist at the agency’s Johnson Space Center in Houston, who helps oversee human research studies carried out aboard the space station. “The experiments address important risks and gaps associated with human spaceflight.”

One set of experiments, called CIPHER (Complement of Integrated Protocols for Human Exploration Research), will help researchers understand how multiple systems within the human body adjust to varying mission durations. CIPHER study members will complete vision assessments, cognitive tests, and MRI scans to help provide a clearer picture of how the entire body is affected by space.

“The CIPHER experiment tracks changes in the eyes, bones, heart, muscles, immune system, and more,” Oubre said. “The investigation provides the most comprehensive overview of how long-duration spaceflight affects the entire human body ever conducted, helping us advance human expeditions to the Moon, Mars, and elsewhere.”

Some crew members also will contribute to a core set of measurements called Spaceflight Standard Measures. The measurements represent how the human body and mind adapt to space travel over time and serve as a basis for other spaceflight studies like CIPHER. Additionally, crew members may provide biological samples for Omics Archive, a separate study analyzing how the body reacts to long-duration spaceflight at the molecular level.

In another study, select crew members will test a potential treatment for spaceflight-associated neuro-ocular syndrome, a condition associated with brain changes and swelling of the back of the eye. Researchers are unsure what causes the syndrome or why only certain astronauts develop it, but the shift of bodily fluids toward the head in weightlessness may play a role. Some scientists believe genetics related to how the body processes B vitamins may affect how astronauts respond to those fluid shifts. Participating crew will test whether a daily B vitamin supplement can ease or prevent the development of symptoms. They also will investigate if cuffs worn on astronauts’ thighs to keep fluids in the legs could be an effective intervention.

Upon return, the select crew members will complete surveys that record any discomfort or injuries associated with landing, such as scrapes and bruises. Results of the surveys­­ ̶ when combined with data retrieved by sensors in the vehicle­­ ̶ will help researchers catalog these injuries and improve the design of spacecraft.

Crew members began participating in the studies about a year before their mission, learning about the work and offering baseline health data. They will continue to provide data for the experiments for up to two years after returning home.

____

NASA’s Human Research Program pursues the best methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, commercial missions, and the International Space Station, the program scrutinizes how spaceflight affects human bodies and behaviors. Such research drives NASA’s quest to innovate ways that keep astronauts healthy and mission-ready as human space exploration expands to the Moon, Mars, and beyond.

Learn More About Exercising in Space Astronauts aboard the International Space Station typically exercise for two hours each day. From running to cycling to weightlifting, learn how crew members complete fitness regimens in space and commit to staying healthy – even in microgravity (Credit: NASA). Explore More 2 min read NASA Prepares Gateway Lunar Space Station for Journey to Moon

Assembly is underway for Gateway's Power and Propulsion Element, the module that will power the…

Article 1 week ago
5 min read NASA Marks Artemis Progress With Gateway Lunar Space Station

NASA and its international partners are making progress on Gateway – the lunar space station…

Article 2 weeks ago
5 min read NASA Readies Moon Rocket for the Future with Manufacturing Innovation Article 3 weeks ago Keep Exploring Discover More Topics From NASA

Living in Space

Artemis

Human Research Program

Space Station Research and Technology

Categories: NASA

2025 Aviation Weather Mission: Civil Air Patrol Cadets Help Scientists Study the Atmosphere with GLOBE Clouds

Tue, 03/04/2025 - 5:32pm
Explore This Section

  1. Science
  2. Science Activation
  3. 2025 Aviation Weather Mission:…
 

2 min read

2025 Aviation Weather Mission: Civil Air Patrol Cadets Help Scientists Study the Atmosphere with GLOBE Clouds

The Science Activation Program’s NASA Earth Science Education Collaborative (NESEC) is working alongside the Civil Air Patrol (CAP) to launch the 2025 Aviation Weather Mission. The mission will engage cadets (students ages 11-20) and senior members to collect aviation-relevant observations including airport conditions, Global Learning and Observations to Benefit the Environment (GLOBE) Cloud observations, commercial aircraft information (including registration number and altitude), and satellite collocations provided by the NASA GLOBE Clouds team at NASA Langley Research Center. This mission results from a highly successful collaboration between NESEC and CAP as cadets and senior members collected cloud, air temperature, and land cover observations during the partial and total solar eclipses in 2023 and 2024, engaging over 400 teams with over 3,000 cadets and over 1,000 senior members in every state, Washington DC, and Puerto Rico.

The 2025 Aviation Weather Mission will take place from April through July 2025, collecting observations over two 4-hour periods while practicing additional skills, such as flight tracking, orienteering, and data management. So far, over 3,000 cadets in 46 wings (states) have signed up to participate.

Science Activation recently showed support for this mission through a letter of collaboration sent to CAP Major General Regena Aye in early February. NASA GLOBE Clouds and GLOBE Observer are part of the NASA Earth Science Education Collaborative (NESEC), which is led by the Institute for Global Environmental Strategies (IGES) and supported by NASA under cooperative agreement award number NNX16AE28A. NESEC is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn

Cadets from the Virginia wing making cloud observations as they prepare for the 2025 Aviation Weather Mission. Share

Details

Last Updated

Mar 04, 2025

Editor NASA Climate Editorial Team Location NASA Langley Research Center

Related Terms Explore More

2 min read Sharing PLANETS Curriculum with Out-of-School Time Educators

Article


1 week ago

3 min read Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska

Article


2 weeks ago

2 min read An Afternoon of Family Science and Rocket Exploration in Alaska

Article


3 weeks ago

Keep Exploring Discover More Topics From NASA

James Webb Space Telescope

Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


Perseverance Rover

This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


Parker Solar Probe

On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


Juno

NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

Categories: NASA

NASA Awards Launch Service for Mission to Study Storm Formation

Tue, 03/04/2025 - 5:30pm
Credit: NASA

NASA has selected Firefly Aerospace Inc. of Cedar Park, Texas, to provide the launch service for the agency’s Investigation of Convective Updrafts (INCUS) mission, which aims to understand why, when, and where tropical convective storms form, and why some storms produce extreme weather. The mission will launch on the company’s Alpha rocket from NASA’s Wallops Flight Facility in Virginia.

The selection is part of NASA’s Venture-Class Acquisition of Dedicated and Rideshare (VADR) launch services contract. This contract allows the agency to make fixed-price indefinite-delivery/indefinite-quantity awards during VADR’s five-year ordering period, with a maximum total value of $300 million across all contracts.

The INCUS mission, comprised of three SmallSats flying in tight coordination, will investigate the evolution of the vertical transport of air and water by convective storms. These storms form when rapidly rising water vapor and air create towering clouds capable of producing rain, hail, and lightning. The more air and water that rise, the greater the risk of extreme weather. Convective storms are a primary source of precipitation and cause of the most severe weather on Earth.

Each satellite will have a high frequency precipitation radar that observes rapid changes in convective cloud depth and intensities. One of the three satellites also will carry a microwave radiometer to provide the spatial content of the larger scale weather observed by the radars. By flying so closely together, the satellites will use the slight differences in when they make observations to apply a novel time-differencing approach to estimate the vertical transport of convective mass.

NASA selected the INCUS mission through the agency’s Earth Venture Mission-3 solicitation and Earth System Science Pathfinder program. The principal investigator for INCUS is Susan van den Heever at Colorado State University in Fort Collins. Several NASA centers support the mission, including Langley Research Center in Hampton, Virginia, the Jet Propulsion Laboratory in Southern California, Goddard Space Flight Center in Greenbelt, Maryland, and Marshall Space Flight Center in Huntsville, Alabama. Key satellite system components will be provided by Blue Canyon Technologies and Tendeg LLC, both in Colorado. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, manages the VADR contract.

To learn more about NASA’s INCUS mission, visit:

https://science.nasa.gov/mission/incus

-end-

Tiernan Doyle
Headquarters, Washington
202-358-1600
tiernan.doyle@nasa.gov

Patti Bielling
Kennedy Space Center, Florida
321-501-7575
patricia.a.bielling@nasa.gov

Share Details Last Updated Mar 04, 2025 LocationNASA Headquarters Related Terms
Categories: NASA

Station Nation: Meet Chris Wade, Visiting Vehicle Integration Manager for SpaceX Vehicles 

Tue, 03/04/2025 - 5:27pm

Chris Wade is a visiting vehicle integration manager for SpaceX vehicles in the International Space Station Transportation Integration Office. He plays a key role in ensuring that all vehicle requirements are on track to support SpaceX missions to the space station. Chris also manages a team of real-time mission support personnel who follow launch, docking, undocking, and splashdown operations. Read on to learn about his career with NASA and more! 

Where are you from? 

I am from Clarksdale, Mississippi. 

Tell us about your role at NASA.  

I manage horizontal integration between the SpaceX vehicle provider and the Commercial Crew and International Space Station Programs. In this role, I work to ensure all vehicle requirements will close in time to support upcoming SpaceX missions to the orbiting laboratory and achieve final certification prior to launch. Additionally, as a vehicle integration manager, I manage a team of real-time mission support personnel who follow launch, docking, undocking, and splashdown operations. 

Chris Wade in Mission Control Center at Johnson Space Center following the arrival of a visiting vehicle to the International Space Station. I enjoy telling people that we have a space station that has been in low Earth orbit with people on it for nearly 25 years.

cHRIS wade

Visiting Vehicle Integration Manager for SpaceX Vehicles

How would you describe your job to family or friends who may not be familiar with NASA?  

In my current position, I am responsible for ensuring SpaceX Dragon vehicles have met all requirements to conduct missions to the space station. 

How long have you been working for NASA?  

I have been working at Johnson Space Center for 25 years. 

What advice would you give to young individuals aspiring to work in the space industry or at NASA?  

I would advise young individuals to focus their studies on the STEM fields and work hard. I would also advise aspiring candidates to start applying for NASA internships as soon as feasible and don’t be opposed to opportunities in the contractor workforce. 

What was your path to NASA?  

My path to NASA was through the contractor workforce. I started working in space station robotic assembly analysis for Lockheed Martin directly out of college, then later became a civil servant at NASA. 

Is there someone in the space, aerospace, or science industry that motivated or inspired you to work for the space program? Or someone you discovered while working for NASA who inspires you?   

The Space Shuttle Challenger STS-51-L crew motivated me to pursue a career at NASA. I vividly remember watching the launch from an elementary classroom in Mississippi and thinking, I wish I could do something to help one day. When I got an opportunity to work at Johnson, it was a no-brainer for me to accept the offer. 

What is your favorite NASA memory?  

My favorite NASA memory is when I saw my first rocket launch, which was HTV-1 in Kagoshima, Japan. 

Chris Wade accepting a group achievement award as a member of the Latching End Effector Return Team with Johnson Space Center’s Deputy Center Director Vanessa Wyche and Center Director Mark Geyer in 2019.NASA/Robert Markowitz

What do you love sharing about station? What’s important to get across to general audiences to help them understand its benefits to life on Earth?  

I enjoy telling people that we have a space station that has been in low Earth orbit with people on it for nearly 25 years and we rotate crews of astronauts every six months. 

If you could have dinner with any astronaut, past or present, who would it be?  

I would have dinner with NASA astronaut Ron McNair. Growing up in a small southern town, my path to NASA was very similar to his. I find it fascinating how individuals from different eras can end up on similar paths in life, and I would love to have a conversation with him about the choices he made that lead to his career as an astronaut. 

Do you have a favorite space-related memory or moment that stands out to you?  

My favorite space-related memory is watching the SpaceX Demo-2 Crew Mission arrive at the International Space Station. That was the first launch of NASA astronauts from American soil since the Space Shuttle Program had ended almost 10 years prior.

What are some of the key projects you’ve worked on during your time at NASA? What have been your favorite?   

Some of the key projects I’ve worked on include: 

  • Robotic assembly of the International Space Station 
  • Robotic visiting vehicle capture  
  • Cargo and crew dragon visiting vehicle mission certification 

Of these, my favorite was the robotic visiting vehicle capture project. For this project, I got to work with the Canadian Space Agency and develop a method of using the space station’s robotic arm to grab unmanned visiting resupply vehicles. 

Chris Wade at Kennedy Space Center in front of NASA’s Space Launch System rocket with the Orion spacecraft aboard atop a mobile launcher at Launch Complex 39B.

What are your hobbies/things you enjoy outside of work?  

Some of my favorite hobbies include running, reading, listening to audio books, and visiting family and friends back in Mississippi. 

Day launch or night launch?   

Day launch! 

Favorite space movie?  

Armageddon 

NASA “worm” or “meatball” logo?  

Worm 

Every day, we’re conducting exciting research aboard our orbiting laboratory that will help us explore further into space and bring benefits back to people on Earth. You can keep up with the latest news, videos, and pictures about space station science on the Station Research & Technology news page. It’s a curated hub of space station research digital media from Johnson and other centers and space agencies.  

Sign up for our weekly email newsletter to get the updates delivered directly to you.  

Follow updates on social media at @ISS_Research on Twitter, and on the space station accounts on Facebook and Instagram.  

Categories: NASA

FARMing with Data: OpenET Launches new Tool for Farmers and Ranchers

Tue, 03/04/2025 - 4:41pm

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Dwane Roth (right), a fourth generation grain farmer in Finney County, Kansas, stands with nephew Zion (left) in one of their corn fields. Roth’s farm became one of the first Water Technology Farms in Kansas around 2016, and he has been using OpenET data for the past few years to track evapotranspiration rates and conserve water. Photo courtesy of Dwane Roth

A NASA and U.S. Geological Survey (USGS)-supported research and development team is making it easier for farmers and ranchers to manage their water resources.

The team, called OpenET, created the Farm and Ranch Management Support (FARMS) tool, which puts timely, high-resolution water data directly in the hands of individuals and small farm operators. By making the information more accessible, the platform can better support decision-making around agricultural planning, water conservation, and water efficiency.  The OpenET team hopes this will help farmers who are working to build greater resiliency in local and regional agriculture communities.

“It’s all about finding new ways to make satellite data easier to access and use for as many people as possible,” said Forrest Melton, the OpenET project scientist at NASA’s Ames Research Center in Silicon Valley. “The goal is to empower users with actionable, science-based data to support decisions about water management across the West.”

The goal is to empower users with actionable, science-based data to support decisions about water management across the West.

Forrest melton

OpenET Project Scientist

OpenET Data Explorer Tool: The Road to FARMS

The OpenET data explorer tool centers on providing evapotranspiration data. Evapotranspiration (ET) refers to the amount of water leaving Earth’s surface and returning to the atmosphere through evaporation (from soil and surface water) and transpiration (water vapor released by crops and other plants). Evapotranspiration is an important factor in agriculture, water resource management, irrigation planning, drought monitoring, and fire risk evaluation.

The FARMS resource is the third phase of OpenET’s Data Explorer tool, launched in 2021, which uses satellite data to quantify evapotranspiration across the western U.S.

It starts with using Landsat data to measure patterns in land surface temperature and key indicators of vegetation conditions. The satellite data is combined with agricultural data, such as field boundaries, and weather data, such as air temperature, humidity, solar radiation, wind speed, and precipitation. All of these factors feed into a model, which calculates the final evapotranspiration data.

The new FARMS interface was designed to make that data easier to access, with features that meet specific needs identified by users.

“This amount of data can be complicated to use, so user input helped us shape FARMS,” said Jordan Harding, app developer and interface design leader from HabitatSeven. “It provides a mobile-friendly, map-based web interface designed to make it as easy as possible to get automated, regular reports.”

Top: A section of the 2024 annual report Roth submits to the Farm Service Agency, with hand-written annotations marking which crop will be grown that year. Bottom: Those same fields in the new OpenET FARMS interface, with a dashboard on the left displaying evapotranspiration data over the course of 2024 at monthly intervals. Each color line corresponds to the same color field on the map, showcasing how much evapotranspiration rates can differ between different crops in the same vicinity. The unique shape of the purple field (forage sorghum), is an example of a case where FARMS’ custom shape feature is helpful. Once the initial report is set up, Roth can re-run reports for the same fields at any time. NASA/OpenET

“The FARMS tool is designed to help farmers optimize irrigation timing and amounts, simplify planning for the upcoming irrigation season, and automate ET and water use reporting,” said Sara Larsen, CEO of OpenET. “All of this reduces waste, lowers costs, and informs crop planning.”

Although FARMS is geared towards agriculture, the tool has value for other audiences in the western U.S. Land managers who evaluate the impacts of wildfire can use it to evaluate burn scars and changes to local hydrology. Similarly, resource managers can track evapotranspiration changes over time to evaluate the effectiveness of different forest management plans.

New Features in FARMS

To develop FARMS, the OpenET team held listening sessions with farmers, ranchers, and resource managers. One requested function was support for field-to-field comparisons; a feature for planning irrigation needs and identifying problem areas, like where pests or weeds may be impacting crop yields.

The tool includes numerous options for drawing or selecting field boundaries, generating custom reports based on selected models and variables, and  automatically re-running reports at daily or monthly intervals.

The fine spatial resolution and long OpenET data record behind FARMS make these features more effective. Many existing global ET data products have a pixel size of over half a mile, which is too big to be practical for most farmers and ranchers. The FARMS interface provides insights at the scale of a quarter-acre per pixel, which offers multiple data points within an individual field.

“If I had told my father about this 15 years ago, he would have called me crazy,” said Dwane Roth, a fourth-generation farmer in Kansas. “Thanks to OpenET, I can now monitor water loss from my crops in real-time. By combining it with data from our soil moisture probes, this tool is enabling us to produce more food with less water. It’s revolutionizing agriculture.”

The FARMS mobile interface displays a six-year evapotranspiration report of a pear orchard owned by sixth-generation California farmer Brett Baker. The purple line in the dashboard report (left) corresponds with the field selected in purple on the map view (right), which users can toggle between using the green buttons in the top right corners. Running multi-year reports allows farmers to review historical trends.NASA/OpenET

For those like sixth-generation California pear farmer Brett Baker, the 25-year span of ET data is part of what makes the tool so valuable. “My family has been farming the same crop on the same piece of ground for over 150 years,” Baker said. “Using FARMS gives us the ability to review historical trends and changes to understand what worked and what didn’t year to year: maybe I need to apply more fertilizer to that field, or better weed control to another. Farmers know their land, and FARMS provides a new tool that will allow us to make better use of land and resources.”

According to Roth, the best feature of the tool is intangible.  “Being a farmer is stressful,” Roth said. “OpenET is beneficial for the farm and the agronomic decisions, but I think the best thing it gives me is peace of mind.”

Being a farmer is stressful. OpenET is beneficial for the farm and the agronomic decisions, but I think the best thing it gives me is peace of mind.

Dwane Roth

Fourth-Generation Kansas Grain Farmer

Continuing Evolution of FARMS

Over the coming months, the OpenET team plans to present the new tool at agricultural conferences and conventions in order to gather feedback from as many users as possible. “We know that there is already a demand for a seven-day forecast of ET, and I’m sure there will be requests about the interface itself,” said OpenET senior software engineer Will Carrara. “We’re definitely looking to the community to help us further refine that platform.”

“I think there are many applications we haven’t even thought of yet,” Baker added. “The FARMS interface isn’t just a tool; it’s an entirely new toolbox itself. I’m excited to see what people do with it.”

FARMS was developed through a public-private collaboration led by NASA, USGS, USDA, the non-profit OpenET, Inc., Desert Research Institute, Environmental Defense Fund, Google Earth Engine, HabitatSeven, California State University Monterey Bay, Chapman University, Cornell University, University of Nebraska-Lincoln, UC Berkeley and other universities, with input from more than 100 stakeholders.

For resources/tutorials on how to use FARMS, please visit: https://openet.gitbook.io/docs/additional-resources/farms

About the AuthorMilan LoiaconoScience Communication Specialist

Milan Loiacono is a science communication specialist for the Earth Science Division at NASA Ames Research Center.

Share Details Last Updated Mar 04, 2025 Related Terms Explore More 2 min read 2025 Aviation Weather Mission: Civil Air Patrol Cadets Help Scientists Study the Atmosphere with GLOBE Clouds

The Science Activation Program’s NASA Earth Science Education Collaborative (NESEC) is working alongside the Civil…

Article 6 hours ago
2 min read NASA Marks 110 Years Since Founding of Predecessor Organization Article 2 days ago 3 min read NASA Uses New Technology to Understand California Wildfires Article 4 days ago Keep Exploring Discover More Topics From NASA

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

NASA Sets Coverage for Intuitive Machines’ Second Private Moon Landing

Tue, 03/04/2025 - 3:12pm
Intuitive Machines’ IM-2 mission lunar lander, Athena, entering lunar orbit on Monday, March 3. Credit: Intuitive Machines

Carrying NASA technology demonstrations and science investigations, Intuitive Machines is targeting their Moon landing no earlier than 12:32 p.m. EST on Thursday, March 6. The company’s Nova-C lunar lander is slated to land in Mons Mouton, a lunar plateau near the Moon’s South Pole, as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to establish a long-term lunar presence.

Watch live landing coverage of the Intuitive Machines 2 (IM-2) landing, hosted by NASA and Intuitive Machines, on NASA+ starting no earlier than 11:30 a.m., approximately 60 minutes before touchdown. Beginning at 11 a.m. the agency will share blog updates as landing milestones occur.

Following the Moon landing, NASA and Intuitive Machines will host a news conference from NASA’s Johnson Space Center in Houston to discuss the mission, technology demonstrations, and science opportunities that lie ahead as lunar surface operations begin.

U.S. media interested in participating in person must request accreditation by 4 p.m. Wednesday, March 5, by contacting the NASA Johnson newsroom at 281-483-5111 or jsccommu@mail.nasa.gov. A copy of NASA’s media accreditation policy is online. To ask questions via phone, all media must RSVP by 4 p.m. March 5 to the NASA Johnson Newsroom, and dial in at least 15 minutes before the briefing begins.

Full coverage of the IM-2 mission includes (all times Eastern):

Thursday, March 6

  • 11:30 a.m. – Landing coverage begins on NASA+
  • 12:32 p.m. – Landing
  • 4 p.m. – Post-landing news conference on NASA+

After landing, NASA and Intuitive Machines leaders will participate in the news conference: 

  • Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters  
  • Clayton Turner, associate administrator, Space Technology Mission Directorate, NASA Headquarters 
  • Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters 
  • Steve Altemus, CEO, Intuitive Machines
  • Tim Crain, chief growth officer, Intuitive Machines

The IM-2 mission launched at 7:16 p.m. Feb. 26 on a SpaceX Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The lander is carrying NASA technology that will measure the potential presence of resources from lunar soil that could be extracted and used by future explorers to produce fuel or breathable oxygen.

In addition, a passive Laser Retroreflector Array on the top deck of the lander will bounce laser light back at any orbiting or incoming spacecraft to give future spacecraft a permanent reference point on the lunar surface. Other technologies on this delivery will demonstrate a robust cellular network to help future astronauts communicate and deploy a propulsive drone that can hop across the lunar surface to navigate its challenging terrain.

NASA continues to work with multiple American companies to deliver technology and science to the lunar surface through the agency’s CLPS initiative. This pool of companies may bid on contracts for end-to-end lunar delivery services, including payload integration and operations, launching from Earth, and landing on the surface of the Moon. NASA’s CLPS contracts are indefinite-delivery/indefinite-quantity contracts with a cumulative maximum value of $2.6 billion through 2028. The agency awarded Intuitive Machines the contract to send NASA science investigations and technology demonstrations to the Moon using its American-designed and -manufactured lunar lander for approximately $62.5 million.

Through the Artemis campaign, commercial robotic deliveries will test technologies, perform science experiments, and demonstrate capabilities on and around the Moon to help NASA explore in advance of Artemis Generation astronaut missions to the lunar surface, and ultimately crewed missions to Mars.

Learn how to watch NASA content on various platforms, including social media, and follow all events at: 

https://www.plus.nasa.gov

Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtag #Artemis. You can also stay connected by following and tagging these accounts: 

X: @NASA, @NASA_Johnson, @NASAArtemis, @NASAMoon, @NASA_Technology

Facebook: NASANASAJohnsonSpaceCenterNASAArtemis, NASATechnology

Instagram: @NASA, @NASAJohnson, @NASAArtemis 

For more information about the agency’s Commercial Lunar Payload Services initiative: 

https://www.nasa.gov/clps

-end-

Karen Fox / Jasmine Hopkins
Headquarters, Washington 
202-358-1600  
karen.c.fox@nasa.gov / jasmine.s.hopkins@nasa.gov

Natalia Riusech / Nilufar Ramji
Johnson Space Center, Houston 
281-483-5111 
natalia.s.riusech@nasa.gov / nilufar.ramji@nasa.gov 

Share Details Last Updated Mar 04, 2025 LocationNASA Headquarters Related Terms
Categories: NASA