All's not as it appears, this tale has many twists -
but if I wasn't here documenting the story
would that mean that the plot did not exist?

— Peter Hammill

NASA - Breaking News

Syndicate content
Official National Aeronautics and Space Administration Website
Updated: 8 hours 48 min ago

I Am Artemis: Joe Vermette

Fri, 11/08/2024 - 11:32am
NASA HLS (Human Landing System) Program strategic communicator and U.S. Navy Reservist Public Affairs Officer Joe Vermette brings a wealth of public service to Artemis communication activities. NASA/Ken Hall Coming from a Navy family, Vermette was inspired to military service by the example of his brother, uncles and father, who admired President John Kennedy’s call to land on the Moon and for citizens to do what they can for our country. Photo courtesy Joe Vermette

While some stand on the sidelines and witness history, others are destined to play a part in it. And then there are those who document it, bringing the people, the action, the images, the words, and the personalities to the world. U. S. Navy Reservist Public Affairs Officer and program strategic communicator for NASA’s HLS (Human Landing System) Joe Vermette stands at the nexus of all three.

Spurred to action to serve his country by the events of September 11, 2001; veteran of numerous overseas deployments with the Navy, and responsible for communicating NASA’s return to the Moon through the Artemis campaign, Vermette has played a part in history while he communicates humanity’s greatest endeavors to the world.

Vermette joined NASA in August 2020 during the COVID-19 pandemic, coming from the Federal Emergency Management Agency (FEMA), where he was a regional communications director. Right off the bat, he rose to the challenge of learning about space exploration, Artemis, and communicating the new way the HLS Program would work with commercial providers for Moon landing services,  rather than specifying spacecraft to be built.

“I was used to being right in the middle of the action,” Vermette said. “The pandemic challenged me to work in a new way. At the same time, NASA and HLS were working in a new way, having just brought on our first commercial provider, SpaceX,” he said. In May 2023, the HLS Program brought on a second commercial provider, Blue Origin, for human landing services.

After earning a degree in military history with a minor in communications from Florida State University, Vermette worked as a video journalist and spot writer for CNN. But it was the terrorist attacks of September 11, 2001, that really shaped his career in government service. “Three weeks later, I went down to the recruiting office and began the process of joining the military. I saw an opportunity to help the country in the best capacity I could,” Vermette said.

Since then, his career has been dotted by active deployments, from the Middle East to Europe to stateside; onboard Navy ships, at U.S. Central Command, at U. S. Special Operations Command, and more.

NASA’s HLS Program and Artemis have benefitted from Vermette’s experience and steady hand helping guide strategic communications since 2020. He recently answered the call to active duty again but intends to return to NASA once his military obligations are fulfilled.

“NASA is a different world than the military or disaster response. But I’ve been fortunate enough to see – and communicate about – government success stories in all three arenas, Vermette said. “Seeing NASA put astronauts on the Moon again will be the best ‘mission complete’ I could have.”

With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of the Red Planet. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.

For more on HLS, visit: 

https://www.nasa.gov/humans-in-space/human-landing-system

Corinne Beckinger 
Marshall Space Flight Center, Huntsville, Ala. 
256.544.0034  
corinne.m.beckinger@nasa.gov 

Categories: NASA

Powerful New US-Indian Satellite Will Track Earth’s Changing Surface

Fri, 11/08/2024 - 10:56am

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) The NISAR mission will help researchers get a better understanding of how Earth’s surface changes over time, including in the lead-up to volcanic eruptions like the one pictured, at Mount Redoubt in southern Alaska in April 2009.R.G. McGimsey/AVO/USGS

Data from NISAR will improve our understanding of such phenomena as earthquakes, volcanoes, and landslides, as well as damage to infrastructure.

We don’t always notice it, but much of Earth’s surface is in constant motion. Scientists have used satellites and ground-based instruments to track land movement associated with volcanoes, earthquakes, landslides, and other phenomena. But a new satellite from NASA and the Indian Space Research Organisation (ISRO) aims to improve what we know and, potentially, help us prepare for and recover from natural and human-caused disasters.

The NISAR (NASA-ISRO Synthetic Aperture Radar) mission will measure the motion of nearly all of the planet’s land and ice-covered surfaces twice every 12 days. The pace of NISAR’s data collection will give researchers a fuller picture of how Earth’s surface changes over time. “This kind of regular observation allows us to look at how Earth’s surface moves across nearly the entire planet,” said Cathleen Jones, NISAR applications lead at NASA’s Jet Propulsion Laboratory in Southern California.

Together with complementary measurements from other satellites and instruments, NISAR’s data will provide a more complete picture of how Earth’s surface moves horizontally and vertically. The information will be crucial to better understanding everything from the mechanics of Earth’s crust to which parts of the world are prone to earthquakes and volcanic eruptions. It could even help resolve whether sections of a levee are damaged or if a hillside is starting to move in a landslide.

The NISAR mission will measure the motion of Earth’s surface — data that can be used to  monitor critical infrastructure such as airport runways, dams, and levees. NASA/JPL-Caltech What Lies Beneath

Targeting an early 2025 launch from India, the mission will be able to detect surface motions down to fractions of an inch. In addition to monitoring changes to Earth’s surface, the satellite will be able to track the motion of ice sheets, glaciers, and sea ice, and map changes to vegetation.

The source of that remarkable detail is a pair of radar instruments that operate at long wavelengths: an L-band system built by JPL and an S-band system built by ISRO. The NISAR satellite is the first to carry both. Each instrument can collect measurements day and night and see through clouds that can obstruct the view of optical instruments. The L-band instrument will also be able to penetrate dense vegetation to measure ground motion. This capability will be especially useful in areas surrounding volcanoes or faults that are obscured by vegetation.

“The NISAR satellite won’t tell us when earthquakes will happen. Instead, it will help us better understand which areas of the world are most susceptible to significant earthquakes,” said Mark Simons, the U.S. solid Earth science lead for the mission at Caltech in Pasadena, California.

Data from the satellite will give researchers insight into which parts of a fault slowly move without producing earthquakes and which sections are locked together and might suddenly slip. In relatively well-monitored areas like California, researchers can use NISAR to focus on specific regions that could produce an earthquake. But in parts of the world that aren’t as well monitored, NISAR measurements could reveal new earthquake-prone areas. And when earthquakes do occur, data from the satellite will help researchers understand what happened on the faults that ruptured.

“From the ISRO perspective, we are particularly interested in the Himalayan plate boundary,” said Sreejith K M, the ISRO solid Earth science lead for NISAR at the Space Applications Center in Ahmedabad, India. “The area has produced great magnitude earthquakes in the past, and NISAR will give us unprecedented information on the seismic hazards of the Himalaya.”

Surface motion is also important for volcano researchers, who need data collected regularly over time to detect land movements that may be precursors to an eruption. As magma shifts below Earth’s surface, the land can bulge or sink. The NISAR satellite will help provide a fuller picture for why a volcano deforms and whether that movement signals an eruption.

Finding Normal

When it comes to infrastructure such as levees, aqueducts, and dams, NISAR’s ability to provide continuous measurements over years will help to establish the usual state of the structures and surrounding land. Then, if something changes, resource managers may be able to pinpoint specific areas to examine. “Instead of going out and surveying an entire aqueduct every five years, you can target your surveys to problem areas,” said Jones.

The data could be equally valuable for showing that a dam hasn’t changed after a disaster like an earthquake. For instance, if a large earthquake struck San Francisco, liquefaction — where loosely packed or waterlogged sediment loses its stability after severe ground shaking — could pose a problem for dams and levees along the Sacramento-San Joaquin River Delta.

“There’s over a thousand miles of levees,” said Jones. “You’d need an army to go out and look at them all.” The NISAR mission would help authorities survey them from space and identify damaged areas. “Then you can save your time and only go out to inspect areas that have changed. That could save a lot of money on repairs after a disaster.”

More About NISAR

The NISAR mission is an equal collaboration between NASA and ISRO and marks the first time the two agencies have cooperated on hardware development for an Earth-observing mission. Managed for the agency by Caltech, JPL leads the U.S. component of the project and is providing the mission’s L-band SAR. NASA is also providing the radar reflector antenna, the deployable boom, a high-rate communication subsystem for science data, GPS receivers, a solid-state recorder, and payload data subsystem. The U R Rao Satellite Centre in Bengaluru, India, which leads the ISRO component of the mission, is providing the spacecraft bus, the launch vehicle, and associated launch services and satellite mission operations. The ISRO Space Applications Centre in Ahmedabad is providing the S-band SAR electronics.

To learn more about NISAR, visit:

https://nisar.jpl.nasa.gov

News Media Contacts

Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov

2024-155

Share Details Last Updated Nov 08, 2024 Related Terms Explore More 2 min read Hurricane Helene’s Gravity Waves Revealed by NASA’s AWE

On Sept. 26, 2024, Hurricane Helene slammed into the Gulf Coast of Florida, inducing storm…

Article 3 days ago
3 min read Integrating Relevant Science Investigations into Migrant Children Education

For three weeks in August, over 100 migrant children (ages 3-15) got to engage in…

Article 4 days ago
5 min read NASA, Bhutan Conclude Five Years of Teamwork on STEM, Sustainability Article 6 days ago Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

NASA Kennedy’s Applied Chemistry Lab Achieves Agency First

Fri, 11/08/2024 - 10:53am
Dr. Annie Meier (second from left) and her team inside the Applied Chemistry Lab at NASA’s Kennedy Space Center in Florida began supplementing their normal workload in mid-2023 with efforts to improve the lab’s sustainable practices. In 2024, the laboratory became the first at NASA to receive certification from the non-profit My Green Lab for its efforts in sustainability.NASA/Kim Shiflett

NASA’s Kennedy Space Center in Florida has a long record of achievements in sustainability and recently added another to the list when the spaceport’s Applied Chemistry Lab became the first in the agency to be certified for its environmentally conscious practices.

The My Green Lab Certification recognizes sustainability best practices in research facilities around the world. The certification program run by My Green Lab, a non-profit dedicated to creating a culture of sustainability through science, is considered a key measure of progress towards a zero-carbon future by the United Nations Race to Zero campaign.

“When I heard our lab achieved certification, I was so happy,” said Dr. Annie Meier, one of the laboratory’s chemical engineers. “It meant we could now make a conscious effort to share these green practices with all who work in our lab. We even added them to our training materials for new and incoming members in the lab.”

The lab performs research and technology development for a wide range of chemistry and engineering-related applications to solve the unique operational needs of NASA and outside partners. The lab primarily focuses on in-situ resource utilization and addressing technology gaps related to lunar and Martian sustainability. The lab’s scientists also provide expertise in the fields of logistics reduction, plasma science, hypergolic fuels, analytical instrumentation, and gas analysis.

While sustainability has long been a focus of the lab, the journey to the certification began when Riley Yager, a doctoral student from University of Alabama at Birmingham – where Meier was a technical monitor – shared her knowledge of the program after pursuing green lab practices at her university.

“I work as a sustainability ambassador at my university, so I knew of this program,” Yager said. “Sustainable practices are something woven into my everyday life, so naturally I wanted to bring those practices into my lab environments.”

After learning about the program from Yager and discovering the many other academic institutions and companies certified globally, Meier submitted a proposal to NASA and obtained funding to pursue certification for the Applied Chemistry Lab.

After a kickoff event hosted by My Green Lab in April 2023, the lab’s path to certification began with a self-assessment survey, in which members of the lab answered a series of questions about their practices in areas such as cold storage, green chemistry, infrastructure energy, resource management, waste reduction, and water. My Green Lab collected and analyzed the answers, providing a baseline assessment and recommendations to improve the lab’s sustainable practices.

“We took their initial survey and learned we had lots of room for improvements as a lab,” Meier said. “Then I worked with a few interns over the summer to spearhead the ‘green team’ to implement changes and get momentum from the entire lab.”

The lab began with minimizing purchases by improving efficiencies during the inventory process. The team also performed a waste audit of all seven of its laboratories. They adopted nitrile glove and pipette tip box recycling, reviewed the “12 principles of green chemistry” with the lab members, and installed stickers and signage about what can and cannot be unplugged to save energy. Additionally, they installed low-flow aerators on the lab tap sinks to reduce flow, and the lab now uses a recycling sink to save on water or solvents for cleaning parts.

As luck would have it, Yager ended up working at the Applied Chemistry Lab on a NASA fellowship and became a member of the green team.

“It was really fun to see that come full circle,” Meier said. “Almost all members of the lab, from our fellows to most senior members, used their self-motivation to get on the sustainability train.”

The green team continued to grow as the lab implemented changes to become more sustainable. Just over six months after the kickoff event, they completed another assessment survey. With possible certification levels of bronze, silver, gold, platinum, and green – the level that adheres closest to My Green Lab’s highest standards – the ACL was certified green, marking the first time any NASA center obtained a My Green Lab Certification.

“Our lab is looking to sustain these green practices and achieve the same status when we are reassessed in the future,” Meier said. “This effort could be a wonderful catalyst to inspire other work groups to lean towards more ‘green’ practices at the frontline in our laboratories.”

The NASA Kennedy lab joined over 2,500 labs in a range of sectors that received the My Green Lab certification. Maintaining the distinction will require recertification every two years.

Categories: NASA

40 Years Ago: STS-51A – “The Ace Repo Company”

Fri, 11/08/2024 - 9:30am

Successfully deployed from the space shuttle Challenger during the February 1984 STS-41B mission, the Westar 6 and Palapa B2 communications satellites ended up in incorrect orbits due to failures of their upper stage rockets. During STS-51A in November 1984, Discovery’s second trip into space, the crew of Commander Frederick H. “Rick” Hauck, Pilot David M. Walker, and Mission Specialists Joseph P. Allen, Anna L. Fisher, and Dale A. Gardner worked as a team to not only deploy two new satellites but also to retrieve the two wayward but otherwise healthy satellites for return to Earth. Hauck and Walker piloted Discovery to rendezvous with each satellite in turn, Allen and Gardner retrieved them during two spacewalks, and Fisher grappled and placed them in the payload bay for return to Earth. After refurbishment, both satellites returned to space.


Left: The STS-51A crew of Dale A. Gardner, left, David M. Walker, Anna L. Fisher, Frederick “Rick” H. Hauck, and Joseph P. Allen. Right: The STS-51A crew patch.

NASA originally designated Hauck, Walker, Allen, Fisher, and Gardner as a crew in November 1983 and assigned them to STS-41H, a mission aboard Challenger planned for late September 1984 to either deploy the second Tracking and Data Relay Satellite (TDRS) or fly a classified payload for the Department of Defense. Due to ongoing problems with the Inertial Upper Stage that failed to put the first TDRS satellite in its correct orbit during STS-6, NASA canceled STS-41H and shifted Hauck’s crew to STS-51A. In February 1984, an agreement between NASA and the Canadian government added an as-yet unnamed Canadian payload specialist to the STS-51A crew. Managers later named the Canadian as Marc Garneau and reassigned him to STS-41G.

A shuffling of payloads following the STS-41D launch abort resulted in STS-51A now deploying the Anik D2 satellite for Canada and Leasat 1 (also known as Syncom IV-1) for the U.S. Navy. By early August, the launch date had slipped to Nov. 2, with NASA considering the possibility of retrieving the two wayward satellites from STS-41B, officially adding that task on Aug. 13. NASA selected Allen in 1967 as one of 11 scientist-astronauts, while the rest of the crew hail from the Class of 1978. Hauck, on his second mission after serving as pilot on STS-7, has the distinction as the first from his class to command a shuttle mission. Allen and Gardner had each flown one previous mission, STS-5 and STS-8, respectively, while for Walker and Fisher STS-51A represented their first flight. Fisher has the distinction as the first mother in space. 


Left: After its arrival from the Orbiter Processing Facility, workers in the Vehicle Assembly Building (VAB) prepare to lift Discovery for mating with an External Tank (ET) and Solid Rocket Boosters (SRBs). Middle: Workers lift Discovery to stack it with the ET and SRBs. Right: The completed stack prepares to leave the VAB for the rollout to Launch Pad 39A.

Discovery arrived back at NASA’s Kennedy Space Center (KSC) in Florida on Sept. 10, returning from Edwards Air Force Base in California following the STS-41D mission. Workers towed it to the Orbiter Processing Facility (OPF) the next day to begin the process of refurbishing it for STS-51A. On Oct. 18, they rolled it over to the Vehicle Assembly Building (VAB), for stacking with an External Tank and twin Solid Rocket Boosters.


At NASA’s Kennedy Space Center in Florida, space shuttle Discovery rolls out to Launch Pad 39A, with the Saturn V rocket on display in the foreground.

The completed stack rolled out to Launch Pad 39A on Oct. 23. Two days later, the five-member STS-51A crew participated in the Terminal Countdown Demonstration Test, essentially a dress rehearsal for the actual countdown to launch. The crew returned to KSC on Nov. 5, the day the countdown began for a planned Nov. 7 launch. High upper-level winds that day forced a one-day delay.


Left: STS-51A astronaut Dale A. Gardner trains for the capture of a satellite using the Apogee Kick Motor Capture Device. Middle: Astronaut Anna L. Fisher trains to use the Canadian-built Remote Manipulator System, or robotic arm. Right: As part of the Terminal Countdown Demonstration Test, the STS-51A astronauts practice rapid evacuation from the launch pad.

Following deployment from Challenger during STS-41B, the upper stages of both the Westar 6 and Palapa B2 satellites malfunctioned, leaving them in non-useable 160-by-600-mile-high orbits instead of the intended 22,300-mile-high geostationary orbits required for their normal operations. While both satellites remained healthy, their own thrusters could not boost them to the proper orbits. NASA devised a plan to have astronauts retrieve the satellites during spacewalks using the jetpack known as the Manned Maneuvering Unit (MMU), after which the shuttle’s Canadian-built Remote Manipulator System (RMS) or robot arm would grapple them and place them into the cargo bay for return to Earth. Astronauts had demonstrated the capability of the MMU during the STS-41C Solar Max satellite repair mission in April 1984 and NASA felt confident of its ability to capture and return Westar and Palapa. 

In the weeks prior to STS-51A, ground controllers lowered the orbits of both satellites and reduced their spin rates from 50 to 1 rpm to enable capture by the shuttle astronauts. Engineers at NASA’s Johnson Space Center in Houston developed the Apogee Kick Motor Capture Device (ACD), otherwise known as the stinger due to its appearance, to allow an astronaut to capture the satellites while flying the MMU. Once relocated over the payload bay, a second astronaut would remove the satellite’s omnidirectional antenna with pruning shears and install an Antenna Bridge Structure (ABS) with a grapple fixture over the satellite’s main antenna dish. Allen would fly the MMU to capture Palapa, then he would switch roles with Gardner who would capture Westar. Fisher would use the RMS to grapple the satellites by this second fixture and lower them into specially built cradles to secure them into the payload bay.


Left: The STS-51A crew leaves crew quarters on their way to Launch Pad 39A. Middle: Liftoff of Discovery on the STS-51A mission. Right: View inside Discovery’s payload bay shortly after orbital insertion – the top of Anik D2 is visible, with Leasat 1 hidden behind it.

Space shuttle Discovery roared off KSC’s Launch Pad 39A on Nov. 8, 1984, to begin the STS-51A mission and mark the orbiter’s first return to space. For Gardner, launch day coincided with his 36th birthday. The launch took place just 26 days after the landing of the previous mission, STS-41G, a then record-breaking turnaround time between shuttle flights. Eight and a half minutes after liftoff, Discovery and its five-member crew reached space and shortly thereafter settled into a 182-by-172-mile-high initial orbit. As their first order of business, the crew checked out the RMS to ensure its functionality for the satellite captures later in the mission. They also performed the first rendezvous burn to begin the approach to the Palapa satellite. The crew then settled down for its first night’s sleep in orbit.


Left: Nighttime deploy of the Anik D2 satellite. Middle: Deploy of the Leasat 1 satellite. Right: Leasat 1 as it departs from Discovery.

The primary activity of the second flight day involved Allen deploying the 2,727-pound Anik D2 satellite via a spring ejection mechanism, occurring on time and with no issues. The crew also circularized the shuttle’s orbit at 186 miles. The next day, Gardner deployed the 17,000-pound Leasat 1 using the Frisbee style mechanism used to deploy the first Leasat during STS-41D two months earlier. With the satellite deployments complete, the crew began to focus on the rendezvous maneuvers to bring them close to the Palapa B2 satellite while Allen and Gardner verified the functionality of their spacesuits. On flight day 4, the astronauts reduced the pressure inside the shuttle from 14.7 pounds per square inch (psi) to 10.2 psi in order to prevent the spacewalking astronauts from developing the bends inside the spacesuits that operated at 4.3 psi.


Left: During the first spacewalk, Jospeh P. Allen captures the Palapa B2 satellite. Middle: Anna L. Fisher grasps Allen and Palapa with the Remote Manipulator System, or robotic arm. Right: Allen, left, and Dale A. Gardner prepare to place Palapa in its cradle in the payload bay.

On the fifth mission day, after Hauck and Walker piloted Discovery to within 35 feet of Palapa, Allen and Gardner exited the airlock to begin the spacewalk portion of the satellite capture. Allen donned the MMU mounted on the side wall of the cargo bay, attached the stinger to its arms, and flew out to Palapa. Once there, he inserted the stinger into the satellite’s Apogee Kick Motor bell and using the MMU’s attitude control system stopped Palapa’s spin.

Fisher then steered the RMS to capture a grapple fixture mounted on the stinger between Allen and the satellite. She then maneuvered them over the payload bay where Gardner waited to remove its omnidirectional antenna and install the bridge structure. However, Gardner could not attach the ABS to the satellite due to an unexpected clearance issue on the satellite. Using a backup plan, Allen undocked from the stinger, leaving it attached to the satellite as well as the RMS, and stowed the MMU in the payload bay. With Allen now holding the satellite by its antenna, Gardner attached an adaptor to the bottom end of the satellite to secure it in its cradle in the payload bay. This plan worked and Allen and Gardner completed the spacewalk in exactly six hours.


Left: Dale A. Gardner flies the Manned Maneuvering Unit to capture Westar 6 during the second spacewalk. Middle: Anna L. Fisher operates the Remote Manipulator System from Discovery’s aft flight deck. Right: Gardner, left, and Joseph P. Allen maneuver Westar prior to placing it in its cradle in the payload bay.

Between the two spacewalk days, the crew serviced the spacesuits, conducted routine maintenance on the shuttle, and prepared for the second rendezvous, this time to retrieve Westar. Allen and Gardner switched roles for the second spacewalk on flight day seven, with Gardner flying the MMU to capture Westar. The astronauts repeated the procedure from the first spacewalk, except for not removing the omni antenna so they could use it as a handhold. With Westar secured in the payload bay, Gardner and Allen completed the second spacewalk in 5 hours and 42 minutes.


Left: Dale A. Gardner, left, and Joseph P. Allen pose at the end of the Remote Manipulator System controlled by Anna L. Fisher, holding a For Sale sign above the two retrieved satellites secured in Discovery’s payload bay. Middle: Inflight photo of the STS-51A crew after the successful satellite retrievals. Right: View inside Discovery’s payload bay shortly before the deorbit burn, with Westar 6 in the foreground and Palapa B2 behind it.

During their final full day in space, Discovery’s crew repressurized the shuttle’s cabin to 14.7 psi and tidied the cabin in preparation for reentry. On Nov. 16, the astronauts closed the payload bay doors and fired the Orbital Maneuvering System engines to begin the descent back to Earth. Hauck guided Discovery to a smooth landing at KSC, completing a flight of 7 days, 23 hours, and 45 minutes. The crew had traveled nearly 3.3 million miles and completed 127 orbits around the Earth. The next day, workers towed Discovery to the OPF to begin preparing it for its next flight, STS-51C in January 1985.


Left: Discovery streaks over Houston on its way to land at NASA’s Kennedy Space Center (KSC) in Florida. Middle: Discovery moments before touchdown at KSC. Right: NASA officials greet the STS-51A astronauts as they exit Discovery.

As a postscript, STS-51A marked the last flight to use the MMUs, and the last untethered spacewalks until 1994 when STS-64 astronauts tested the Simplified Aid for EVA Rescue (SAFER). All subsequent spacewalks on the space shuttle and the International Space Station used safety tethers, with the SAFER as a backup in case a crew member disconnects from the vehicle.


Left: In the Orbiter Processing Facility at NASA’s Kennedy Space Center in Florida, workers inspect the Westar 6, left, and Palapa B2 satellites in Discovery’s payload bay. Right: The STS-51A crew, with Lloyd’s of London representative Stephen Merritt, sitting at right, during their visit to London.

On Dec. 7, 1984, in a ceremony at the White House, President Ronald W. Reagan presented the STS-51A crew with the Lloyd’s of London – the company had insured the two satellites they returned to Earth – Silver Medal for Meritorious Salvage Operations. Fisher has the distinction as only the second woman to receive that award. In February 1985, Lloyd’s flew the crew to London on the Concorde for a week of activities, including addressing the Lloyd’s underwriters and tea with Prince Charles at Kensington Palace.

Hong Kong-based AsiaSat purchased the Westar 6 satellite, refurbished it, and relaunched it as AsiaSat 1 on April 7, 1990, on a Chinese CZ-3 rocket. Title to the Palapa B2 satellite returned to Indonesia after its relaunch as Palapa B2R on April 13, 1990, aboard a Delta rocket.

Read recollections of the STS-51A mission by Hauck, Allen, and Fisher in their oral histories with the JSC History Office. Enjoy the crew’s narration of a video about the STS-51A mission.

Explore More 1 min read Oral History with Jon A. McBride, 1943 – 2024 Article 3 days ago 9 min read 30 Years Ago: STS-66, the ATLAS-3 Mission to Study the Earth’s Atmosphere Article 6 days ago 3 min read Halloween on the International Space Station Article 1 week ago
Categories: NASA

Hubble Captures a Galaxy with Many Lights

Fri, 11/08/2024 - 8:36am
Hubble Space Telescope
  1. Home
  2. Hubble Captures a Galaxy with…
  • Missions
  •  

    2 min read

    Hubble Captures a Galaxy with Many Lights This NASA/ESA Hubble Space Telescope image captures the spiral galaxy NGC 1672 with a supernova.ESA/Hubble & NASA, O. Fox, L. Jenkins, S. Van Dyk, A. Filippenko, J. Lee and the PHANGS-HST Team, D. de Martin (ESA/Hubble), M. Zamani (ESA/Hubble) Download this image

    This NASA/ESA Hubble Space Telescope image features NGC 1672, a barred spiral galaxy located 49 million light-years from Earth in the constellation Dorado. This galaxy is a multi-talented light show, showing off an impressive array of different celestial lights. Like any spiral galaxy, shining stars fill its disk, giving the galaxy a beautiful glow. Along its two large arms, bubbles of hydrogen gas shine in a striking red light fueled by radiation from infant stars shrouded within. Near the galaxy’s center are some particularly spectacular stars embedded within a ring of hot gas. These newly formed and extremely hot stars emit powerful X-rays. Closer in, at the galaxy’s very center, sits an even brighter source of X-rays, an active galactic nucleus. This X-ray powerhouse makes NGC 1672 a Seyfert galaxy. It forms as a result of heated matter swirling in the accretion disk around NGC 1672’s supermassive black hole.

    Image Before/After

    Along with its bright young stars and X-ray core, a highlight of this image is the most fleeting and temporary of lights: a supernova, visible in just one of the six Hubble images that make up this composite. Supernova SN 2017GAX was a Type I supernova caused by the core-collapse and subsequent explosion of a giant star that went from invisible to a new light in the sky in just a matter of days. In the image above, the supernova is already fading and is visible as a small green dot just below the crook of the spiral arm on the right side. Astronomers wanted to look for any companion star that the supernova progenitor may have had — something impossible to spot beside a live supernova — so they purposefully captured this image of the fading supernova.

    Recently, NGC 1672 was also among a crop of galaxies imaged with the NASA/ESA/CSA James Webb Space Telescope, showing the ring of gas and the structure of dust in its spiral arms. The image below compares the Webb image with Hubble’s image.

    Image Before/After Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble

    Media Contact:

    Claire Andreoli
    NASA’s Goddard Space Flight CenterGreenbelt, MD
    claire.andreoli@nasa.gov

    Share Details Last Updated Nov 08, 2024 EditorAndrea GianopoulosLocationNASA Goddard Space Flight Center Related Terms Keep Exploring Discover More Topics From Hubble Hubble Space Telescope

    Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.

    Hubble’s Galaxies

    Hubble Focus: Galaxies through Space and Time

    Hubble Focus: Galaxies through Space and Time

    Hubble’s Partners in Science

    Categories: NASA

    Oral History with Stephen G. Jurczyk, 1962 – 2023

    Thu, 11/07/2024 - 6:21pm
    1 Min Read Oral History with Stephen G. Jurczyk, 1962 – 2023 NASA Acting Administrator Stephen G. Jurczyk Credits: NASA

    Steve Jurczyk’s NASA career began in 1988 at Langley Research Center as an engineer in the Electronic Systems Branch. During his time at Langley, he served in other roles, including director of engineering and director of research and technology.  Jurczyk was named as director of Langley in 2014, then in 2015 he left Langley to serve as the associate administrator for the Space Technology Mission Directorate at NASA Headquarters.  He quickly rose to the rank of associate administrator in 2018, and in January 2021 was named the agency’s acting administrator

    Read more about Steve Jurczyk

    The transcripts available on this site are created from audio-recorded oral history interviews. To preserve the integrity of the audio record, the transcripts are presented with limited revisions and thus reflect the candid conversational style of the oral history format. Brackets and ellipses indicate where the text has been annotated or edited for clarity. Any personal opinions expressed in the interviews should not be considered the official views or opinions of NASA, the NASA History Office, NASA historians, or staff members.

    Categories: NASA

    Oral History with Mary L. Cleave, 1947 – 2023

    Thu, 11/07/2024 - 5:31pm
    1 Min Read Oral History with Mary L. Cleave, 1947 – 2023 61B-21-008 (26 Nov-1 Dec 1985) —The STS 61-B crew on the flight deck of the earth-orbiting Atlantis. Left to right, back row, are astronauts Jerry L. Ross, Brewster Shaw Jr., Mary L. Cleave, and Bryan D. O'Connor; and payload specialist Rodolfo Neri. Front row, left to right, payload specialist Charles D. Walker and astronaut Sherwood C. Spring.

    A veteran of two space flights, Dr. Cleave served as a mission specialist on STS-61B and STS-30.  She went on to join NASA’s Goddard Space Flight Center and worked in the Laboratory for Hydrospheric Processes as the Project Manager for SeaWiFS, an ocean color sensor which is monitoring vegetation globally.  Dr. Cleave next served as Deputy Associate Administrator, Office of Earth Science, NASA Headquarters, until her retirement in 2007.

    Read more about Dr. Mary L. Cleave

    The transcripts available on this site are created from audio-recorded oral history interviews. To preserve the integrity of the audio record, the transcripts are presented with limited revisions and thus reflect the candid conversational style of the oral history format. Brackets and ellipses indicate where the text has been annotated or edited for clarity. Any personal opinions expressed in the interviews should not be considered the official views or opinions of NASA, the NASA History Office, NASA historians, or staff members.

    Categories: NASA

    The Cast and Crew of “Ain’t Too Proud” Visit NASA Langley

    Thu, 11/07/2024 - 4:01pm

    1 min read

    Preparations for Next Moonwalk Simulations Underway (and Underwater) Members of the cast and crew of “Ain’t Too Proud – The Life and Times of the Temptations” pose for a photo inside of the 8-foot high-temperature tunnel at NASA’s Langley Research Center in Hampton, Virginia. NASA/David C. Bowman

    Get Ready! Members of the cast and crew of the Broadway national touring production of “Ain’t Too Proud – The Life and Times of The Temptations,” visited NASA’s Langley Research Center in Hampton, Virginia on Nov. 6, where they learned more about the center’s work in air, space, and science. The show was in the area performing at the Ferguson Center for the Arts in Newport News. 

     
    The group met with center leadership and members of Langley’s workforce and toured Langley’s historic hangar, 8-Foot High-Temperature Tunnel, Inflatable Habitats, and the ISAAC (Integrated Structural Assembly of Advanced Composites) robot

    Share Details Last Updated Nov 07, 2024 Related Terms Explore More 4 min read X-59 Fires Up its Engine for First Time on its Way to Takeoff Article 2 days ago 4 min read NASA Technologies Named Among TIME Inventions of 2024 Article 1 week ago 4 min read NASA Pilots Add Perspective to Research Article 3 weeks ago Keep Exploring Discover Related Topics

    Ames Research Center

    Vertical Motion Simulator

    NASA Ames Unitary Plan Wind Tunnel

    Ames Media Resources

    Categories: NASA

    NASA Shares Space Food Insight with Commercial Food Industry

    Thu, 11/07/2024 - 4:00pm
    NASA astronaut Tracy C. Dyson displays from JAXA (Japan Aerospace Exploration Agency) food packets in the International Space Station galley.Credits: NASA

    NASA recently welcomed more than 50 commercial food and commercial space companies to learn about the evolving space food system supporting NASA missions, including unique requirements for spaceflight, menu development, and food provisioning – essential elements for human spaceflight and sustainable living in space.

    The event, held at the agency’s Johnson Space Center in Houston, brought together private industry leaders, NASA astronauts, and NASA’s space food team to discuss creative solutions for nourishing government and private astronauts on future commercial space stations.

    “The commercial food industry is the leader in how to produce safe and nutritious food for the consumer, and with knowledge passed on from NASA regarding the unique needs for space food safety and human health, this community is poised to support this new market of commercial low Earth orbit consumers,” said Kimberlee Prokhorov, deputy chief for the Human Systems Engineering and Integration Division at Johnson, which encompasses food systems work.

    Experts from NASA’s Space Food Systems Laboratory shared the unique requirements and conditions surrounding the formulation, production, packaging, and logistics of space food for enabling the success of commercial low Earth orbit missions. Attendees heard astronaut perspectives on the importance of space food, challenges they encounter, and potential areas of improvement. They also tasted real space food and learned about the nutritional requirements critical for maintaining human health and performance in space.

    “By bringing together key players in the commercial food and space industries, we were able to provide a collaborative opportunity to share fresh ideas and explore future collaborations,” said Angela Hart, manager for NASA’s Commercial Low Earth Orbit Development Program at Johnson. “Space food is a unique challenge, and it is one that NASA is excited to bring commercial companies into. Working with our commercial partners allows us to advance in ways that benefit not only astronauts but also food systems on Earth.”

    As NASA expands opportunities in low Earth orbit, it’s essential for the commercial sector to take on the support of space food production, allowing the agency to focus its resources on developing food systems for longer duration human space exploration missions.

    NASA will continue providing best practices and offer additional opportunities  to interested commercial partners to share knowledge that will enable a successful commercial space ecosystem.

    The agency’s commercial strategy for low Earth orbit will provide the government with reliable and safe services at a lower cost and enable the agency to focus on Artemis missions to the Moon in preparation for Mars, while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.

    Learn more about NASA’s commercial space strategy at:

    https://www.nasa.gov/humans-in-space/commercial-space/

    Categories: NASA

    Oral History with Jon A. McBride, 1943 – 2024

    Thu, 11/07/2024 - 3:54pm
    1 Min Read Oral History with Jon A. McBride, 1943 – 2024 Jon A. McBride with the IMAX large format camera in the middeck during the STS-41G mission. Credits: NASA

    Selected as an astronaut in 1978, Jon A. McBride served as the pilot for STS 41-G, launched October 5, 1984, the first shuttle mission to carry a full crew of seven. His other NASA assignments included lead chase pilot for the maiden voyage of Columbia and CAPCOM for three early shuttle flights.

    Read more about Jon McBride

    The transcripts available on this site are created from audio-recorded oral history interviews. To preserve the integrity of the audio record, the transcripts are presented with limited revisions and thus reflect the candid conversational style of the oral history format. Brackets and ellipses indicate where the text has been annotated or edited for clarity. Any personal opinions expressed in the interviews should not be considered the official views or opinions of NASA, the NASA History Office, NASA historians, or staff members.

    Categories: NASA

    Earth Below

    Thu, 11/07/2024 - 1:25pm
    NASA/Don Pettit

    Earth’s city lights streak by in this long-exposure photo taken by NASA astronaut Don Pettit on Oct. 24, 2024. The green glow of Earth’s atmosphere is also visible on the horizon.

    Since the station became operational in November 2000, crew members have produced hundreds of thousands of images like this one through Crew Earth Observations. Their photographs of Earth record how the planet changes over time due to human activity and natural events, allowing scientists to monitor disasters and direct response on the ground and study phenomena.

    Image credit: NASA/Don Pettit

    Categories: NASA

    Hurricane Helene’s Gravity Waves Revealed by NASA’s AWE

    Thu, 11/07/2024 - 1:00pm

    2 min read

    Hurricane Helene’s Gravity Waves Revealed by NASA’s AWE

    On Sept. 26, 2024, Hurricane Helene slammed into the Gulf Coast of Florida, inducing storm surges and widespread impacts on communities in its path. At the same time, NASA’s Atmospheric Waves Experiment, or AWE, recorded enormous swells in the atmosphere that the hurricane produced roughly 55 miles above the ground. Such information helps us better understand how terrestrial weather can affect space weather, part of the research NASA does to understand how our space environment can disrupt satellites, communication signals, and other technology.

    To view this video please enable JavaScript, and consider upgrading to a web browser that
    supports HTML5 video

    As the International Space Station traveled over the southeastern United States on Sept. 26, 2024, AWE observed atmospheric gravity waves generated by Hurricane Helene as the storm slammed into the gulf coast of Florida. The curved bands extending to the northwest of Florida, artificially colored red, yellow, and blue, show changes in brightness (or radiance) in a wavelength of infrared light produced by airglow in Earth’s mesosphere. The small black circles on the continent mark the locations of cities. To download this video or other versions with alternate color schemes, visit this page. Utah State University

    These massive ripples through the upper atmosphere, known as atmospheric gravity waves, appear in AWE’s images as concentric bands (artificially colored here in red, yellow, and blue) extending away from northern Florida.

    “Like rings of water spreading from a drop in a pond, circular waves from Helene are seen billowing westward from Florida’s northwest coast,” said Ludger Scherliess, who is the AWE principal investigator at Utah State University in Logan.

    Launched in November 2023 and mounted on the outside of the International Space Station, the AWE instrument looks down at Earth, scanning for atmospheric gravity waves, ripple-like patterns in the air generated by atmospheric disturbances such as violent thunderstorms, tornadoes, tsunamis, wind bursts over mountain ranges, and hurricanes. It does this by looking for brightness fluctuations in colorful bands of light called airglow in Earth’s mesosphere. AWE’s study of these gravity waves created by terrestrial weather helps NASA pinpoint how they affect space weather.

    These views of gravity waves from Hurricane Helene are among the first publicly released images from AWE, confirming that the instrument has the sensitivity to reveal the impacts hurricanes have on Earth’s upper atmosphere.

    By Vanessa Thomas
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

    Share

    Details

    Last Updated

    Nov 07, 2024

    Editor Vanessa Thomas Contact sfrazier sarah.frazier@nasa.gov Location Goddard Space Flight Center

    Related Terms
    Categories: NASA

    NASA to Transform In-Space Manufacturing with Laser Beam Welding Collaboration

    Thu, 11/07/2024 - 12:15pm

    4 min read

    Preparations for Next Moonwalk Simulations Underway (and Underwater)

    By Wayne Smith

    As NASA plans for humans to return to the Moon and eventually explore Mars, a laser beam welding collaboration between NASA’s Marshall Space Flight Center in Huntsville, Alabama, and The Ohio State University in Columbus aims to stimulate in-space manufacturing.

    Scientists and engineers from NASA’s Marshall Space Flight Center, participating in the laser beam welding study in August, stand in front of the parabolic plane used for testing. From left, Will Evans, Louise Littles, Emma Jaynes, Andrew O’Connor, and Jeffrey Sowards. Not pictured: Zachary Courtright.Casey Coughlin/Starlab-George Washington Carver Science Park

    The multi-year effort seeks to understand the physical processes of welding on the lunar surface, such as investigating the effects of laser beam welding in a combined vacuum and reduced gravity environment. The goal is to increase the capabilities of manufacturing in space to potentially assemble large structures or make repairs on the Moon, which will inform humanity’s next giant leap of sending astronauts to Mars and beyond.

    “For a long time, we’ve used fasteners, rivets, or other mechanical means to keep structures that we assemble together in space,” said Andrew O’Connor, a Marshall materials scientist who is helping coordinate the collaborative effort and is NASA’s technical lead for the project. “But we’re starting to realize that if we really want strong joints and if we want structures to stay together when assembled on the lunar surface, we may need in-space welding.” The ability to weld structures in space would also eliminate the need to transport rivets and other materials, reducing payloads for space travel. That means learning how welds will perform in space.

    To turn the effort into reality, researchers are gathering data on welding under simulated space conditions, such as temperature and heat transfer in a vacuum; the size and shape of the molten area under a laser beam; how the weld cross-section looks after it solidifies; and how mechanical properties change for welds performed in environmental conditions mimicking the lunar surface.

    “Once you leave Earth, it becomes more difficult to test how the weld performs, so we are leveraging both experiments and computer modeling to predict welding in space while we’re still on the ground,” said O’Connor.

    In August 2024, a joint team from Ohio State’s Welding Engineering and Multidisciplinary Capstone Programs and Marshall’s Materials & Processes Laboratory performed high-powered fiber laser beam welding aboard a commercial aircraft that simulated reduced gravity. The aircraft performed parabolic flight maneuvers that began in level flight, pulled up to add 8,000 feet in altitude, and pushed over at the top of a parabolic arc, resulting in approximately 20 seconds of reduced gravity to the passengers and experiments.

    While floating in this weightless environment, team members performed laser welding experiments in a simulated environment similar to that of both low Earth orbit and lunar gravity. Analysis of data collected by a network of sensors during the tests will help researchers understand the effects of space environments on the welding process and welded material.

    NASA Marshall engineers and scientists, along with their collaborators from Ohio State University, monitor laser beam welding in a vacuum chamber during a Boeing 727 parabolic flight. From left, Andrew O’Connor, Marshall materials scientist and NASA technical lead for the project; Louise Littles, Marshall materials scientist; and Aaron Brimmer, OSU graduate student.Tasha Dixon/Zero-G

    “During the flights we successfully completed 69 out of 70 welds in microgravity and lunar gravity conditions, realizing a fully successful flight campaign,” said Will McAuley, an Ohio State welding engineering student.

    Funded in part by Marshall and spanning more than two years, the work involves undergraduate and graduate students and professors from Ohio State, and engineers across several NASA centers. Marshall personnel trained alongside the university team, learning how to operate the flight hardware and sharing valuable lessons from previous parabolic flight experiments. NASA’s Langley Research Center in Hampton, Virginia, developed a portable vacuum chamber to support testing efforts.

    The last time NASA performed welding in space was during the Skylab mission in 1973. Other parabolic tests have since been performed, using low-powered lasers. Practical welding and joining methods and allied processes, including additive manufacturing, will be required to develop the in-space economy. These processes will repurpose and repair critical space infrastructure and could build structures too large to fit current launch payload volumes. In-space welding could expedite building large habitats in low Earth orbit, spacecraft structures that keep astronauts safe on future missions, and more.

    The work is also relevant to understanding how laser beam welding occurs on Earth. Industries could use data to inform welding processes, which are critical to a host of manufactured goods from cars and refrigerators to skyscrapers.

    “We’re really excited about laser beam welding because it gives us the flexibility to operate in different environments,” O’Connor said.

    There has been a resurgence of interest in welding as we look for innovative ways to put larger structures on the surface of the Moon and other planets.

    Andrew O’Connor

    Marshall Space Flight Center materials scientist

    This effort is sponsored by NASA Marshall’s Research and Development funds, the agency’s Science Mission Directorate Biological and Physical Sciences Division of the agency’s Science Mission Directorate, and NASA’s Space Technology Mission Directorate, including NASA Flight Opportunities.

    For more information about NASA’s Marshall Space Flight Center, visit:

    https://www.nasa.gov/marshall

    Joel Wallace
    Marshall Space Flight Center, Huntsville, Alabama
    256.544.0034
    joel.w.wallace@nasa.gov

    Share Details Last Updated Nov 07, 2024 Related Terms Explore More 5 min read NASA, Bhutan Conclude Five Years of Teamwork on STEM, Sustainability Article 4 days ago 23 min read The Marshall Star for October 30, 2024 Article 1 week ago 4 min read NASA Technologies Named Among TIME Inventions of 2024 Article 1 week ago Keep Exploring Discover More Topics From NASA

    Missions

    Humans in Space

    Climate Change

    Solar System

    Categories: NASA

    Student-Built Capsules Endure Heat of Re-entry for NASA Science

    Thu, 11/07/2024 - 12:06pm
    4 Min Read Student-Built Capsules Endure Heat of Re-entry for NASA Science The five capsules of the KREPE-2 mission are pictured on Earth prior to flight. Credits: University of Kentucky.

    In July 2024, five student-built capsules endured the scorching heat of re-entry through Earth’s atmosphere as part of the second Kentucky Re-Entry Probe Experiment (KREPE-2). Scientists are now analyzing the data from the KREPE-2 experiments, which could advance the development of heat shields that protect spacecraft when they return to Earth.

    The mission was designed to put a variety of heat shield prototypes to the test in authentic re-entry conditions to see how they would perform. These experimental capsules, which were built by students at the University of Kentucky and funded by the NASA Established Program to Stimulate Competitive Research (EPSCoR) within NASA’s Office of STEM Engagement, all survived more than 4,000 degrees Fahrenheit during descent.

    The football-sized capsules also successfully transmitted valuable data via the Iridium satellite network along their fiery journey. The trove of information they provided is currently being analyzed to consider in current and future spacecraft design, and to improve upon designs for future experiments.

    “These data – and the instruments used to obtain the data – assist NASA with designing and assessing the performance of current and new spacecraft that transport crew and cargo to and from space,” said Stan Bouslog, thermal protection system senior discipline expert at NASA’s Johnson Space Center in Houston who served as the agency’s technical monitor for the project.

    Taking the Plunge: Communicating Through a Fiery Descent

    “The only way to ‘test like you fly’ a thermal protection system is to expose it to actual hypersonic flight through an atmosphere,” Bouslog said.

    The self-contained capsules launched aboard an uncrewed Northrop Grumman Cygnus spacecraft in January 2024 along with other cargo bound for the International Space Station. The cargo craft detached from the space station July 12 as the orbiting laboratory flew above the south Atlantic Ocean. As the Cygnus spacecraft began its planned breakup during re-entry, the KREPE-2 capsules detected a signal – a temperature spike or acceleration – to start recording data and were released from the vehicle. At that point, they were traveling at a velocity of about 16,000 miles per hour at an altitude of approximately 180,000 feet.

    The University of Kentucky student team and advisors watched and waited to learn how the capsules had fared.

    As the capsules descended through the atmosphere, one group watched from aboard an aircraft flying near the Cook Islands in the south Pacific Ocean, where they tracked the return of the Cygnus spacecraft. The flight was arranged in partnership with the University of Southern Queensland in Toowoomba, Queensland, Australia, and the University of Stuttgart in Stuttgart, Germany. Alexandre Martin, professor of mechanical and aerospace engineering at the University of Kentucky and the principal investigator for the experiment, was on that flight.

    “We flew in close to the re-entry path to take scientific measurements,” Martin said, adding that they used multiple cameras and spectrometers to observe re-entry. “We now have a much better understanding of the break-up event of the Cygnus vehicle, and thus the release of the capsules.”

    Meanwhile, members of the University of Kentucky’s Hypersonic Institute had gathered at the university to watch as KREPE-2 data arrived via email. All five successfully communicated their flight conditions as they hurtled to Earth.

    “It will take time to extract the data and analyze it,” Martin said. “But the big accomplishment was that every capsule sent data.”

    Members of the University of Kentucky student team have begun analyzing the data to digitally reconstruct the flight environment at the time of transmission, providing key insights for future computer modeling and heat shield design.

    An artist’s rendering of one of the KREPE-2 capsules during re-entry. A. Martin, P. Rodgers, L. Young, J. Adams, University of Kentucky

    Building on Student Success

    The mission builds on the accomplishments of KREPE-1, which took place in December 2022. In that experiment, two capsules recorded temperature measurements as they re-entered Earth’s atmosphere and relayed that data to the ground.

    The extensive dataset collected during the KREPE-2 re-entry includes heat shield measurements, such as temperature, as well as flight data including pressure, acceleration, and angular velocity. The team also successfully tested a spectrometer that provided spectral data of the shockwave in front of a capsule.

    “KREPE-1 was really to show we could do it,” Martin said. “For KREPE-2, we wanted to fully instrument the capsules and really see what we could learn.”

    KREPE-3 is currently set to take place in 2026.

    The ongoing project has provided valuable opportunities for the University of Kentucky student team, from undergrads to PhD students, to contribute to spaceflight technology innovation.

    “This effort is done by students entirely: fabrication, running simulations, handling all the NASA reviews, and doing all the testing,” Martin said. “We’re there supervising, of course, but it’s always the students who make these missions possible.”

    Related links:

    Keep Exploring Discover More STEM Topics From NASA

    For Colleges and Universities

    Established Program to Stimulate Competitive Research

    About STEM Engagement at NASA

    Learning Resources

    Categories: NASA

    NASA-Funded Study Examines Tidal Effects on Planet and Moon Interiors

    Thu, 11/07/2024 - 11:24am

    2 min read

    NASA-Funded Study Examines Tidal Effects on Planet and Moon Interiors

    NASA-supported scientists have developed a new method to compute how tides affect the interiors of planets and moons. Importantly, the new study looks at the effects of body tides on objects that don’t have a perfectly spherical interior structure, which is an assumption of most previous models.

    The puzzling, fascinating surface of Jupiter’s icy moon Europa looms large in this newly-reprocessed color view, made from images taken by NASA’s Galileo spacecraft in the late 1990s. This is the color view of Europa from Galileo that shows the largest portion of the moon’s surface at the highest resolution. NASA/JPL-Caltech/SETI Institute

    Body tides refer to the deformations experienced by celestial bodies when they gravitationally interact with other objects. Think of how the powerful gravity of Jupiter tugs on its moon Europa. Because Europa’s orbit isn’t circular, the crushing squeeze of Jupiter’s gravity on the moon varies as it travels along its orbit.  When Europa is at its closest to Jupiter, the planet’s gravity is felt the most. The energy of this deformation is what heats up Europa’s interior, allowing an ocean of liquid water to exist beneath the moon’s icy surface.

    “The same is true for Saturn’s moon Enceladus.” says co-author Alexander Berne of CalTech in Pasadena and an affiliate at NASA’s Jet Propulsion Laboratory in Southern California. “Enceladus has an ice shell that is expected to be much more non-spherically symmetric than that of Europa.”

    The body tides experienced by celestial bodies can affect how the worlds evolve over time and, in cases like Europa and Enceladus, their potential habitability for life as we know it. The new study provides a means to more accurately estimate how tidal forces affect planetary interiors.

    In this movie Europa is seen in a cutaway view through two cycles of its 3.5 day orbit about the giant planet Jupiter. Like Earth, Europa is thought to have an iron core, a rocky mantle and a surface ocean of salty water. Unlike on Earth, however, this ocean is deep enough to cover the whole moon, and being far from the sun, the ocean surface is globally frozen over. Europa’s orbit is eccentric, which means as it travels around Jupiter, large tides, raised by Jupiter, rise and fall. Jupiter’s position relative to Europa is also seen to librate, or wobble, with the same period. This tidal kneading causes frictional heating within Europa, much in the same way a paper clip bent back and forth can get hot to the touch, as illustrated by the red glow in the interior of Europa’s rocky mantle and in the lower, warmer part of its ice shell. This tidal heating is what keeps Europa’s ocean liquid and could prove critical to the survival of simple organisms within the ocean, if they exist. The giant planet Jupiter is now shown to be rotating from west to east, though more slowly than its actual rate. NASA/JPL-Caltech

    The paper also discusses how the results of the study could help scientists interpret observations made by missions to a variety of different worlds, ranging from Mercury to the Moon to the outer planets of our solar system.

    The study, “A Spectral Method to Compute the Tides of Laterally Heterogeneous Bodies,” was published in The Planetary Science Journal. 

    For more information on NASA’s Astrobiology Program, visit:

    https://science.nasa.gov/astrobiology

    -end-

    Karen Fox / Molly Wasser

    Headquarters, Washington

    202-358-1600

    karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov 

    Explore More

    2 min read NASA’s New Edition of Graphic Novel Features Europa Clipper

    NASA has released a new edition of Issue 4 of the Astrobiology Graphic History series.…



    Article


    6 days ago

    5 min read NASA: New Insights into How Mars Became Uninhabitable

    Article


    1 month ago

    14 min read The Making of Our Alien Earth: The Undersea Volcanoes of Santorini, Greece

    Article


    2 months ago

    Share

    Details

    Last Updated

    Nov 07, 2024

    Related Terms
    Categories: NASA

    Attention Students: NASA Launches Power Systems Student Essay Contest

    Thu, 11/07/2024 - 9:06am
    Twelve-year-old, Aadya Karthik of Seattle, Washington; nine-year-old, Rainie Lin of Lexington, Kentucky; and eighteen-year-old, Thomas Lui, winners of the 2023-2024 Power to Explore Student Writing Challenge observe testing at a NASA Glenn cleanroom during their prize trip to Cleveland. Credit: NASA

    NASA’s fourth annual Power to Explore Student Challenge kicked off November 7, 2024. The science, engineering, technology, and mathematics (STEM) writing challenge invites kindergarten through 12th grade students in the United States to learn about radioisotope power systems, a type of nuclear battery integral to many of NASA’s far-reaching space missions.

    Students are invited to write an essay about a new nuclear-powered mission to any moon in the solar system they choose. Submissions are due Jan. 31, 2025.

    With freezing temperatures, long nights, and deep craters that never see sunlight on many of these moons, including our own, missions to them could use a special kind of power: radioisotope power systems. These power systems have helped NASA explore the harshest, darkest, and dustiest parts of our solar system and enabled spacecraft to study its many moons.

    “Sending spacecraft into space is hard, and it’s even harder sending them to the extreme environments surrounding the diverse moons in our solar system,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “NASA’s Power to Explore Student Challenge provides the incredible opportunity for our next generation – our future explorers – to design their own daring missions using science, technology, engineering, and mathematics to explore space and discover new science for the benefit of all, while also revealing incredible creative power within themselves. We cannot wait to see what the students dream up!”

    Entries should detail where students would go, what they would explore, and how they would use radioisotope power systems to achieve mission success in a dusty, dark, or far away moon destination.

    Judges will review entries in three grade-level categories: K-4, 5-8, and 9-12. Student entries are limited to 275 words and should address the mission destination, mission goals, and describe one of the student’s unique powers that will help the mission. 

    One grand prize winner from each grade category will receive a trip for two to NASA’s Glenn Research Center in Cleveland to learn about the people and technologies that enable NASA missions. Every student who submits an entry will receive a digital certificate and an invitation to a virtual event with NASA experts where they’ll learn about what powers the NASA workforce to dream big and explore.

    Judges Needed

    NASA and Future Engineers are seeking volunteers to help judge the thousands of contest entries anticipated submitted from around the country. Interested U.S. residents older than 18 can offer to volunteer approximately three hours to review submissions should register to judge at the Future Engineers website.

    The Power to Explore Student Challenge is funded by the NASA Science Mission Directorate’s Radioisotope Power Systems Program Office and managed and administered by Future Engineers under the direction of the NASA Tournament Lab, a part of the Prizes, Challenges, and Crowdsourcing Program in NASA’s Space Technology Mission Directorate.

    To learn more about the challenge, visit:

    https://www.nasa.gov/power-to-explore

    -end-

    Karen Fox / Molly Wasser
    NASA Headquarters, Washington
    202-358-1600
    karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

    Kristin Jansen
    Glenn Research Center, Cleveland
    216-296-2203
    kristin.m.jansen@nasa.gov

    Share Details Last Updated Nov 07, 2024 LocationNASA Headquarters Related Terms
    Categories: NASA

    Integrating Relevant Science Investigations into Migrant Children Education

    Wed, 11/06/2024 - 4:01pm
    Learn

    1. Home
    2. Integrating Relevant Science…
  • Earth Science
  •  

    3 min read

    Integrating Relevant Science Investigations into Migrant Children Education

    For three weeks in August, over 100 migrant children (ages 3-15) got to engage in hands-on activities involving blueberries, pollinators, and eDNA as part of their time with The Blueberry Harvest School (BHS). BHS is a summer school program for migrant children whose families work in Washington County, Maine during the wild blueberry harvest season. The program is hosted by Mano en Mano in Milbridge, Maine. This summer, University of Maine 4-H (part of the NASA Science Activation Program’s Learning Ecosystems Northeast team) was invited to deliver enrichment programs during the school day alongside a seasoned BHS employee – an educator from the Mi’kmaq community in what is now known as Nova Scotia.

    The goal of BHS is to meet the needs of youth by providing “culturally responsive, project-based learning while preventing summer learning loss and compensating for school disruptions among students” (Mano en Mano). Migrant families come to Downeast from Mi’kmaq First Nation communities in Nova Scotia and New Brunswick, southern states, and from within Maine, including Passamoquoddy communities in eastern Washington County and a Latino community in the western part of the county. Families stay to harvest blueberries anywhere from two to five weeks. With support from 4-H educators, youth surveyed the schoolyard for pollinators, investigated the parts of pollinators and flowers, and learned why blueberries are an important part of Wabanaki culture.

    “BHS really becomes a home for the children while they are here. I think one of the reasons is because they are encouraged to be proud of their identity and who they are – they get to be their authentic selves. It’s a neat space where teachers and youth are speaking Mi’kmaq, Passamaquoddy, Spanish and English while supporting each other, and learning and experiencing new things.” — Gabrielle Brodek, 4-H Professional

    “After completing my second year helping at Blueberry Harvest School, I loved seeing the returning faces of the kids who have been coming year after year – the kids remember you and hug you and are sad when the season is over and BHS ends.” — Jason Palomo, 4-H Professional

    Resources and inspiration for these activities came from NASA Climate Kids, Gulf of Maine Research Institute’s Bees, Blueberries, and Climate Change learning module, National 4-H and ME Ag in the Classroom. On the last day youth experienced how to make a natural dye out of blueberries, a long-standing tradition in Native American culture. Our organizations continue to work together year-round, building stronger relationships and planning for Summer 2025!

    The Learning Ecosystems Northeast project is supported by NASA under cooperative agreement award number NNX16AB94A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn

    Educator assisting two youth with paper folding instructions. Share

    Details

    Last Updated

    Nov 06, 2024

    Editor NASA Science Editorial Team

    Related Terms Explore More

    3 min read Bundling the Best of Heliophysics Education: DigiKits for Physics and Astronomy Teachers

    Article


    1 day ago

    3 min read Professional Learning: Using Children’s Books to Build STEM Habits of Mind

    Article


    2 days ago

    2 min read Sadie Coffin Named Association for Advancing Participatory Sciences/NASA Citizen Science Leaders Series Fellow

    Article


    2 days ago

    Keep Exploring Discover More Topics From NASA

    James Webb Space Telescope

    Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


    Perseverance Rover

    This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


    Parker Solar Probe

    On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


    Juno

    NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

    Categories: NASA

    Mars 2020 Perseverance Joins NASA’s Here to Observe Program

    Wed, 11/06/2024 - 2:56pm
    Mars: Perseverance (Mars 2020)

    2 min read

    Mars 2020 Perseverance Joins NASA’s Here to Observe Program Katie Stack Morgan and Nicole Spanovich with the NASA Here to Observe Program students and faculty from Kutztown University. Kutztown University

    The Mars 2020 Perseverance mission has recently joined the NASA Here to Observe (H2O) program, where NASA planetary missions are partnered with universities to encourage undergraduate students from historically marginalized groups to pursue a career in STEM. As part of this program, the Perseverance mission has been paired with Kutztown University, located in Kutztown, Pennsylvania. Selected undergraduate students at the university will be able to observe and interact with Perseverance mission team members throughout this academic year to learn about the individuals who are part of the team and what it means to work on the rover mission.

    To help kick off the program and our new partnership, I traveled to Kutztown along with the Perseverance Deputy Project Scientist, Katie Stack Morgan. We met several members of the Kutztown faculty and staff, toured their beautiful campus, and spent time getting to know the students participating in the H2O program this year. Katie and I were impressed by the enthusiasm and engagement exhibited by the students during our visit. We presented an introduction to the Perseverance mission including the recent discoveries, upcoming plans, and who comprises the mission team. There was also ample time to answer the many thoughtful questions about both the mission and the career paths of both me and Katie.

    As part of this program, the students will observe select Perseverance mission meetings and activities. We kicked this off in October when the students observed a Geologic Context Working Group meeting to learn how scientists work together to understand the data gathered by the rover and make decisions about what the rover should do next. The students will also be paired with mentors from the Perseverance mission team throughout this academic year where they’ll have the chance to learn about the various career paths our team members have taken, read scientific papers, and prepare for a trip to the Lunar and Planetary Sciences Conference.

    Overall, we have a great plan for our H2O partnership and are looking forward to welcoming Kutztown University to the Perseverance mission!

    Written by Nicole Spanovich, Mars 2020 Perseverance Science Office Manager at NASA’s Jet Propulsion Laboratory

    Downloads

    Mars 2020 Team Members with the ‘NASA Here to Observe Program’ Students at Kutztown University

    Nov 6, 2024

    JPEG ()



    Share

    Details

    Last Updated

    Nov 06, 2024

    Related Terms Explore More

    3 min read Sols 4355-4356: Weekend Success Brings Monday Best

    Article


    11 hours ago

    3 min read Sols 4352-4354: Halloween Fright Night on Mars

    Article


    2 days ago

    2 min read Sols 4350-4351: A Whole Team Effort

    Article


    6 days ago

    Keep Exploring Discover More Topics From NASA

    Mars

    Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


    All Mars Resources

    Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


    Rover Basics

    Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


    Mars Exploration: Science Goals

    The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

    Categories: NASA

    X-59’s Engine Started for Testing

    Wed, 11/06/2024 - 2:36pm
    NASA/Carla Thomas

    NASA’s X-59 quiet supersonic research aircraft sits in its run stall at Lockheed Martin’s Skunk Works facility in Palmdale, California, in this image from Oct. 30, 2024.

    The engine-run tests, which began Oct. 30, allow the X-59 team to verify the aircraft’s systems are working together while powered by its own engine. In previous tests, the X-59 used external sources for power. The engine-run tests set the stage for the next phase of the experimental aircraft’s progress toward flight.

    After the engine runs, the X-59 team will move to aluminum bird testing, where data will be fed to the aircraft under both normal and failure conditions. The team will then proceed with a series of taxi tests, where the aircraft will be put in motion on the ground. These tests will be followed by final preparations for first flight.

    Image credit: NASA/Carla Thomas

    Categories: NASA

    El X-59 enciende su motor por primera vez rumbo al despegue

    Wed, 11/06/2024 - 1:08pm

    4 min read

    Preparations for Next Moonwalk Simulations Underway (and Underwater) El silencioso avión supersónico experimental X-59 de la NASA se encuentra en un puesto de rodaje en las instalaciones Skunk Works de Lockheed Martin en Palmdale, California, arrancando su motor por primera vez. Estas pruebas de funcionamiento del motor comienzan a baja potencia y permiten al equipo del X-59 verificar que los sistemas de la aeronave funcionan juntos mientras está propulsada por su propio motor. El X-59 es la pieza central de la misión Quesst de la NASA, que pretende resolver uno de los principales obstáculos a los vuelos supersónicos sobre tierra haciendo que los estampidos sónicos sean más silenciosos.NASA/Carla Thomas

    Read this story in English here.

    La misión Quesst de la NASA ha alcanzado un hito importante con el inicio de las pruebas de motor que propulsará el silencioso avión supersónico experimental X-59.

    Estas pruebas de arranque del motor, que comenzaron el 30 de octubre, permiten al equipo del X-59 verificar el funcionamiento conjunto de los sistemas de la aeronave propulsados con su propio motor. En pruebas anteriores, el X-59 utilizó fuentes de energía externas. Las pruebas de arranque del motor preparan el terreno para la siguiente fase de progreso hacia el vuelo de la aeronave experimental.

    El equipo del X-59 está realizando las pruebas de arranque del motor por fases. En esta primera fase, el motor giró a una velocidad relativamente baja sin ignición para comprobar si hay fugas y asegurar que todos los sistemas se comunican correctamente. Seguidamente, el equipo llenó el avión de combustible y empezó a probar el motor a baja potencia, con el objetivo de verificar que este y otros sistemas de la aeronave funcionan sin anomalías ni fugas mientras el motor está encendido.

    El piloto de pruebas de Lockheed Martin Dan Canin se sienta en la cabina del silencioso avión supersónico experimental X-59 de la NASA en un puesto de rodaje en las instalaciones Skunk Works de Lockheed Martin en Palmdale, California, antes de su primera prueba de motor. En estas pruebas, el X-59 funcionaba con su propio motor, mientras que en pruebas anteriores dependía de fuentes externas. El X-59 es la pieza central de la misión Quesst de la NASA, que intenta resolver uno de los principales obstáculos a los vuelos supersónicos sobre tierra haciendo que los estampidos sónicos sean más silenciosos.NASA/Carla Thomas

    “La primera fase de las pruebas del motor fue en realidad un calentamiento para asegurarnos de que todo funcionaba bien antes de ponerlo en marcha”, dijo Jay Brandon, ingeniero jefe del X-59 de la NASA. “Luego pasamos al primer arranque real del motor. Eso sacó al motor del modo de conservación en el que había estado desde su instalación en la aeronave. Fue la primera revisión para ver que funcionaba correctamente y todos los sistemas que afectaban (hidráulicos, sistema eléctrico, sistemas de control ambiental, etc.) parecían funcionar”.

    El X-59 generará un estampido más silencioso en vez de un estampido fuerte mientras vuela a una velocidad más rápida que la del sonido. El avión es la pieza central de la misión Quesst de la NASA, que recopilará datos sobre cómo percibe la gente estos estampidos, proporcionando información a los reguladores que podría ayudar a eliminar las prohibiciones existentes sobre vuelos supersónicos comerciales sobre tierra.

    El motor, un F-18 Super Hornet F414-GE-100 modificado, contiene casi 10.000 kilogramos (22.000 libras) de energía propulsora, que permitirá que el X-59 alcance la velocidad de crucero deseada de Mach 1,4 (casi 1.500 kilómetros por hora, o 925 millas por hora) a una altitud de aproximadamente casi 17.000 metros (55.000 pies). Se sitúa en un lugar poco tradicional, encima de la aeronave, para contribuir a que el X-59 sea más silencioso.

    Las pruebas del motor forman parte de una serie de ensayos necesarios para garantizar la seguridad del vuelo y para lograr el éxito de los objetivos de la misión. Debido a los retos que supone alcanzar esta fase crítica de las pruebas, el primer vuelo del X-59 se ha programado ahora para 2025. El equipo técnico seguirá avanzando en las pruebas críticas en tierra y abordará cualquier problema técnico que descubra con esta aeronave experimental única en su género. El equipo del X-59 tendrá una fecha más concreta del primer vuelo una vez que se completen estas pruebas con éxito.

    Las pruebas se están llevando a cabo en las instalaciones Skunk Works de Lockheed Martin en Palmdale, California. Durante fases posteriores, el equipo probará la aeronave a alta potencia con cambios de aceleración rápidos, seguidos por una simulación de las condiciones de vuelo actual.

    El silencioso avión supersónico experimental X-59 de la NASA se sitúa en un puesto de rodaje en las instalaciones Skunk Works de Lockheed Martin en Palmdale, California, antes de su primer arranque de motor. Las pruebas de motor forman parte de una serie de ensayos integrados en tierra necesarios para garantizar la seguridad del vuelo y la consecución de los objetivos de la misión. El X-59 es la pieza central de la misión Quesst de la NASA, que trata de resolver uno de los principales obstáculos a los vuelos supersónicos sobre tierra haciendo que los estampidos sónicos sean más silenciosos.NASA/Carla Thomas

    “El éxito de estas carreras será el comienzo de la culminación de los últimos ocho años de mi carrera”, dijo Paul Dees, jefe adjunto de propulsión de la NASA del X-59. “Esto no es el final de la emoción, sino un pequeño peldaño hacia el principio. Es como la primera nota de una sinfonía, donde años de trabajo en equipo detrás del escenario se ponen ahora a prueba para comprobar que nuestros esfuerzos han sido eficaces, y las notas seguirán tocando una canción armoniosa hasta el vuelo”.

    Después de poner en marcha el motor, el equipo del X-59 pasará a las pruebas de pájaro de hierro virtual (una estructura que se utiliza para probar los sistemas de una aeronave en un laboratorio, simulando un vuelo real), en las que se introducirán datos en al avión bajo condiciones normales y de fallo. A continuación, el equipo procederá a una serie de pruebas de rodaje, donde el avión se pondrá en movimiento en tierra. Estas pruebas se seguirán por las últimas preparaciones para el primer vuelo.

    Articulo traducido por: Nicolas Cholula

    Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 3 min read La NASA lleva un dron y un rover espacial a un espectáculo aéreo Article 1 week ago 4 min read Destacado de la NASA: Felipe Valdez, un ingeniero inspirador Article 2 weeks ago 4 min read Sacrificio y Éxito: Ingeniero de la NASA honra sus orígenes familiares Article 3 weeks ago Keep Exploring Discover More Topics From NASA

    Missions

    Humans In Space

    Quesst: The Vehicle

    Explore NASA’s History

    Share Details Last Updated Nov 06, 2024 EditorLillian GipsonContactMatt Kamletmatthew.r.kamlet@nasa.gov Related Terms
    Categories: NASA