NASA
Sols 4471-4472: Marching Through the Canyon
- Curiosity Home
- Science
- News and Features
- Multimedia
- Mars Missions
- Mars Home
2 min read
Sols 4471-4472: Marching Through the Canyon NASA’s Mars rover Curiosity acquired this image using its Mast Camera (Mastcam), a close-up of the rover’s Alpha Particle X-Ray Spectrometer (APXS), an instrument that measures the abundance of chemical elements in rocks and soils on the Martian surface. Located on the turret at the end of Curiosity’s robotic arm, APXS is about the size of a cupcake, and this image shows the handwritten markings on the instrument’s sensor head. Curiosity captured this image on March 23, 2024 — sol 4134, or Martian day 4,134 of the Mars Science Laboratory mission — at 21:59:21 UTC. NASA/JPL-Caltech/MSSSWritten by Scott VanBommel, Planetary Scientist at Washington University
Earth planning date: Monday, March 3, 2025
Curiosity continued steady progress through the upper sulfate unit and toward its next major science waypoint: the boxwork structures. Our rover is currently driving south through a local canyon between “Texoli” and “Gould Mesa.” This route may expose the same rock layers observed while climbing along the eastern margin of the Gediz Vallis channel, prompting several science activities in today’s plan. With winter still gripping Gale crater and limiting the power available for science, the team carefully balanced a number of priorities.
The weekend’s drive positioned the rover within reach of light-toned laminated bedrock and gray float rock. We kicked off our two-sol plan by removing dust on a representative bedrock target, “Ramona Trail,” before analyzing with APXS and imaging with MAHLI. ChemCam acquired compositional analyses on a laminated gray float rock, “Josephine Peak,” in addition to long-distance images of Texoli. Mastcam documented key features, capturing images of Josephine Peak, Texoli, “Gobblers Knob,” and “Fort Tejon.” In addition to these science-driven images, Mastcam also acquired two images of APXS before a planned drive of about 21 meters (about 69 feet).
As Curiosity continues toward the boxwork structures, the intricate patterns we observe will provide valuable clues about the history of Mars. While the Mastcam images acquired today of the APXS sensor head won’t directly contribute to the boxwork study, they capture a more human aspect of the mission. With each “APXS horseshoe” image, such as the one featured in this blog from sol 4134, hand-written markings on the APXS sensor head appear alongside Martian terrain, a reminder that this incredible journey is driven by the human touch of a dedicated team on Earth who designed, built, and continue to operate this remarkable spacecraft.
Share Details Last Updated Mar 05, 2025 Related Terms Explore More 2 min read Sols 4468-4470: A Wintry Mix of Mars ScienceArticle
2 days ago
2 min read Smooshing for Science: A Flat-Out Success
Article
5 days ago
4 min read Sols 4466-4468: Heading Into the Small Canyon
Article
7 days ago
Keep Exploring Discover More Topics From NASA Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
What is a NASA Spinoff? We Asked a NASA Expert: Episode 53
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)What is a NASA Spinoff?
Well, to answer that question, we’re going to have to go all the way back to 1958, back to the legislation that originally created the space agency, NASA.
So in that legislation, there’s some forward-looking language that says, “Make sure that all the cool stuff you develop for space doesn’t just get blasted off into the universe, but comes back down to the Earth in the form of practical and terrestrial benefits.”
I’m paraphrasing, of course. The legislation is actually a little bit dry like legislation should be. Since that time, NASA has worked to get the technologies it created into the hands of the public. These become products and services and they save lives, they improve lives, they generate income, they create jobs, they boost the economy, they increase crop yields, they make airplane travel safer, they make train transportation safer.
NASA’s everywhere you look. One example I like to bring up is the camera in your cell phone. That was actually developed at JPL. We were working on a lightweight, high resolution camera for a satellite application, and that became the very first camera on a chip, camera in the cell phone.
We’ve also worked on things like indoor agriculture, which is increasingly important as the world gets denser and people need access to healthy foods.
During the pandemic, some researchers developed a ventilator that had fewer than 100 parts, none of which were required in the supply chain to make other ventilators. We gave that to dozens of companies all around the world to help save lives.
If you check out spinoff.nasa.gov you can find thousands of examples of how NASA is everywhere in your life.
[END VIDEO TRANSCRIPT]
Share Details Last Updated Mar 05, 2025 Related Terms Explore More 1 min read Novel Recuperator Design for Cryogenic Fluid Management System Article 8 hours ago 3 min read NASA Successfully Acquires GPS Signals on Moon Article 1 day ago 5 min read Fourth Launch of NASA Instruments Planned for Near Moon’s South Pole Article 1 week ago Keep Exploring Discover Related TopicsMissions
Humans in Space
Climate Change
Solar System
NASA Sets Coverage for Agency’s SpaceX Crew-10 Launch, Docking
Editor’s Note: This advisory was updated March 5, 2025, to correct that media may ask questions by phone only during the mission overview teleconference.
NASA will provide coverage of the upcoming prelaunch and launch activities for the agency’s SpaceX Crew-10 mission to the International Space Station.
Liftoff is targeted for 7:48 p.m. EDT, Wednesday, March 12, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The targeted docking time is approximately 10 a.m., Thursday, March 13.
Coverage of the mission overview teleconference will be available on the agency’s website. The crew news conference, launch, the postlaunch news conference, and docking will be live on NASA+. Learn how to stream NASA content through a variety of platforms, including social media.
The SpaceX Dragon spacecraft will carry NASA astronauts Anne McClain, commander; and Nichole Ayers, pilot; along with mission specialists JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov to the orbiting laboratory for a science mission of about four months. This is the 10th crew rotation mission and the 11th human spaceflight mission for NASA to the space station supported by the Dragon spacecraft since 2020 as part of the agency’s Commercial Crew Program.
The deadline for media accreditation for in person coverage of this launch has passed. The agency’s media credentialing policy is available online. For questions about media accreditation, please email: ksc-media-accreditat@mail.nasa.gov.
Media who need access to NASA live video feeds may subscribe to the agency’s media resources distribution list to receive daily updates and links.
NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
Friday, March 7
2 p.m. – Crew arrival media event at NASA Kennedy with the following participants:
- Anne McClain, Crew-10 spacecraft commander, NASA
- Nichole Ayers, Crew-10 pilot, NASA
- Takuya Onishi, Crew-10 mission specialist, JAXA
- Kirill Peskov, Crew-10 mission specialist, Roscosmos
Watch live coverage of the crew arrival media event on NASA Kennedy’s social media accounts.
This event is open to in person media only previously credentialed for this event, and questions will be taken only during the crew news conference scheduled for later that day. Follow @CommercialCrew and @NASAKennedy on X for the latest arrival updates.
5:30 p.m. – Mission overview teleconference at NASA Kennedy (or no earlier than one hour after the completion of the Flight Readiness Review) with the following participants:
- Ken Bowersox, associate administrator, Space Operations Mission Directorate, NASA Headquarters in Washington
- Steve Stich, manager, Commercial Crew Program, NASA Kennedy
- Dana Weigel, manager, International Space Station Program, NASA’s Johnson Space Center in Houston
- Meg Everett, deputy chief scientist, NASA’s International Space Station Program, NASA Johnson
- William Gerstenmaier, vice president, Build and Flight Reliability, SpaceX
- Junichi Sakai, manager, International Space Station Program, JAXA
NASA will provide audio-only coverage of the teleconference.
Media may ask questions via phone only. For the dial-in number and passcode, media should contact the Kennedy newsroom no later than 4 p.m., Friday, March 7, at ksc-newsroom@mail.nasa.gov.
6:30 p.m. – Crew-10 crew news conference (or directly following the completion of the mission overview news conference) with the following participants:
- Anne McClain, Crew-10 spacecraft commander, NASA
- Nichole Ayers, Crew-10 pilot, NASA
- Takuya Onishi, Crew-10 mission specialist, JAXA
- Kirill Peskov, Crew-10 mission specialist, Roscosmos
Watch live coverage of the mission overview news conference on NASA+.
Media may ask questions via phone only. For the dial-in number and passcode, media should contact the Kennedy newsroom no later than 4 p.m., Friday, March 7, at: ksc-newsroom@mail.nasa.gov.
Wednesday, March 12
3:45 p.m. – Launch coverage begins on NASA+.
7:48 p.m. – Launch
Following the conclusion of launch and ascent coverage, NASA will switch to audio only and continue audio coverage through Thursday, March 13. Continuous coverage resumes on NASA+ at the start of rendezvous and docking and continues through hatch opening and the welcome ceremony.
9:30 p.m. – Postlaunch news conference with the following participants:
- Ken Bowersox, associate administrator, NASA’s Space Operations Mission Directorate
- Steve Stich, manager, Commercial Crew Program, NASA Kennedy
- Dana Weigel, manager, International Space Station Program, NASA Johnson
- Sarah Walker, director, Dragon Mission Management, SpaceX
- Mayumi Matsuura, vice president and director general, Human Spaceflight Technology Directorate, JAXA
Watch live coverage of the postlaunch news conference on NASA+.
Media may ask questions in person and via phone. Limited auditorium space will be available for in person participation. For the dial-in number and passcode, please contact the Kennedy newsroom no later than 8:30 p.m., Wednesday, March 12, at ksc-newsroom@mail.nasa.gov.
Thursday, March 13
8:15 a.m. – Arrival coverage begins on NASA+.
10 a.m. – Targeted docking to the forward-facing port of the station’s Harmony module
11:45 a.m. – Hatch opening
12:20 p.m. – Welcome ceremony
All times are estimates and could be adjusted based on real-time operations after launch. Follow the space station blog for the most up-to-date operations information.
Live Video Coverage Prior to Launch
NASA will provide a live video feed of Launch Complex 39A approximately six hours prior to the planned liftoff of the Crew-10 mission. Pending unlikely technical issues, the feed will be uninterrupted until the prelaunch broadcast begins on NASA+, approximately four hours prior to launch. Once the feed is live, find it online at: http://youtube.com/kscnewsroom.
NASA Website Launch Coverage
Launch day coverage of the mission will be available on the NASA website. Coverage will include livestreaming and blog updates beginning no earlier than 3:45 p.m., March 12, as the countdown milestones occur. On-demand streaming video on NASA+ and photos of the launch will be available shortly after liftoff. For questions about countdown coverage, contact the NASA Kennedy newsroom at 321-867-2468. Follow countdown coverage on the commercial crew or Crew-10 blog.
Attend Launch Virtually
Members of the public may register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch.
Watch, Engage on Social Media
Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtags #Crew10 and #NASASocial. You may also stay connected by following and tagging these accounts:
X: @NASA, @NASAKennedy, @NASASocial, @Space_Station, @ISS_Research, @ISS National Lab, @SpaceX, @Commercial_Crew
Facebook: NASA, NASAKennedy, ISS, ISS National Lab
Instagram: @NASA, @NASAKennedy, @ISS, @ISSNationalLab, @SpaceX
Coverage en Espanol
Did you know NASA has a Spanish section called NASA en Espanol? Check out NASA en Espanol on X, Instagram, Facebook, and YouTube for additional mission coverage.
Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: 321-501-8425; antonia.jaramillobotero@nasa.gov; o Messod Bendayan: 256-930-1371; messod.c.bendayan@nasa.gov.
NASA’s Commercial Crew Program has delivered on its goal of safe, reliable, and cost-effective transportation to and from the International Space Station from the United States through a partnership with American private industry. This partnership is changing the arc of human spaceflight history by opening access to low Earth orbit and the International Space Station to more people, more science, and more commercial opportunities. The space station remains the springboard to NASA’s next great leap in space exploration, including future missions to the Moon and, eventually, to Mars.
For more information about the mission, visit:
https://www.nasa.gov/commercialcrew
-end-
Joshua Finch / Jimi Russell
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
Steven Siceloff / Stephanie Plucinsky
Kennedy Space Center, Florida
321-867-2468
steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov
Kenna Pell
Johnson Space Center, Houston
281-483-5111
kenna.m.pell@nasa.gov
How NASA is Using Virtual Reality to Prepare for Science on Moon
When astronauts walk on the Moon, they’ll serve as the eyes, hands, and boots-on-the-ground interpreters supporting the broader teams of scientists on Earth. NASA is leveraging virtual reality to provide high-fidelity, cost-effective support to prepare crew members, flight control teams, and science teams for a return to the Moon through its Artemis campaign.
The Artemis III Geology Team, led by principal investigator Dr. Brett Denevi of the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, participated in an Artemis III Surface Extra-Vehicular VR Mini-Simulation, or “sim” at NASA’s Johnson Space Center in Houston in the fall of 2024. The sim brought together science teams and flight directors and controllers from Mission Control to carry out science-focused moonwalks and test the way the teams communicate with each other and the astronauts.
“There are two worlds colliding,” said Dr. Matthew Miller, co-lead for the simulation and exploration engineer, Amentum/JETSII contract with NASA. “There is the operational world and the scientific world, and they are becoming one.”
NASA mission training can include field tests covering areas from navigation and communication to astronaut physical and psychological workloads. Many of these tests take place in remote locations and can require up to a year to plan and large teams to execute. VR may provide an additional option for training that can be planned and executed more quickly to keep up with the demands of preparing to land on the Moon in an environment where time, budgets, and travel resources are limited.
VR helps us break down some of those limitations and allows us to do more immersive, high-fidelity training without having to go into the field. It provides us with a lot of different, and significantly more, training opportunities.BRI SPARKS
NASA co-lead for the simulation and Extra Vehicular Activity Extended Reality team at Johnson.
Field testing won’t be going away. Nothing can fully replace the experience crew members gain by being in an environment that puts literal rocks in their hands and incudes the physical challenges that come with moonwalks, but VR has competitive advantages.
The virtual environment used in the Artemis III VR Mini-Sim was built using actual lunar surface data from one of the Artemis III candidate regions. This allowed the science team to focus on Artemis III science objectives and traverse planning directly applicable to the Moon. Eddie Paddock, engineering VR technical discipline lead at NASA Johnson, and his team used data from NASA’s Lunar Reconnaissance Orbiter and planet position and velocity over time to develop a virtual software representation of a site within the Nobile Rim 1 region near the south pole of the Moon. Two stand-in crew members performed moonwalk traverses in virtual reality in the Prototype Immersive Technology lab at Johnson, and streamed suit-mounted virtual video camera views, hand-held virtual camera imagery, and audio to another location where flight controllers and science support teams simulated ground communications.
A screen capture of a virtual reality view during the Artemis III VR Mini-Simulation. The lunar surface virtual environment was built using actual lunar surface data from one of the Artemis III candidate regions. Credit: Prototype Immersive Technology lab at NASA’s Johnson Space Center in Houston.The crew stand-ins were immersed in the lunar environment and could then share the experience with the science and flight control teams. That quick and direct feedback could prove critical to the science and flight control teams as they work to build cohesive teams despite very different approaches to their work.
The flight operations team and the science team are learning how to work together and speak a shared language. Both teams are pivotal parts of the overall mission operations. The flight control team focuses on maintaining crew and vehicle safety and minimizing risk as much as possible. The science team, as Miller explains, is “relentlessly thirsty” for as much science as possible. Training sessions like this simulation allow the teams to hone their relationships and processes.
Members of the Artemis III Geology Team and science support team work in a mock Science Evaluation Room during the Artemis III Virtual Reality Mini-Simulation at NASA’s Johnson Space Center in Houston. Video feeds from the stand-in crew members’ VR headsets allow the science team to follow, assess, and direct moonwalks and science activities. Credit: NASA/Robert MarkowitzDenevi described the flight control team as a “well-oiled machine” and praised their dedication to getting it right for the science team. Many members of the flight control team have participated in field and classroom training to learn more about geology and better understand the science objectives for Artemis.
“They have invested a lot of their own effort into understanding the science background and science objectives, and the science team really appreciates that and wants to make sure they are also learning to operate in the best way we can to support the flight control team, because there’s a lot for us to learn as well,” Denevi said. “It’s a joy to get to share the science with them and have them be excited to help us implement it all.”
Engineering VR technical discipline lead Eddie Paddock works with team members to facilitate the virtual reality components of the Artemis III Virtual Reality Mini-Simulation in the Prototype Immersive Technology lab at NASA’s Johnson Space Center in Houston. Credit: Robert MarkowitzThis simulation, Sparks said, was just the beginning for how virtual reality could supplement training opportunities for Artemis science. In the future, using mixed reality could help take the experience to the next level, allowing crew members to be fully immersed in the virtual environment while interacting with real objects they can hold in their hands. Now that the Nobile Rim 1 landing site is built in VR, it can continue to be improved and used for crew training, something that Sparks said can’t be done with field training on Earth.
While “virtual” was part of the title for this exercise, its applications are very real.
“We are uncovering a lot of things that people probably had in the back of their head as something we’d need to deal with in the future,” Miller said. “But guess what? The future is now. This is now.”
Grier Wilt, left, and Tess Caswell, crew stand-ins for the Artemis III Virtual Reality Mini-Simulation, execute a moonwalk in the Prototype Immersive Technology (PIT) lab at NASA’s Johnson Space Center in Houston. Credit: NASA/Robert Markowitz Test subject crew members for the Artemis III Virtual Reality Mini-Simulation, including Grier Wilt, left, and Tess Caswell, center, execute a moonwalk in the Prototype Immersive Technology lab at NASA’s Johnson Space Center in Houston. Credit: NASA/Robert Markowitz Flight director Paul Konyha follows moonwalk activities during the Artemis III Virtual Reality Mini-Simulation at NASA’s Johnson Space Center in Houston. Credit: NASA/Robert MarkowitzRachel Barry
NASA’s Johnson Space Center
Keep Exploring Discover More Topics From NASA
Astromaterials
Artemis Science
A Time Capsule The Moon is a 4.5-billion-year-old time capsule, pristinely preserved by the cold vacuum of space. It is…
Lunar Craters
Earth’s Moon is covered in craters. Lunar craters tell us the history not only of the Moon, but of our…
Solar System
NASA Turns Off 2 Voyager Science Instruments to Extend Mission
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) An artist’s concept depicts one of NASA’s Voyager probes. The twin spacecraft launched in 1977.NASA/JPL-CaltechThe farthest-flung human-made objects will be able to take their science-gathering even farther, thanks to these energy-conserving measures.
Mission engineers at NASA’s Jet Propulsion Laboratory in Southern California turned off the cosmic ray subsystem experiment aboard Voyager 1 on Feb. 25 and will shut off Voyager 2’s low-energy charged particle instrument on March 24. Three science instruments will continue to operate on each spacecraft. The moves are part of an ongoing effort to manage the gradually diminishing power supply of the twin probes.
Launched in 1977, Voyagers 1 and 2 rely on a radioisotope power system that generates electricity from the heat of decaying plutonium. Both lose about 4 watts of power each year.
“The Voyagers have been deep space rock stars since launch, and we want to keep it that way as long as possible,” said Suzanne Dodd, Voyager project manager at JPL. “But electrical power is running low. If we don’t turn off an instrument on each Voyager now, they would probably have only a few more months of power before we would need to declare end of mission.”
The two spacecraft carry identical sets of 10 science instruments. Some of the instruments, geared toward collecting data during planetary flybys, were turned off after both spacecraft completed their exploration of the solar system’s gas giants.
The instruments that remained powered on well beyond the last planetary flyby were those the science team considered important for studying the solar system’s heliosphere, a protective bubble of solar wind and magnetic fields created by the Sun, and interstellar space, the region outside the heliosphere. Voyager 1 reached the edge of the heliosphere and the beginning of interstellar space in 2012; Voyager 2 reached the boundary in 2018. No other human-made spacecraft has operated in interstellar space.
Last October, to conserve energy, the project turned off Voyager 2’s plasma science instrument, which measures the amount of plasma — electrically charged atoms — and the direction it is flowing. The instrument had collected only limited data in recent years due to its orientation relative to the direction that plasma flows in interstellar space. Voyager 1’s plasma science instrument had been turned off years ago because of degraded performance.
Interstellar Science LegacyThe cosmic ray subsystem that was shut down on Voyager 1 last week is a suite of three telescopes designed to study cosmic rays, including protons from the galaxy and the Sun, by measuring their energy and flux. Data from those telescopes helped the Voyager science team determine when and where Voyager 1 exited the heliosphere.
Scheduled for deactivation later this month, Voyager 2’s low-energy charged particle instrument measures the various ions, electrons, and cosmic rays originating from our solar system and galaxy. The instrument consists of two subsystems: the low-energy particle telescope for broader energy measurements, and the low-energy magnetospheric particle analyzer for more focused magnetospheric studies.
Both systems use a rotating platform so that the field of view is 360 degrees, and the platform is powered by a stepper motor that provides a 15.7-watt pulse every 192 seconds. The motor was tested to 500,000 steps — enough to guarantee continuous operation through the mission’s encounters with Saturn, which occurred in August 1980 for Voyager 2. By the time it is deactivated on Voyager 2, the motor will have completed more than 8.5 million steps.
“The Voyager spacecraft have far surpassed their original mission to study the outer planets,” said Patrick Koehn, Voyager program scientist at NASA Headquarters in Washington. “Every bit of additional data we have gathered since then is not only valuable bonus science for heliophysics, but also a testament to the exemplary engineering that has gone into the Voyagers — starting nearly 50 years ago and continuing to this day.”
Addition Through SubtractionMission engineers have taken steps to avoid turning off science instruments for as long as possible because the science data collected by the twin Voyager probes is unique. With these two instruments turned off, the Voyagers should have enough power to operate for about a year before the team needs to shut off another instrument on both spacecraft.
In the meantime, Voyager 1 will continue to operate its magnetometer and plasma wave subsystem. The spacecraft’s low-energy charged particle instrument will operate through the remainder of 2025 but will be shut off next year.
Voyager 2 will continue to operate its magnetic field and plasma wave instruments for the foreseeable future. Its cosmic ray subsystem is scheduled to be shut off in 2026.
With the implementation of this power conservation plan, engineers believe the two probes could have enough electricity to continue operating with at least one science instrument into the 2030s. But they are also mindful that the Voyagers have been weathering deep space for 47 years and that unforeseen challenges could shorten that timeline.
Long DistanceVoyager 1 and Voyager 2 remain the most distant human-made objects ever built. Voyager 1 is more than 15 billion miles (25 billion kilometers) away. Voyager 2 is over 13 billion miles (21 billion kilometers) from Earth.
In fact, due to this distance, it takes over 23 hours to get a radio signal from Earth to Voyager 1, and 19½ hours to Voyager 2.
“Every minute of every day, the Voyagers explore a region where no spacecraft has gone before,” said Linda Spilker, Voyager project scientist at JPL. “That also means every day could be our last. But that day could also bring another interstellar revelation. So, we’re pulling out all the stops, doing what we can to make sure Voyagers 1 and 2 continue their trailblazing for the maximum time possible.”
For more information about NASA’s Voyager missions, visit:
https://science.nasa.gov/mission/voyager
DC Agle / Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
818-653-6297 / 626-808-2469
agle@jpl.nasa.gov / calla.e.cofield@jpl.nasa.gov
2025-032
Share Details Last Updated Mar 05, 2025 Related Terms Explore More 3 min read University High Knows the Answers at NASA JPL Regional Science Bowl Article 2 days ago 3 min read NASA Uses New Technology to Understand California Wildfires Article 5 days ago 6 min read NASA’s Europa Clipper Uses Mars to Go the Distance Article 1 week ago Keep Exploring Discover Related TopicsMissions
Humans in Space
Climate Change
Solar System
NASA’s Ethics Program
NASA’s Ethics Program provides training and counsel to NASA employees and is responsible for the day-to-day management of the agency-wide ethics program. Headquarters and Center Chief Counsels ethics officials support the ethics program in their respective localities.
A list of ethics officials at each NASA location can be found here: Headquarters and Center Ethics Officials.
Associate General Counsel, General Law Practice Group:
Katie Spear
Agency Counsel for Ethics:
Adam Greenstone
NASA employees have a responsibility to the United States Government and its citizens to place loyalty to the Constitution, laws, and ethics principles above private gain. As NASA employees, we need you to preserve NASA’s core value of integrity through your commitment to ethics and ethical decision-making. If you are faced with a question concerning your ethics obligations as a NASA employee, please contact a NASA ethics official before taking action.
Deferred Resignation and Ethics FAQs
NASA employees who participate in the Office of Personnel Management’s Deferred Resignation Program remain subject to the ethics laws. Please click HERE for frequently asked questions related to the applicable ethics rules and regulations.
Financial Disclosure
As a NASA employee, you may be required to disclose your financial interests for one of two reasons: 1) You are in a position requiring by law that you file a Public Financial Disclosure (OGE Form 278)(PDF) report. This includes members of the Senior Executive Service (SES); SL or ST employees; holding another position classified above the GS-15 level; holding a “NASA excepted” position above a certain pay level; and Schedule C appointees. 2) Your duties are such that they raise an increased likelihood of a conflict of interest, for which you would file an (OGE Form 450)(PDF) report. If you are in a position subject to Public Financial Disclosure (or acting in one for more than 60 days), then you are subject to the Public Financial Disclosure report in which your report will be publicly available. If you are a General Schedule or other employee required to file OGE Form 450, your financial disclosure requirements will be less complex, and report will be confidential. For specific questions, please contact an ethics official.
Contact Information
If you have questions, please ask an ethics official at your respective center.
- Headquarters and Center Ethics Officials
Widely Attended Gatherings Determinations
Please click here to access the latest Widely Attended Gatherings Determinations. If you do not see a determination for the event in which you were invited to attend in your official capacity, please request guidance from your local ethics official.
Outside Activities
NASA employees are subject to regulations regarding outside employment. They are prohibited from engaging in outside activities that conflict with their official duties. In addition, the NASA Supplemental Standards of Ethical Conduct for NASA Employees, 5 C.F.R. Part 6901, require prior approval for engaging in certain types of outside employment. In these instances, employees should request approval from their local ethics official prior to accepting such outside employment. Click here to access the Request for Approval of Outside Employment and Activities form.
Note that the NASA Supplemental rules also prohibit NASA employees from engaging in outside employment with a NASA contractor, subcontractor, or grantee in connection with work performed by that entity for NASA; or a party to a Space Act Agreement, Commercial Launch Act agreement, or other agreement to which NASA is a party pursuant to specific statutory authority, if the employment is in connection with work performed under that agreement.
Employees in a leave status are subject to the same legal parameters. Please reach out to your local ethics official for guidance.
Resources
- NF1860P, Request for Approval of Outside Employment and Activities (Only for LWOP and DRP use)
- Agreement and Recusal Statement (for 278 filers only)
- 14 General Principles, Office of Government Ethics
- Criminal Conflicts of Interest, Summary for Executive Branch Employees
- Introduction to the Standards of Ethical Conduct, Summary for Executive Branch Employees
- Standards of Ethics Conduct for Executive Branch Employees
- Supplemental Standards of Ethical Conduct for Employees of the National Aeronautics and Space Administration
- Hatch Act, Office of Special Counsel
We look forward to welcoming you to NASA! You are joining an organization that works to change the history of humanity and usher in a bold new era or discovery. We are depending on you to maintain the public trust and to preserve NASA’s ethical culture. Accordingly, NASA employees must comply with ethical standards that relate to outside employment, political activities, and business relationships, among other topics. NASA encourages prospective employees to learn more about these ethical standards along the path of joining our team. If ethics questions arise before or after you join NASA, please contact a NASA ethics official before taking action. What are your obligations? Know the rules. If you have questions, please ask an ethics official at your respective location.
- Headquarters and Center Ethics Officials
Financial Disclosure
As a NASA employee, you may be required to disclose your financial interests for one of two reasons: 1) You are in a position requiring by law that you file a Public Financial Disclosure (OGE Form 278)(PDF) report. This includes members of the Senior Executive Service (SES); SL or ST employees; holding another position classified above the GS-15 level; holding a “NASA excepted” position above a certain pay level; and Schedule C appointees. 2) Your duties are such that they raise an increased likelihood of a conflict of interest, for which you would file an (OGE Form 450)(PDF) report. If you are in a position subject to Public Financial Disclosure (or acting in one for more than 60 days), then you are subject to the Public Financial Disclosure report in which your report will be publicly available. If you are a General Schedule or other employee required to file OGE Form 450, your financial disclosure requirements will be less complex, and your report will be confidential. For specific questions, please contact an ethics official.
Resources
- 14 General Principles, Office of Government Ethics
- Criminal Conflicts of Interest, Summary for Executive Brand Employees
- Introduction to the Standards of Ethical Conduct, Summary for Executive Branch Employees
- Standards of Ethics Conduct for Executive Branch Employees
- Supplemental Standards of Ethical Conduct for Employees of the National Aeronautics and Space Administration
- Hatch Act, Office of Special Counsel
The post-government employment ethics statute, 18 U.S.C. § 207, applies to a former NASA employee’s communication with NASA or the Government on behalf of the former employee’s non-federal employer. Former NASA employees should contact a NASA ethics official for advice before communications or otherwise interacting with NASA or the Government on behalf of their new employer because this criminal statute may be implicated. The Procurement Integrity Act also restricts individuals who were in certain contracting roles from accepting compensated work from certain contractors for a limited period.
Contact Information
If you have questions, please ask an ethics official at your respective center.
- Headquarters and Center Ethics Officials
A Special Government Employee (SGE) is an officer or employee “who is retained, designated, appointed, or employed to perform, with or without compensation, for not to exceed one hundred and thirty days during any consecutive period of three hundred and sixty-five consecutive days.” 18 U.S.C. § 202. Congress created the SGE category in 1962 to allow the federal Government to obtain the expertise it needs, while allowing experts to continue their private professional lives. As a result, some of the ethics statutes and regulations apply differently to SGEs than they do to regular executive branch employees, and some provisions do not apply at all.
Financial Disclosure
SGEs are required to file a financial disclosure report each year, usually a confidential financial disclosure report (OGE-450). Financial disclosure reporting helps NASA identify any possible financial conflicts of interest. SGEs are notified in advance of when to file.
- Sample Confidential Financial Disclosure Report, Office of Government Ethics
- Confidential Financial Disclosure Guide, Office of Government Ethics
- Video on how to Complete a New Entrant Confidential Financial Disclosure Report
- Video on how to Complete an Annual Financial Disclosure Report
Ethics Training
SGEs are required to receive annual ethics training by December 31st of each calendar year.
Contact Information
If you are a SGE and have questions, please contact the Headquarters Ethics Team by e-mail at hq-ethicsteam@nasa.gov or by phone at (202) 358-0550.
Resources
- 14 General Principles, Office of Government Ethics
- Criminal Conflicts of Interest, Summary for Executive Brand Employees
- Introduction to the Standards of Ethical Conduct, Summary for Executive Branch Employees
- Standards of Ethics Conduct for Executive Branch Employees
- Supplemental Standards of Ethical Conduct for Employees of the National Aeronautics and Space Administration
~~~~~~~~~~~~~~~~~~
ContactOffice of the General Counsel
NASA Headquarters
300 E Street SW Suite 9V30
Washington, DC 20546
Phone Number (202) 358-2450
OGC Disclaimer: The materials within this website do not constitute legal advice. For details read our disclaimer.
Novel Recuperator Design for Cryogenic Fluid Management System
Cryocoolers are essential systems in many space exploration missions to maintain propellants at cryogenic temperatures. Cryogenic recuperators are a key component of these cryocoolers and dictate the performance of the system. NASA is seeking to reduce the cost and increase the performance of cryogenic recuperators (also called Heat Exchangers) by utilizing Additive Manufacturing (AM) technologies.
Award: $7,000 in total prizes
Open Date: March 5, 2025
Close Date: May 2, 2025
For more information, visit: https://grabcad.com/challenges/novel-recuperator-design-for-cryogenic-fluid-management-system
Hubble Captures New View of Colorful Veil
Hubble Captures New View of Colorful Veil
In this NASA/ESA Hubble Space Telescope image, Hubble once again lifts the veil on a famous — and frequently photographed — supernova remnant: the Veil Nebula. The remnant of a star roughly 20 times as massive as the Sun that exploded about 10,000 years ago, the Veil Nebula is situated about 2,400 light-years away in the constellation Cygnus. Hubble images of this photogenic nebula were first taken in 1994 and 1997, and again in 2015.
This view combines images taken in three different filters by Hubble’s Wide Field Camera 3, highlighting emission from hydrogen, sulfur, and oxygen atoms. The image shows just a small fraction of the Veil Nebula; if you could see the entire nebula without the aid of a telescope, it would be as wide as six full Moons placed side-by-side.
Although this image captures the Veil Nebula at a single point in time, it helps researchers understand how the supernova remnant evolves over decades. Combining this snapshot with Hubble observations from 1994 will reveal the motion of individual knots and filaments of gas over that span of time, enhancing our understanding of this stunning nebula.
NASA’s SpaceX Crew-10 to Explore Deep Space Exercise, Health
During NASA’s SpaceX Crew-10 mission to the International Space Station, which is scheduled to launch in March, select members of the four-person crew will participate in exercise and medical research aimed at keeping astronauts fit on future long-duration missions.
Crew members living and working aboard the space station have access to a designated training area outfitted with a weight-lifting system, a stationary bike, and a specialized treadmill called T2. The space station is expansive enough for bulky exercise equipment that helps preserve the health and performance of astronauts in space and when they return to Earth.
However, as NASA looks to explore beyond low Earth orbit, the agency anticipates future spacecraft will not have room for large exercise equipment, like treadmills. Since walking and running are essential parts of workouts aboard the space station, NASA does not fully understand how long-duration spaceflights without a treadmill will impact crews’ health and motor functions. Consequently, NASA researchers are adjusting astronauts’ training regimens, including eliminating the use of the treadmill in some cases, to study ways that maintain crews’ strength, fitness, bone health, and balance.
In an ongoing study called Zero T2, expedition crews are divided into three groups with different workout regimens. One group continues exercising normally, using all the available equipment aboard the orbiting complex. A second group forgoes using the treadmill, relying solely on the other available equipment. While a third group will only exercise using a new, experimental, less bulky workout machine. NASA compares the groups’ health data collected before, during, and after flight to determine if the lack of treadmill use negatively impacts the crews’ fitness, muscle performance, and recovery after return to Earth.
“A treadmill takes up a lot of mass, space, and energy. This is not great for missions to Mars where every kilogram counts,” explained NASA astronaut Matthew Dominick, who participated in the same study while serving as commander of NASA’s SpaceX Crew-8 mission in 2024. “The Zero T2 experiment is helping us figure out if we can go without a treadmill and still be healthy.”
Results of the Zero T2 study will help researchers determine how treadmill-free workouts may affect crew health, which will, in turn, help NASA build realistic exercise protocols for future deep space missions. Additionally, this investigation could support design improvements for exercise devices used to prevent or treat bone, muscle, and cardiovascular health on Earth.
Beyond the Zero T2 study, select NASA crew members will perform additional studies supported by the agency’s Human Research Program during their mission. Participating crew will conduct medical exams, provide biological samples, and document spaceflight-related injuries, among other tasks.
“Astronauts choose which studies to participate in based on their interests,” explained Cherie Oubre, a NASA scientist at the agency’s Johnson Space Center in Houston, who helps oversee human research studies carried out aboard the space station. “The experiments address important risks and gaps associated with human spaceflight.”
One set of experiments, called CIPHER (Complement of Integrated Protocols for Human Exploration Research), will help researchers understand how multiple systems within the human body adjust to varying mission durations. CIPHER study members will complete vision assessments, cognitive tests, and MRI scans to help provide a clearer picture of how the entire body is affected by space.
“The CIPHER experiment tracks changes in the eyes, bones, heart, muscles, immune system, and more,” Oubre said. “The investigation provides the most comprehensive overview of how long-duration spaceflight affects the entire human body ever conducted, helping us advance human expeditions to the Moon, Mars, and elsewhere.”
Some crew members also will contribute to a core set of measurements called Spaceflight Standard Measures. The measurements represent how the human body and mind adapt to space travel over time and serve as a basis for other spaceflight studies like CIPHER. Additionally, crew members may provide biological samples for Omics Archive, a separate study analyzing how the body reacts to long-duration spaceflight at the molecular level.
In another study, select crew members will test a potential treatment for spaceflight-associated neuro-ocular syndrome, a condition associated with brain changes and swelling of the back of the eye. Researchers are unsure what causes the syndrome or why only certain astronauts develop it, but the shift of bodily fluids toward the head in weightlessness may play a role. Some scientists believe genetics related to how the body processes B vitamins may affect how astronauts respond to those fluid shifts. Participating crew will test whether a daily B vitamin supplement can ease or prevent the development of symptoms. They also will investigate if cuffs worn on astronauts’ thighs to keep fluids in the legs could be an effective intervention.
Upon return, the select crew members will complete surveys that record any discomfort or injuries associated with landing, such as scrapes and bruises. Results of the surveys ̶ when combined with data retrieved by sensors in the vehicle ̶ will help researchers catalog these injuries and improve the design of spacecraft.
Crew members began participating in the studies about a year before their mission, learning about the work and offering baseline health data. They will continue to provide data for the experiments for up to two years after returning home.
____
NASA’s Human Research Program pursues the best methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, commercial missions, and the International Space Station, the program scrutinizes how spaceflight affects human bodies and behaviors. Such research drives NASA’s quest to innovate ways that keep astronauts healthy and mission-ready as human space exploration expands to the Moon, Mars, and beyond.
Learn More About Exercising in Space Astronauts aboard the International Space Station typically exercise for two hours each day. From running to cycling to weightlifting, learn how crew members complete fitness regimens in space and commit to staying healthy – even in microgravity (Credit: NASA). Explore More 2 min read NASA Prepares Gateway Lunar Space Station for Journey to MoonAssembly is underway for Gateway's Power and Propulsion Element, the module that will power the…
Article 1 week ago 5 min read NASA Marks Artemis Progress With Gateway Lunar Space StationNASA and its international partners are making progress on Gateway – the lunar space station…
Article 2 weeks ago 5 min read NASA Readies Moon Rocket for the Future with Manufacturing Innovation Article 3 weeks ago Keep Exploring Discover More Topics From NASALiving in Space
Artemis
Human Research Program
Space Station Research and Technology
2025 Aviation Weather Mission: Civil Air Patrol Cadets Help Scientists Study the Atmosphere with GLOBE Clouds
2 min read
2025 Aviation Weather Mission: Civil Air Patrol Cadets Help Scientists Study the Atmosphere with GLOBE CloudsThe Science Activation Program’s NASA Earth Science Education Collaborative (NESEC) is working alongside the Civil Air Patrol (CAP) to launch the 2025 Aviation Weather Mission. The mission will engage cadets (students ages 11-20) and senior members to collect aviation-relevant observations including airport conditions, Global Learning and Observations to Benefit the Environment (GLOBE) Cloud observations, commercial aircraft information (including registration number and altitude), and satellite collocations provided by the NASA GLOBE Clouds team at NASA Langley Research Center. This mission results from a highly successful collaboration between NESEC and CAP as cadets and senior members collected cloud, air temperature, and land cover observations during the partial and total solar eclipses in 2023 and 2024, engaging over 400 teams with over 3,000 cadets and over 1,000 senior members in every state, Washington DC, and Puerto Rico.
The 2025 Aviation Weather Mission will take place from April through July 2025, collecting observations over two 4-hour periods while practicing additional skills, such as flight tracking, orienteering, and data management. So far, over 3,000 cadets in 46 wings (states) have signed up to participate.
Science Activation recently showed support for this mission through a letter of collaboration sent to CAP Major General Regena Aye in early February. NASA GLOBE Clouds and GLOBE Observer are part of the NASA Earth Science Education Collaborative (NESEC), which is led by the Institute for Global Environmental Strategies (IGES) and supported by NASA under cooperative agreement award number NNX16AE28A. NESEC is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
Cadets from the Virginia wing making cloud observations as they prepare for the 2025 Aviation Weather Mission. Share Details Last Updated Mar 04, 2025 Editor NASA Climate Editorial Team Location NASA Langley Research Center Related Terms Explore More 2 min read Sharing PLANETS Curriculum with Out-of-School Time EducatorsArticle
1 week ago
3 min read Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska
Article
2 weeks ago
2 min read An Afternoon of Family Science and Rocket Exploration in Alaska
Article
3 weeks ago
Keep Exploring Discover More Topics From NASA James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
NASA Awards Launch Service for Mission to Study Storm Formation
NASA has selected Firefly Aerospace Inc. of Cedar Park, Texas, to provide the launch service for the agency’s Investigation of Convective Updrafts (INCUS) mission, which aims to understand why, when, and where tropical convective storms form, and why some storms produce extreme weather. The mission will launch on the company’s Alpha rocket from NASA’s Wallops Flight Facility in Virginia.
The selection is part of NASA’s Venture-Class Acquisition of Dedicated and Rideshare (VADR) launch services contract. This contract allows the agency to make fixed-price indefinite-delivery/indefinite-quantity awards during VADR’s five-year ordering period, with a maximum total value of $300 million across all contracts.
The INCUS mission, comprised of three SmallSats flying in tight coordination, will investigate the evolution of the vertical transport of air and water by convective storms. These storms form when rapidly rising water vapor and air create towering clouds capable of producing rain, hail, and lightning. The more air and water that rise, the greater the risk of extreme weather. Convective storms are a primary source of precipitation and cause of the most severe weather on Earth.
Each satellite will have a high frequency precipitation radar that observes rapid changes in convective cloud depth and intensities. One of the three satellites also will carry a microwave radiometer to provide the spatial content of the larger scale weather observed by the radars. By flying so closely together, the satellites will use the slight differences in when they make observations to apply a novel time-differencing approach to estimate the vertical transport of convective mass.
NASA selected the INCUS mission through the agency’s Earth Venture Mission-3 solicitation and Earth System Science Pathfinder program. The principal investigator for INCUS is Susan van den Heever at Colorado State University in Fort Collins. Several NASA centers support the mission, including Langley Research Center in Hampton, Virginia, the Jet Propulsion Laboratory in Southern California, Goddard Space Flight Center in Greenbelt, Maryland, and Marshall Space Flight Center in Huntsville, Alabama. Key satellite system components will be provided by Blue Canyon Technologies and Tendeg LLC, both in Colorado. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, manages the VADR contract.
To learn more about NASA’s INCUS mission, visit:
https://science.nasa.gov/mission/incus
-end-
Tiernan Doyle
Headquarters, Washington
202-358-1600
tiernan.doyle@nasa.gov
Patti Bielling
Kennedy Space Center, Florida
321-501-7575
patricia.a.bielling@nasa.gov
Station Nation: Meet Chris Wade, Visiting Vehicle Integration Manager for SpaceX Vehicles
Chris Wade is a visiting vehicle integration manager for SpaceX vehicles in the International Space Station Transportation Integration Office. He plays a key role in ensuring that all vehicle requirements are on track to support SpaceX missions to the space station. Chris also manages a team of real-time mission support personnel who follow launch, docking, undocking, and splashdown operations. Read on to learn about his career with NASA and more!
Where are you from?
I am from Clarksdale, Mississippi.
Tell us about your role at NASA.
I manage horizontal integration between the SpaceX vehicle provider and the Commercial Crew and International Space Station Programs. In this role, I work to ensure all vehicle requirements will close in time to support upcoming SpaceX missions to the orbiting laboratory and achieve final certification prior to launch. Additionally, as a vehicle integration manager, I manage a team of real-time mission support personnel who follow launch, docking, undocking, and splashdown operations.
Chris Wade in Mission Control Center at Johnson Space Center following the arrival of a visiting vehicle to the International Space Station. I enjoy telling people that we have a space station that has been in low Earth orbit with people on it for nearly 25 years.cHRIS wade
Visiting Vehicle Integration Manager for SpaceX Vehicles
How would you describe your job to family or friends who may not be familiar with NASA?
In my current position, I am responsible for ensuring SpaceX Dragon vehicles have met all requirements to conduct missions to the space station.
How long have you been working for NASA?
I have been working at Johnson Space Center for 25 years.
What advice would you give to young individuals aspiring to work in the space industry or at NASA?
I would advise young individuals to focus their studies on the STEM fields and work hard. I would also advise aspiring candidates to start applying for NASA internships as soon as feasible and don’t be opposed to opportunities in the contractor workforce.
What was your path to NASA?
My path to NASA was through the contractor workforce. I started working in space station robotic assembly analysis for Lockheed Martin directly out of college, then later became a civil servant at NASA.
Is there someone in the space, aerospace, or science industry that motivated or inspired you to work for the space program? Or someone you discovered while working for NASA who inspires you?
The Space Shuttle Challenger STS-51-L crew motivated me to pursue a career at NASA. I vividly remember watching the launch from an elementary classroom in Mississippi and thinking, I wish I could do something to help one day. When I got an opportunity to work at Johnson, it was a no-brainer for me to accept the offer.
What is your favorite NASA memory?
My favorite NASA memory is when I saw my first rocket launch, which was HTV-1 in Kagoshima, Japan.
Chris Wade accepting a group achievement award as a member of the Latching End Effector Return Team with Johnson Space Center’s Deputy Center Director Vanessa Wyche and Center Director Mark Geyer in 2019.NASA/Robert MarkowitzWhat do you love sharing about station? What’s important to get across to general audiences to help them understand its benefits to life on Earth?
I enjoy telling people that we have a space station that has been in low Earth orbit with people on it for nearly 25 years and we rotate crews of astronauts every six months.
If you could have dinner with any astronaut, past or present, who would it be?
I would have dinner with NASA astronaut Ron McNair. Growing up in a small southern town, my path to NASA was very similar to his. I find it fascinating how individuals from different eras can end up on similar paths in life, and I would love to have a conversation with him about the choices he made that lead to his career as an astronaut.
Do you have a favorite space-related memory or moment that stands out to you?
My favorite space-related memory is watching the SpaceX Demo-2 Crew Mission arrive at the International Space Station. That was the first launch of NASA astronauts from American soil since the Space Shuttle Program had ended almost 10 years prior.
What are some of the key projects you’ve worked on during your time at NASA? What have been your favorite?
Some of the key projects I’ve worked on include:
- Robotic assembly of the International Space Station
- Robotic visiting vehicle capture
- Cargo and crew dragon visiting vehicle mission certification
Of these, my favorite was the robotic visiting vehicle capture project. For this project, I got to work with the Canadian Space Agency and develop a method of using the space station’s robotic arm to grab unmanned visiting resupply vehicles.
Chris Wade at Kennedy Space Center in front of NASA’s Space Launch System rocket with the Orion spacecraft aboard atop a mobile launcher at Launch Complex 39B.What are your hobbies/things you enjoy outside of work?
Some of my favorite hobbies include running, reading, listening to audio books, and visiting family and friends back in Mississippi.
Day launch or night launch?
Day launch!
Favorite space movie?
Armageddon
NASA “worm” or “meatball” logo?
Worm
Every day, we’re conducting exciting research aboard our orbiting laboratory that will help us explore further into space and bring benefits back to people on Earth. You can keep up with the latest news, videos, and pictures about space station science on the Station Research & Technology news page. It’s a curated hub of space station research digital media from Johnson and other centers and space agencies.
Sign up for our weekly email newsletter to get the updates delivered directly to you.
Follow updates on social media at @ISS_Research on Twitter, and on the space station accounts on Facebook and Instagram.
FARMing with Data: OpenET Launches new Tool for Farmers and Ranchers
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) Dwane Roth (right), a fourth generation grain farmer in Finney County, Kansas, stands with nephew Zion (left) in one of their corn fields. Roth’s farm became one of the first Water Technology Farms in Kansas around 2016, and he has been using OpenET data for the past few years to track evapotranspiration rates and conserve water. Photo courtesy of Dwane RothA NASA and U.S. Geological Survey (USGS)-supported research and development team is making it easier for farmers and ranchers to manage their water resources.
The team, called OpenET, created the Farm and Ranch Management Support (FARMS) tool, which puts timely, high-resolution water data directly in the hands of individuals and small farm operators. By making the information more accessible, the platform can better support decision-making around agricultural planning, water conservation, and water efficiency. The OpenET team hopes this will help farmers who are working to build greater resiliency in local and regional agriculture communities.
“It’s all about finding new ways to make satellite data easier to access and use for as many people as possible,” said Forrest Melton, the OpenET project scientist at NASA’s Ames Research Center in Silicon Valley. “The goal is to empower users with actionable, science-based data to support decisions about water management across the West.”
The goal is to empower users with actionable, science-based data to support decisions about water management across the West.Forrest melton
OpenET Project Scientist
OpenET Data Explorer Tool: The Road to FARMSThe OpenET data explorer tool centers on providing evapotranspiration data. Evapotranspiration (ET) refers to the amount of water leaving Earth’s surface and returning to the atmosphere through evaporation (from soil and surface water) and transpiration (water vapor released by crops and other plants). Evapotranspiration is an important factor in agriculture, water resource management, irrigation planning, drought monitoring, and fire risk evaluation.
The FARMS resource is the third phase of OpenET’s Data Explorer tool, launched in 2021, which uses satellite data to quantify evapotranspiration across the western U.S.
It starts with using Landsat data to measure patterns in land surface temperature and key indicators of vegetation conditions. The satellite data is combined with agricultural data, such as field boundaries, and weather data, such as air temperature, humidity, solar radiation, wind speed, and precipitation. All of these factors feed into a model, which calculates the final evapotranspiration data.
The new FARMS interface was designed to make that data easier to access, with features that meet specific needs identified by users.
“This amount of data can be complicated to use, so user input helped us shape FARMS,” said Jordan Harding, app developer and interface design leader from HabitatSeven. “It provides a mobile-friendly, map-based web interface designed to make it as easy as possible to get automated, regular reports.”
Top: A section of the 2024 annual report Roth submits to the Farm Service Agency, with hand-written annotations marking which crop will be grown that year. Bottom: Those same fields in the new OpenET FARMS interface, with a dashboard on the left displaying evapotranspiration data over the course of 2024 at monthly intervals. Each color line corresponds to the same color field on the map, showcasing how much evapotranspiration rates can differ between different crops in the same vicinity. The unique shape of the purple field (forage sorghum), is an example of a case where FARMS’ custom shape feature is helpful. Once the initial report is set up, Roth can re-run reports for the same fields at any time. NASA/OpenET“The FARMS tool is designed to help farmers optimize irrigation timing and amounts, simplify planning for the upcoming irrigation season, and automate ET and water use reporting,” said Sara Larsen, CEO of OpenET. “All of this reduces waste, lowers costs, and informs crop planning.”
Although FARMS is geared towards agriculture, the tool has value for other audiences in the western U.S. Land managers who evaluate the impacts of wildfire can use it to evaluate burn scars and changes to local hydrology. Similarly, resource managers can track evapotranspiration changes over time to evaluate the effectiveness of different forest management plans.
New Features in FARMSTo develop FARMS, the OpenET team held listening sessions with farmers, ranchers, and resource managers. One requested function was support for field-to-field comparisons; a feature for planning irrigation needs and identifying problem areas, like where pests or weeds may be impacting crop yields.
The tool includes numerous options for drawing or selecting field boundaries, generating custom reports based on selected models and variables, and automatically re-running reports at daily or monthly intervals.
The fine spatial resolution and long OpenET data record behind FARMS make these features more effective. Many existing global ET data products have a pixel size of over half a mile, which is too big to be practical for most farmers and ranchers. The FARMS interface provides insights at the scale of a quarter-acre per pixel, which offers multiple data points within an individual field.
“If I had told my father about this 15 years ago, he would have called me crazy,” said Dwane Roth, a fourth-generation farmer in Kansas. “Thanks to OpenET, I can now monitor water loss from my crops in real-time. By combining it with data from our soil moisture probes, this tool is enabling us to produce more food with less water. It’s revolutionizing agriculture.”
The FARMS mobile interface displays a six-year evapotranspiration report of a pear orchard owned by sixth-generation California farmer Brett Baker. The purple line in the dashboard report (left) corresponds with the field selected in purple on the map view (right), which users can toggle between using the green buttons in the top right corners. Running multi-year reports allows farmers to review historical trends.NASA/OpenETFor those like sixth-generation California pear farmer Brett Baker, the 25-year span of ET data is part of what makes the tool so valuable. “My family has been farming the same crop on the same piece of ground for over 150 years,” Baker said. “Using FARMS gives us the ability to review historical trends and changes to understand what worked and what didn’t year to year: maybe I need to apply more fertilizer to that field, or better weed control to another. Farmers know their land, and FARMS provides a new tool that will allow us to make better use of land and resources.”
According to Roth, the best feature of the tool is intangible. “Being a farmer is stressful,” Roth said. “OpenET is beneficial for the farm and the agronomic decisions, but I think the best thing it gives me is peace of mind.”
Being a farmer is stressful. OpenET is beneficial for the farm and the agronomic decisions, but I think the best thing it gives me is peace of mind.Dwane Roth
Fourth-Generation Kansas Grain Farmer
Continuing Evolution of FARMSOver the coming months, the OpenET team plans to present the new tool at agricultural conferences and conventions in order to gather feedback from as many users as possible. “We know that there is already a demand for a seven-day forecast of ET, and I’m sure there will be requests about the interface itself,” said OpenET senior software engineer Will Carrara. “We’re definitely looking to the community to help us further refine that platform.”
“I think there are many applications we haven’t even thought of yet,” Baker added. “The FARMS interface isn’t just a tool; it’s an entirely new toolbox itself. I’m excited to see what people do with it.”
FARMS was developed through a public-private collaboration led by NASA, USGS, USDA, the non-profit OpenET, Inc., Desert Research Institute, Environmental Defense Fund, Google Earth Engine, HabitatSeven, California State University Monterey Bay, Chapman University, Cornell University, University of Nebraska-Lincoln, UC Berkeley and other universities, with input from more than 100 stakeholders.
For resources/tutorials on how to use FARMS, please visit: https://openet.gitbook.io/docs/additional-resources/farms
About the AuthorMilan LoiaconoScience Communication SpecialistMilan Loiacono is a science communication specialist for the Earth Science Division at NASA Ames Research Center.
Share Details Last Updated Mar 04, 2025 Related Terms Explore More 2 min read 2025 Aviation Weather Mission: Civil Air Patrol Cadets Help Scientists Study the Atmosphere with GLOBE CloudsThe Science Activation Program’s NASA Earth Science Education Collaborative (NESEC) is working alongside the Civil…
Article 6 hours ago 2 min read NASA Marks 110 Years Since Founding of Predecessor Organization Article 2 days ago 3 min read NASA Uses New Technology to Understand California Wildfires Article 4 days ago Keep Exploring Discover More Topics From NASAMissions
Humans in Space
Climate Change
Solar System
NASA Sets Coverage for Intuitive Machines’ Second Private Moon Landing
Carrying NASA technology demonstrations and science investigations, Intuitive Machines is targeting their Moon landing no earlier than 12:32 p.m. EST on Thursday, March 6. The company’s Nova-C lunar lander is slated to land in Mons Mouton, a lunar plateau near the Moon’s South Pole, as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to establish a long-term lunar presence.
Watch live landing coverage of the Intuitive Machines 2 (IM-2) landing, hosted by NASA and Intuitive Machines, on NASA+ starting no earlier than 11:30 a.m., approximately 60 minutes before touchdown. Beginning at 11 a.m. the agency will share blog updates as landing milestones occur.
Following the Moon landing, NASA and Intuitive Machines will host a news conference from NASA’s Johnson Space Center in Houston to discuss the mission, technology demonstrations, and science opportunities that lie ahead as lunar surface operations begin.
U.S. media interested in participating in person must request accreditation by 4 p.m. Wednesday, March 5, by contacting the NASA Johnson newsroom at 281-483-5111 or jsccommu@mail.nasa.gov. A copy of NASA’s media accreditation policy is online. To ask questions via phone, all media must RSVP by 4 p.m. March 5 to the NASA Johnson Newsroom, and dial in at least 15 minutes before the briefing begins.
Full coverage of the IM-2 mission includes (all times Eastern):
Thursday, March 6
- 11:30 a.m. – Landing coverage begins on NASA+
- 12:32 p.m. – Landing
- 4 p.m. – Post-landing news conference on NASA+
After landing, NASA and Intuitive Machines leaders will participate in the news conference:
- Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters
- Clayton Turner, associate administrator, Space Technology Mission Directorate, NASA Headquarters
- Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters
- Steve Altemus, CEO, Intuitive Machines
- Tim Crain, chief growth officer, Intuitive Machines
The IM-2 mission launched at 7:16 p.m. Feb. 26 on a SpaceX Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The lander is carrying NASA technology that will measure the potential presence of resources from lunar soil that could be extracted and used by future explorers to produce fuel or breathable oxygen.
In addition, a passive Laser Retroreflector Array on the top deck of the lander will bounce laser light back at any orbiting or incoming spacecraft to give future spacecraft a permanent reference point on the lunar surface. Other technologies on this delivery will demonstrate a robust cellular network to help future astronauts communicate and deploy a propulsive drone that can hop across the lunar surface to navigate its challenging terrain.
NASA continues to work with multiple American companies to deliver technology and science to the lunar surface through the agency’s CLPS initiative. This pool of companies may bid on contracts for end-to-end lunar delivery services, including payload integration and operations, launching from Earth, and landing on the surface of the Moon. NASA’s CLPS contracts are indefinite-delivery/indefinite-quantity contracts with a cumulative maximum value of $2.6 billion through 2028. The agency awarded Intuitive Machines the contract to send NASA science investigations and technology demonstrations to the Moon using its American-designed and -manufactured lunar lander for approximately $62.5 million.
Through the Artemis campaign, commercial robotic deliveries will test technologies, perform science experiments, and demonstrate capabilities on and around the Moon to help NASA explore in advance of Artemis Generation astronaut missions to the lunar surface, and ultimately crewed missions to Mars.
Learn how to watch NASA content on various platforms, including social media, and follow all events at:
Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtag #Artemis. You can also stay connected by following and tagging these accounts:
X: @NASA, @NASA_Johnson, @NASAArtemis, @NASAMoon, @NASA_Technology
Facebook: NASA, NASAJohnsonSpaceCenter, NASAArtemis, NASATechnology
Instagram: @NASA, @NASAJohnson, @NASAArtemis
For more information about the agency’s Commercial Lunar Payload Services initiative:
-end-
Karen Fox / Jasmine Hopkins
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / jasmine.s.hopkins@nasa.gov
Natalia Riusech / Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
natalia.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
March’s Night Sky Notes: Messier Madness
NASA, ESA and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration; Acknowledgment: Davide De Martin and Robert Gendler
by Kat Troche of the Astronomical Society of the Pacific
What Are Messier Objects?During the 18th century, astronomer and comet hunter Charles Messier wanted to distinguish the ‘faint fuzzies’ he observed from any potential new comets. As a result, Messier cataloged 110 objects in the night sky, ranging from star clusters to galaxies to nebulae. These items are designated by the letter ‘M’ and a number. For example, the Orion Nebula is Messier 42 or M42, and the Pleiades are Messier 45 or M45. These are among the brightest ‘faint fuzzies’ we can see with modest backyard telescopes and some even with our eyes.
Stargazers can catalog these items on evenings closest to the new moon. Some even go as far as having “Messier Marathons,” setting up their telescopes and binoculars in the darkest skies available to them, from sundown to sunrise, to catch as many as possible. Here are some items to look for this season:
M44 in Cancer and M65 and 66 in Leo can be seen high in the evening sky 60 minutes after sunset. Stellarium WebMessier 44 in Cancer: The Beehive Cluster, also known as Praesepe, is an open star cluster in the heart of the Cancer constellation. Use Pollux in Gemini and Regulus in Leo as guide stars. A pair of binoculars is enough to view this and other open star clusters. If you have a telescope handy, pay a visit two of the three galaxies that form the Leo Triplet – M65 and M66. These items can be seen one hour after sunset in dark skies.
Locate M3 and M87 rising in the east after midnight. Stellarium WebMessier 3 Canes Venatici: M3 is a globular cluster of 500,000 stars. Through a telescope, this object looks like a fuzzy sparkly ball. You can resolve this cluster in an 8-inch telescope in moderate dark skies. You can find this star cluster by using the star Arcturus in the Boötes constellation as a guide.
Messier 87 in Virgo: Located just outside of Markarian’s Chain, M87 is an elliptical galaxy that can be spotted during the late evening hours. While it is not possible to view the supermassive black hole at the core of this galaxy, you can see M87 and several other Messier-labeled galaxies in the Virgo Cluster using a medium-sized telescope.
Locate M76 and M31 setting in the west, 60 minutes after sunset. Stellarium Web Plan AheadWhen gearing up for a long stargazing session, there are several things to remember, such as equipment, location, and provisions:
- Do you have enough layers to be outdoors for several hours? You would be surprised how cold it can get when sitting or standing still behind a telescope!
- Are your batteries fully charged? If your telescope runs on power, be sure to charge everything before you leave home and pack any additional batteries for your cell phone. Most people use their mobile devices for astronomy apps, so their batteries may deplete faster. Cold weather can also impact battery life.
- Determine the apparent magnitude of what you are trying to see and the limiting magnitude of your night sky. You can learn more about apparent and limiting magnitudes with our Check Your Sky Quality with Orion article.
- When choosing a location to observe from, select an area you are familiar with and bring some friends! You can also connect with your local astronomy club to see if they are hosting any Messier Marathons. It’s always great to share the stars!
You can see all 110 items and their locations with NASA’s Explore the Night Sky interactive map and the Hubble Messier Catalog, objects that have been imaged by the Hubble Space Telescope.
NASA Successfully Acquires GPS Signals on Moon
NASA and the Italian Space Agency made history on March 3, when the Lunar GNSS Receiver Experiment (LuGRE) became the first technology demonstration to acquire and track Earth-based navigation signals on the Moon’s surface.
The LuGRE payload’s success in lunar orbit and on the surface indicates that signals from the GNSS (Global Navigation Satellite System) can be received and tracked at the Moon. These results mean NASA’s Artemis missions, or other exploration missions, could benefit from these signals to accurately and autonomously determine their position, velocity, and time. This represents a steppingstone to advanced navigation systems and services for the Moon and Mars.
An artist’s concept of the LuGRE payload on Blue Ghost and its three main records in transit to the Moon, in lunar orbit and on the Moon’s surface.NASA/Dave Ryan“On Earth we can use GNSS signals to navigate in everything from smartphones to airplanes,” said Kevin Coggins, deputy associate administrator for NASA’s SCaN (Space Communications and Navigation) Program. “Now, LuGRE shows us that we can successfully acquire and track GNSS signals at the Moon. This is a very exciting discovery for lunar navigation, and we hope to leverage this capability for future missions.”
This is a very exciting discovery for lunar navigation, and we hope to leverage this capability for future missions.Kevin Coggins
Deputy Associate Administrator for NASA SCaN
The road to the historic milestone began on March 2 when the Firefly Aerospace’s Blue Ghost lunar lander touched down on the Moon and delivered LuGRE, one of 10 NASA payloads intended to advance lunar science. Soon after landing, LuGRE payload operators at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, began conducting their first science operation on the lunar surface.
Members from NASA and Italian Space Agency watching the Blue Ghost lunar lander touch down on the Moon. NASAWith the receiver data flowing in, anticipation mounted. Could a Moon-based mission acquire and track signals from two GNSS constellations, GPS and Galileo, and use those signals for navigation on the lunar surface?
Then, at 2 a.m. EST on March 3, it was official: LuGRE acquired and tracked signals on the lunar surface for the first time ever and achieved a navigation fix — approximately 225,000 miles away from Earth.
Now that Blue Ghost is on the Moon, the mission will operate for 14 days providing NASA and the Italian Space Agency the opportunity to collect data in a near-continuous mode, leading to additional GNSS milestones. In addition to this record-setting achievement, LuGRE is the first Italian Space Agency developed hardware on the Moon, a milestone for the organization.
The LuGRE payload also broke GNSS records on its journey to the Moon. On Jan. 21, LuGRE surpassed the highest altitude GNSS signal acquisition ever recorded at 209,900 miles from Earth, a record formerly held by NASA’s Magnetospheric Multiscale Mission. Its altitude record continued to climb as LuGRE reached lunar orbit on Feb. 20 — 243,000 miles from Earth. This means that missions in cislunar space, the area of space between Earth and the Moon, could also rely on GNSS signals for navigation fixes.
Firefly’s Blue Ghost lander captured its first sunrise on the Moon, marking the beginning of the lunar day and the start of surface operations in its new home. Firefly AerospaceTraditionally, NASA engineers track spacecraft by using a combination of measurements, including onboard sensors and signals from Earth-based tracking stations. The LuGRE payload demonstrates that using GNSS signals for navigation can reduce reliance on human operators because these signals can be picked up and used autonomously by the spacecraft, even as far away as the Moon.
The LuGRE payload is a collaborative effort between NASA’s Goddard Space Flight Center in Greenbelt, Maryland and the Italian Space Agency. Funding and oversight for the LuGRE payload comes from NASA’s SCaN Program office. It was chosen by NASA as one of 10 funded research and technology demonstrations for delivery to the lunar surface by Firefly Aerospace Inc., a flight under the agency’s Commercial Lunar Payload Services initiative.
Learn more about LuGRE: https://go.nasa.gov/41qwwQN
The joint NASA and Italian Space Agency LuGRE team at NASA’s Goddard Space Flight Center NASA About the AuthorKatherine SchauerKatherine Schauer is a writer for the Space Communications and Navigation (SCaN) program office and covers emerging technologies, commercialization efforts, exploration activities, and more.
Share Details Last Updated Mar 04, 2025 EditorGoddard Digital TeamContactKatherine Schauerkatherine.s.schauer@nasa.govLocationNASA Goddard Space Flight Center Related Terms Explore More 5 min read NASA and Italian Space Agency Test Future Lunar Navigation Technology Article 2 months ago 3 min read NASA Delivers Hardware for Commercial Lunar Payload Mission Article 2 years ago 5 min read NASA Moon Mission Set to Break Record in Navigation Signal Test Article 3 years ago30 Years Ago: STS-67, the Astro-2 Mission
On March 2, 1995, space shuttle Endeavour launched from NASA’s Kennedy Space Center in Florida on its eighth trip into space, on the STS-67 Astro-2 mission. The crew included Commander Stephen Oswald, Pilot William Gregory, Mission Specialists John Grunsfeld, Wendy Lawrence, and Tamara Jernigan – who served as payload commander on the mission – and Payload Specialists Samuel Durrance and Ronald Parise. During their then record setting 17-day mission, the astronauts used the three ultraviolet telescopes of the Astro-2 payload to observe hundreds of celestial objects. The mission ended with a landing at Edwards Air Force Base in California.
Official photo of the STS-67 crew of Stephen Oswald, seated at left, Tamara Jernigan, and William Gregory; Ronald Parise, standing at left, Wendy Lawrence, John Grunsfeld, and Samuel Durrance. NASA The STS-67 crew patch. NASA The Astro-2 payload patch.NASAIn August 1993, NASA assigned Jernigan as the payload commander for Astro-2, for a weeklong flight aboard Columbia then targeted for late 1994. Jernigan, selected by NASA in 1985, had previously flown aboard STS-40 and STS-52. Two months later, NASA assigned Grunsfeld, a space rookie from the class of 1992, as a mission specialist. In January 1994, NASA rounded out the crew by assigning Oswald, Gregory, Lawrence, Durrance, and Parise. Oswald, from the class of 1985, had flown previously as pilot on STS-42 and STS-56, while STS-67 represented the first spaceflight for Gregory, selected in 1990, and Lawrence, chosen in 1992. Durrance and Parise, selected as payload specialists in 1984, had flown on STS-35, the Astro-1 mission.
Space shuttle Endeavour rolls out to Launch Pad 39A at NASA’s Kennedy Space Center in Florida.NASA The STS-67 crew during a countdown demonstration test. NASA The STS-67 astronauts walk out for their ride to the launch pad. NASAThe Astro-2 science payload consisted of three ultraviolet telescopes mounted on a Spacelab instrument pointing system in the shuttle’s cargo bay. The trio of telescopes flew previously on STS-35, the Astro-1 mission, in December 1990. That mission, originally planned to fly on STS-61E in March 1986, remained grounded following the Challenger accident. Due to equipment malfunctions, the Astro-1 mission only achieved 80% of its objectives, leading to the reflight of the instruments on Astro-2, originally planned as a seven-day mission aboard Discovery. A switch to Columbia enabled a mission twice as long, with significantly more observation time. A scheduled maintenance period for Columbia resulted in Astro-2 switching to Endeavour, with a new flight duration of more than 15 days, but a launch delay to February 1995. The three telescopes supported 23 different studies, observing more than 250 celestial objects including joint observations with the Hubble Space Telescope of the planet Jupiter.
The launch of space shuttle Endeavour on STS-67 to begin the Astro-2 mission.NASA The Astro-2 telescopes deployed in Endeavour’s payload bay. NASAEndeavour returned to Kennedy following its previous flight, STS-68, in October 1994. After servicing the orbiter, workers rolled it to the vehicle assembly building on Feb. 3, 1995, for mating with its external tank and solid rocket boosters, and then out to Launch Pad 39A on Feb. 8. At 1:38 a.m. EST on March 2, Endeavour thundered into the night sky to begin the STS-67 mission. Eight and a half minutes later, the shuttle and its crew had reached space.
Shortly after reaching orbit, the crew opened the payload bay doors and deployed the shuttle’s radiators. Jernigan and Durrance activated the Spacelab pallet and its pointing system and the telescopes. The crew split into two shifts to enable data collection around the clock during the mission. Oswald, Gregory, Grunsfeld, and Parise made up the red shift while Lawrence, Jernigan, and Durrance comprised the blue shift.
Stephen Oswald conducts a session with the Middeck Active Control Experiment. NASA Wendy Lawrence monitors a protein crystal growth apparatus. NASA John Grunsfeld, left, and Samuel Durrance at the controls of the telescopes on the shuttle’s aft flight deck. NASA William Gregory conducts a biotechnology experiment in Endeavour’s middeck. NASA Samuel Durrance and Tamara Jernigan assemble the day’s teleprinter message. NASA Ronald Parise floats near the shuttle’s overhead window.NASAFor the remainder of the mission, the astronauts operated the telescopes, conducting 385 maneuvers of Endeavour to point the instruments at the celestial targets. The results met or exceeded preflight expectations. The crew also conducted a series of middeck investigations in technology demonstration and biotechnology. The Middeck Active Control Experiment studied the active control of flexible structures in space. Five years later, a newer version flew as one of the first experiments on the International Space Station.
A selection of the STS-67 crew Earth observation photographs. Gulf of Batabano, Cuba.NASA Antofagasta, Chile. NASA Volcanic eruption on Barren Island, Andaman Islands.NASA Disappointment Reach, Western Australia. NASALike all space crews, the STS-67 astronauts also spent time taking photographs of the Earth using handheld cameras. The mission’s long duration enabled them to image many targets.
The seven-person STS-67 crew poses for an in-flight photo. NASA Endeavour touches down at Edwards Air Force Base in California. NASAOn March 14, an eighth American joined the STS-67 crew in space when NASA astronaut Norman Thagard blasted off with two cosmonauts, headed for space station Mir. With three other cosmonauts already aboard Mir, the total number of humans in orbit grew to a then-record of 13. Two days later, Oswald and Thagard, who had flown together on STS-42, talked to each other via ship-to-ship radio.
Inclement weather at Kennedy thwarted the planned reentry on March 17, and the astronauts spent an extra day in space. On March 18, they again waved off a Kennedy landing and one orbit later, Oswald and Gregory piloted Endeavour to a smooth landing at Edwards Air Force Base in California. The crew had flown 262 orbits around the Earth in 16 days, 15 hours, and 9 minutes, at the time the longest space shuttle mission. A few hours later, a large crowd greeted the astronauts upon their return to Houston’s Ellington Field. Endeavour began its ferry flight back to Kennedy on March 26, arriving there the next day. Workers towed Endeavour to the processing facility to prepare it for its next flight, STS-73, then planned for September 1995.
Watch the crew narrate a video about the STS-67 mission.
Explore More 8 min read NASA’s Hubble Celebrates Decade of Tracking Outer PlanetsEncountering Neptune in 1989, NASA’s Voyager mission completed humankind’s first close-up exploration of the four…
Article 3 months ago 11 min read 30 Years Ago: Hubble Launched to Unlock the Secrets of the Universe30 Years Ago: Hubble Launched to Unlock the Secrets of the Universe
Article 5 years ago 22 min read 35 Years Ago: NASA Selects its 13th Group of Astronauts Article 2 months ago