"When beggars die, there are no comets seen;
The heavens themselves blaze forth the death of princes."

— William Shakespeare
Julius Cæsar

NASA

NASA’s NEOWISE Extends Legacy With Decade of Near-Earth Object Data

NASA - Breaking News - Thu, 04/04/2024 - 3:26pm

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) This artist’s concept depicts the NEOWISE spacecraft in orbit around Earth. Launched in 2009 to survey the entire sky in infrared, the spacecraft took on a more specialized role in 2014 when it was reactivated to study near-Earth asteroids and comets.NASA/JPL-Caltech

As the infrared space telescope continues its long-duration survey of the universe, it is creating a unique resource for future astronomers to make new discoveries.

NASA’s NEOWISE mission has released its 10th year of infrared data – the latest in a unique long-duration (or “time-domain”) survey that captures how celestial objects change over long periods. Time-domain astronomy can help scientists see how distant variable stars change in brightness and observe faraway black holes flaring as they consume matter. But NEOWISE has a special focus on our planet’s local cosmic neighborhood, producing a time-domain infrared survey used for planetary science, with a particular emphasis on asteroids and comets.

Short for Near-Earth Object Wide-field Infrared Survey Explorer, NEOWISE is a key component of NASA’s planetary defense strategy, helping the agency refine the orbits of asteroids and comets while also estimating their size. One such example is the potentially hazardous asteroid Apophis, which will make a close approach of our planet in 2029.

By repeatedly observing the sky from its location in low-Earth orbit, NEOWISE has made 1.45 million infrared measurements of over 44,000 solar system objects. That includes more than 3,000 NEOs, 215 of which the space telescope discovered. Twenty-five of those are comets, including the famous comet NEOWISE.

“The space telescope has been a workhorse for characterizing NEOs that may pose a hazard to Earth in the future,” said Amy Mainzer, NEOWISE’s principal investigator at the University of Arizona and University of California, Los Angeles. “The data that NEOWISE has generated for free use by the scientific community will pay dividends for generations.”

From Data to Discovery

Managed by NASA’s Jet Propulsion Laboratory, the mission sends data three times a day to the U.S. Tracking and Data Relay Satellite System (TDRSS) network, which then delivers it to IPAC, an astronomical data research center at Caltech in Pasadena, California. IPAC processes the raw data into fully calibrated images that are accessible online. It also generates NEO detections, sending them to the Minor Planet Center – the internationally recognized clearinghouse for the position measurements of solar system bodies. By searching multiple images of the same patch of sky at different times, scientists capture the motions of individual asteroids and comets.

This top-down animated view of the solar system shows the positions of all the asteroids and comets detected by NEOWISE in the decade since its reactivation in 2014. Credit: IPAC/Caltech/University of Arizona

“The science products we generate identify specific infrared sources in the sky with precisely determined positions and brightnesses that enable discoveries to be made,” said Roc Cutri, lead scientist for the NEOWISE Science Data System at IPAC. “The most fun thing when I look at the data for the first time is knowing that no one has seen this before. It puts you in a unique position of doing real exploration.”

IPAC will also produce data products for NASA’s NEO Surveyor, which is targeting a launch no earlier than 2027. Managed by JPL, with Mainzer serving as principal investigator, the next-generation space survey telescope will seek out some of the hardest-to-find near-Earth objects, such as dark asteroids and comets that don’t reflect much visible light but shine brighter in infrared light.

Two Missions, One Spacecraft

The NEOWISE spacecraft launched in 2009, but as a different mission and with a different name: the Wide-field Infrared Survey Explorer, or WISE, which set out to survey the entire sky. As an infrared telescope, WISE studied distant galaxies, comparatively cool red dwarf stars, exploding white dwarfs, and outgassing comets, as well as NEOs.

An infrared telescope requires cryogenic coolant to prevent the spacecraft’s heat from disrupting its observations. After the WISE telescope’s ran out of coolant and was no longer able to observe the universe’s coldest objects, NASA put the spacecraft into hibernation in 2011. But because the telescope could still detect the infrared glow of comets and asteroids as they are heated by the Sun, Mainzer proposed to restart the spacecraft to keep an eye on them. The mission was reactivated in 2014 and renamed NEOWISE, extending the life of a spacecraft that was initially planned for less than a year of operation.

“We are 14 years into a seven-month mission,” said Joseph Masiero, NEOWISE’s deputy principal investigator and a scientist at IPAC. He started at JPL as a postdoctoral researcher working on WISE just two months before the spacecraft launched on Dec. 14, 2009. “This little mission has been with me my entire career – it just kept going, making new discoveries, helping us better understand the universe,” Masiero added. “And if it wasn’t for the tyranny of orbital dynamics, I’m sure the spacecraft would continue to operate for years to come.”

Solar activity is causing NEOWISE to fall out of orbit, and the spacecraft is expected to drop low enough into Earth’s atmosphere that it will eventually become unusable.

“NEOWISE has lasted way past its original spacecraft design lifetime,” said Joseph Hunt, NEOWISE project manager at JPL. “But as we didn’t build it with a way to reach higher orbits, the spacecraft will naturally drop so low in the atmosphere that it will become unusable and entirely burn up in the months following decommissioning. Exactly when depends on the Sun’s activity.”

More About the Mission

NEOWISE and NEO Surveyor support the objectives of NASA’s Planetary Defense Coordination Office (PDCO) at NASA Headquarters in Washington. The NASA Authorization Act of 2005 directed NASA to discover and characterize at least 90% of the near-Earth objects more than 140 meters (460 feet) across that come within 30 million miles (48 million kilometers) of our planet’s orbit. Objects of this size can cause significant regional damage, or worse, should they impact the Earth.

JPL manages and operates the NEOWISE mission for PDCO within the Science Mission Directorate. The Space Dynamics Laboratory in Logan, Utah, built the science instrument. Ball Aerospace & Technologies Corp. of Boulder, Colorado, built the spacecraft. Science data processing takes place at IPAC at Caltech. Caltech manages JPL for NASA.

For more information about NEOWISE, visit:

https://www.nasa.gov/neowise

and

http://neowise.ipac.caltech.edu/

NASA’s NEOWISE Celebrates 10 Years, Plans End of Mission Data From NASA’s WISE Used to Preview Lucy Mission’s Asteroid Dinkinesh Asteroid Mission Aims to Explore Mysteries of Earth's Core News Media Contacts

Ian J. O’Neill
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-2649
ian.j.oneill@jpl.nasa.gov

Karen Fox / Charles Blue
NASA Headquarters, Washington
202-358-1257 / 202-802-5345
karen.c.fox@nasa.gov / charles.e.blue@nasa.gov

2024-038

Share Details Last Updated Apr 04, 2024 Related Terms Explore More 5 min read Rock Sampled by NASA’s Perseverance Embodies Why Rover Came to Mars Article 2 days ago 4 min read How NASA Spotted El Niño Changing the Saltiness of Coastal Waters Article 2 days ago 5 min read NASA’s Europa Clipper Survives and Thrives in ‘Outer Space’ on Earth Article 1 week ago Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

NASA Noise Prediction Tool Supports Users in Air Taxi Industry

NASA - Breaking News - Thu, 04/04/2024 - 2:57pm

1 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) The results from a NASA software tool called OVERFLOW, used to model the flow of air around aircraft, are shown in this image.NASA

Several air taxi companies are using a NASA-developed computer software tool to predict aircraft noise and aerodynamic performance. This tool allows manufacturers working in fields related to NASA’s Advanced Air Mobility mission to see early in the aircraft development process how design elements like propellors or wings would perform. This saves the industry time and money when making potential design modifications.

This NASA computer code, called “OVERFLOW,” performs calculations to predict fluid flows such as air, and the pressures, forces, moments, and power requirements that come from the aircraft. Since these fluid flows contribute to aircraft noise, improved predictions can help engineers design quieter models. Manufacturers can integrate the code with their own aircraft modeling programs to run different scenarios, quantifying performance and efficiency, and visually interpreting how the airflow behaves on and around the vehicle. These interpretations can come forward in a variety of colors representing these behaviors.

This computer program is available to industry for U.S. release via the software.nasa.gov website.

An OVERFLOW modeling image from the manufacturer Joby Aviation.Joby Aviation An OVERFLOW modeling image from the manufacturer Wisk.Wisk An OVERFLOW modeling image from the manufacturer Archer Aviation.Archer Aviation Share Details Last Updated Apr 04, 2024 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.govLocationArmstrong Flight Research Center Related Terms Explore More 1 min read NASA Langley Participates in Drone Responders Conference Article 4 days ago 4 min read NASA VIPER Robotic Moon Rover Team Raises Its Mighty Mast Article 4 days ago 13 min read Langley Celebrates Women’s History Month: The Langley ASIA-AQ Team Article 7 days ago Keep Exploring Discover More Topics From NASA

Armstrong Flight Research Center

Aeronautics

Advanced Air Vehicles Program

Armstrong Technologies

Categories: NASA

Save-The-Date: DoD-NASA Lidar Technical Interchange Meeting (TIM)

NASA - Breaking News - Thu, 04/04/2024 - 12:41pm

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Details

DoD-NASA Lidar TIM

August 13-15, 2024

MIT Lincoln Laboratory in Arlington, VA (Crystal City)
241 18th St S, Arlington, VA 22202

MIT Lincoln Laboratory is hosting a TIM between NASA and DoD to facilitate the sharing of lidar knowledge between these institutions and identify potential areas of collaboration that maximally utilizes the strengths from each organization. This TIM will provide an opportunity to discuss common issues and challenges and possible solutions.

Objectives

This TIM will include up to CUI-level presentations and discussions from leaders in lidar technology development and application.

  1. Share DoD & NASA capabilities in lidar systems, technologies, processing and exploitation/analysis with DoD community & NASA centers, including JPL and NASA headquarters.
  2. Identify NASA and DoD mission and sensor needs that could leverage existing lidar investments to satisfy requirements.
  3. Connect NASA and DoD lidar practitioners, experts and end-user communities and
  4. Roadmap at least two potential applications for collaborative opportunity. Briefings will only include up to CUI level, and representatives from the NASA Centers, JPL, and various DoD organizations (FFRDCs, UARCs, service laboratories, and user community) will be invited to participate.  
Co-Chairs

M. Jalal Khan (MIT-LL), T.Y. Fan (MIT-LL), Jessica Gaskin (NESC), Upendra Singh (NESC), and Parminder Ghuman (GSFC)

More information

Coming soon!

Share Details Last Updated Apr 04, 2024 Related Terms Explore More 7 min read Lagniappe for April 2024 Article 1 hour ago 2 min read Hubble Peers at Pair of Closely Interacting Galaxies

This image from the NASA/ESA Hubble Space Telescope features Arp 72, a very selective galaxy…

Article 9 hours ago
6 min read NASA’s NEOWISE Extends Legacy With Decade of Near-Earth Object Data Article 20 hours ago Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

Tech Today: Synthetic DNA Diagnoses COVID, Cancer

NASA - Breaking News - Thu, 04/04/2024 - 12:20pm

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Princeton University undergraduate Kate Sheldon, doing summer work at Firebird Diagnostics, holds a prototype of the Agnostic Life Finder, or ALF, which was developed to seek life on Mars without making Earth-specific assumptions about molecular biology.Credit: Firebird Diagnostics LLC

At first glance, the search for life beyond Earth might not seem related to human illness, but to biochemist Steven Benner, the connection is clear.

“In diagnostics for an infectious disease, you’re looking for alien life inside of a patient,” said Benner, who has spent nearly two decades conducting NASA-funded research on what alien life might look like at the molecular level.

“It’s actually a bit easier to build a diagnostics assay to detect COVID than to build an agnostic life finder to search for Martian DNA, whose structure would be unknown,” he said.

Benner is the co-founder and CEO of Firebird Diagnostics LLC, based in Alachua, Florida, which sells synthetic DNA and molecule packages to researchers, who use them to develop tools to detect and treat ailments like cancer, hepatitis, and HIV. The company also sold COVID tests during the pandemic.

Benner holds that while some of what we know about biochemistry on Earth may be universal, most is Earth-specific. He and his partners developed DNA-like molecular systems with six and eight nucleotides, or building blocks, based on research funded partly by NASA’s Astrobiology Program. These systems add to the four building blocks in Earth-based DNA an additional two or four synthetic nucleotides.

Mary Voytek, head of the Astrobiology Program at NASA Headquarters in Washington, said Benner’s work shows there are alternatives to Earth-based biological molecules, “This helps us understand what else is possible and may be found in life beyond Earth.”

Read More Share Details Last Updated Apr 04, 2024 Related Terms Explore More 2 min read Tech Today: Cutting the Knee Surgery Cord Article 1 week ago 2 min read Tech Today: NASA Helps Find Where the Wildfires Are Article 2 weeks ago 2 min read Tech Today: Suspended Solar Panels See the Light Article 3 weeks ago Keep Exploring Discover Related Topics

Missions

Astrobiology

Technology

Technology Transfer & Spinoffs

Categories: NASA

Exobiology Deputy Branch Chief Melissa Kirven-Brooks

NASA Image of the Day - Thu, 04/04/2024 - 12:09pm
“… I've just seen such tremendous things happen since I've been part of the Astrobiology Program, and that's why I'm pretty confident we're going to find life elsewhere, because there are just so many brilliant people working on this.” — Melissa Kirven-Brooks, Exobiology Deputy Branch Chief and Future Workforce Lead of the NASA Astrobiology Program, NASA’s Ames Research Center
Categories: Astronomy, NASA

NASA Wallops to Launch Three Sounding Rockets During Solar Eclipse 

NASA - Breaking News - Thu, 04/04/2024 - 11:54am

Three Black Brant IX sounding rockets for the Atmospheric Perturbations around Eclipse Path (APEP) mission are scheduled to launch from NASA’s Wallops Flight Facility launch range in Virginia. The launch window opens April 8, 2024, at 2:40 p.m. EDT.  

Launching approximately 45 minutes before, during, and after the peak local eclipse, the APEP sounding rockets will study how Earth’s upper atmosphere is affected when sunlight momentarily dims over a portion of the planet. Targeted launch times for the three rockets are 2:40 p.m., 3:20 p.m., and 4:05 p.m. but may be subject to change. 

The launches will be livestreamed on Wallops’ YouTube beginning at 2:30 p.m.  

Weather permitting, the launches may be visible in the mid-Atlantic region. Remember to always wear solar safety or “eclipse” glasses when looking at the Sun to protect your eyes. For the Wallops area, the eclipse will begin around 2:06 p.m. The Moon will block 81.4% of the Sun’s light at peak local eclipse at 3:23 p.m. and conclude at 4:34 p.m. 

Launch viewing map forAtmospheric Perturbations around Eclipse Path mission are scheduled to launch from NASA’s launch range at Wallops Flight Facility in Virginia on April 8, 2024.Credit: NASA

Members of the public are invited to the NASA Wallops Visitor Center on Monday, April 8, to view the sounding rocket launches and the partial eclipse. Gates to the visitor center will open from 1-5 p.m. and will close once parking lot capacity is reached. For those traveling to our visitor center, all vehicles MUST fit within a standard parking spot for this event; no large, oversized vehicles or buses will be allowed for entry. 

The visitor center will offer solar-related activities, have NASA sounding rocket experts onsite to answer questions, and host Globe Program expert Brian Campbell, who will be showing people how to collect data during the eclipse using the Observer app. Eclipse glasses and pinhole viewers will be available during this event while supplies last. Food trucks will be onsite serving food and drinks, including empanadas, crab cakes, hamburgers, hot dogs, barbecue, water ice, and more. 

While this combined viewing event is exciting for some, it may not be ideal for all. A designated sensory-friendly quiet area will be available at the Wallops Visitor Center for guests. This supervised quiet area will include dimmed lighting, seating, a reflection area, and touch items for guests to explore. 

Prepare for safe solar viewing during this year’s eclipse by checking out NASA’s Eclipse Safety page

Media Contact
Amy Barra 
NASA’s Wallops Flight Facility, Wallops Island, Virginia

Share Details Last Updated Apr 04, 2024 EditorMadison OlsonContactAmy Barraamy.l.barra@nasa.govLocationWallops Flight Facility Related Terms Explore More 6 min read NASA to Launch Sounding Rockets into Moon’s Shadow During Solar Eclipse

NASA will launch three sounding rockets during the total solar eclipse on April 8, 2024,…

Article 2 weeks ago
5 min read Scientists Use NASA Data to Predict Solar Corona Before Eclipse

Our Sun, like many stars, is adorned with a crown. It’s called a corona (Latin…

Article 3 days ago
6 min read That Starry Night Sky? It’s Full of Eclipses

Our star, the Sun, on occasion joins forces with the Moon to offer us Earthlings…

Article 3 days ago
Categories: NASA

Advances in Understanding COPV Structural Life 

NASA - Breaking News - Thu, 04/04/2024 - 11:08am

The Structures Technical Discipline Team (TDT) was involved in numerous investigations this past year, but composites, fracture mechanics, and pressure vessels dominate the list. All three of these specialties are important to composite overwrapped pressure vessels (COPV). One of the TDT’s most important findings this year was the exposure of an inherent vulnerability that underpredicts structural life, driven by current specifications and testing standards for COPVs. This NESC work and its recommendations will significantly improve safety and mission success for all current and future COPV operations throughout the aerospace community. 

Dr. David Dawicki employs digital image correlation to evaluate strain in metallic coupons. 

Damage Tolerance Analysis Standard Can Be Unconservative for COPVs 

COPVs consist of a metallic liner that contains the fluid or gas and a composite overwrap that provides strength (Figure 1). The operational pressure cycles for a spaceflight COPV generally starts with an initial overpressure, called an autofrettage cycle, that yields the metallic liner, while the stronger composite overwrap remains elastic. Liner yielding during autofrettage results in a small amount of liner growth, resulting in liner compression when the COPV is depressurized after autofrettage. The subsequent operational cycles can be either elastic (elastically responding COPV) or elastic-plastic (plastically responding COPV).

  Figure 1.Illustration of COPV major components.

The damage tolerance life evaluation of spaceflight COPVs is governed by the ANSI/AIAA-S-081B, Space Systems–Composite Overwrapped Pressure Vessels. This standard provides the baseline requirements for damage tolerance analyses (DTA) of COPVs with elastically responding liners. The standard allows the DTA to consider the influence of the elastic-plastic autofrettage cycle independently of the elastically responding cycles. The elastically responding cycles are permitted to be analyzed using linear elastic fracture mechanics (LEFM) tools like the NASGRO crack-growth analysis software. The standard states that the DTA must not consider any beneficial influences of the autofrettage cycle on the subsequent elastically responding cycles but does not consider the possibility of detrimental influences of the autofrettage cycle.  

In the study, Unconservatism of Linear-Elastic Fracture Mechanics Analysis Post Autofrettage (NASA/TM-20230013348), an NESC team conducted a combined experimental and analytical investigation into the influence of the autofrettage cycle on subsequent elastic cycles. Tests were conducted on coupons with part-through surface cracks that were subjected to cyclic loading that was representative of the operational cycles of a COPV liner. Half of the tests were conducted with the full loading history (including the autofrettage cycle) and the other half were identical except that the autofrettage cycle was omitted. Cracks in the tests with the autofrettage cycle grew faster than cracks in the identical tests that excluded the autofrettage cycle, as shown by the fracture surfaces in the photomicrographs (Figure 2). The distance between the mark left by the autofrettage cycle and the ductile fracture region was the amount of crack growth (Δa=0.0077 inch) due to the LEFM cycles. Crack growth due to the LEFM cycles in the LEFM-only test was Δa=0.0022 inch, more than three times slower than that in the identical autofrettage plus LEFM test. 


Figure 2. Fracture surfaces from two identical tests showing crack growth (Δa), with and without an initial autofrettage cycle. 

A validated finite element analysis and experimental measurements were used to evaluate the influence of the autofrettage cycle. The elastic-plastic autofrettage cycle was found to create a large region of plastic deformation ahead of the crack and blunted the crack tip. Previous fracture mechanics tests and analytical studies in the literature examined elastic overloads and found that plastic deformation ahead of the crack developed residual stresses that closed the crack surfaces, reducing the subsequent crack growth rate. However, the crack blunting allowed the crack to remain open for the entire loading, as illustrated by the finite element simulations of the crack surfaces at peak and minimum stress (Figure 3). The differences between the tests with and without the autofrettage cycle that were observed experimentally and simulated with a validated finite element analysis indicate that the damage tolerance analysis approach allowed by the standard can be unconservative. The NESC proposed an alternative damage tolerance analysis approach and recommended that the AIAA Aerospace Pressure Vessel Committee on standards update the ANSI/AIAA S-081B standard to address COPV liners with compressive stresses following the peak autofrettage stress.

 
Figure 3. Abaqus finite element analysis of crack growth with and without an autofrettage cycle. Y-axis indicates crack opening displacement and x-axis indicates crack length.

A Brief Introduction to Damage Tolerance for COPVs 

ANSI/AIAA S-081B standard, Space Systems–Composite Overwrapped Pressure Vessels, is a compilation of accepted practices for COPVs used in space applications developed as a collaboration of industry, government, and universities. The standard covers many aspects of COPVs including damage tolerance life analyses that are used for flight qualification overseen by fracture control boards. The standard for damage tolerance requires that the COPV “…survive four operational lifetimes with the largest crack in the metallic liner that can be missed by a nondestructive evaluation (NDE) subjected to bounding stresses representative of what the COPV experiences in its life (manufacturing, integration, operational including thermal and residual).” The operational life of a COPV liner typically includes an initial elastic-plastic cycle (autofrettage or proof) followed by other cycles that may be elastic (elastically responding liners) or elastic-plastic (plastically responding liners). A representative load spectrum is shown at right. During autofrettage, the COPV is pressurized to at least proof pressure to compress the liner inner surface, making it less susceptible to operational stresses. COPVs with elastically responding liners may be damage-tolerance qualified using LEFM analysis tools, but plastically responding liners must be damage-tolerance qualified by testing. Guidance on evaluating the appropriateness of LEFM tools for COPV damage tolerance was provided in NESC Technical Bulletin No. 21-04, Evaluating Appropriateness of LEFM Tools for COPV and Metal Pressure Vessel Damage Tolerance Life Verification Tolerance Life Verification and NASA/TM-2020-5006765/Volumes 1/2. 

A COPV consists of a metallic liner with an exterior composite wrap. The composite provides strength, and the liner contains the compressed fluid or gas. Results of a failure test. COPVs contain high pressure gases or fluids that can have tremendous explosive energy. 

Future of the Structures Discipline 

As the Agency moves more toward forming strategic industry partnerships with commercial contracts for new programs, the Structures TDT has highlighted the need for proper focus on appropriate requirements as the Team’s strategic vector. Although NASA Standards are often provided for reference, their prescriptive nature is not necessarily appropriate for use with commercial contracts. Industry partners and/or NASA team members create alternative standards, unique for each program, but there is inconsistency across different programs with respect to detailed requirements in these standards. Emerging technologies such as soft goods, large-scale deployable structures, inflatables, probabilistic analysis techniques, and additive manufactured hardware all drive unique requirements. The TDT identified the need for a tailoring guide, tied to mission priorities and risk postures, to assist with insight/oversight strategies for NASA programs. Using industry partners also means less NASA-owned hardware, which can lead to a loss of institutional knowledge. 

Representative loading spectrum for an elastically responding COPV liner with an initial elastic-plastic cycle.  

Its imperative that Engineering Directorates at each center proactively look for in-house projects so the next generation of engineers have opportunities for hands-on experience developing, designing, and testing (DDT) flight hardware. This experience is the foundation necessary for NASA engineers to guide the commercial partners through their own DDT processes and to be able to provide appropriate verification and validation of NASA requirements. Structures TDT members form a diverse team crossing all centers and programs, facilitating good collaboration on requirement interpretation, which ultimately ensures safety of NASA crew and mission success of operations in these new commercial programs. 

Computed tomography scan of a metallic liner detecting a part-through crack. 
Categories: NASA

Harnessing the 2024 Eclipse for Ionospheric Discovery with HamSCI

NASA - Breaking News - Thu, 04/04/2024 - 11:00am

3 min read

Harnessing the 2024 Eclipse for Ionospheric Discovery with HamSCI

As the total solar eclipse on April 8, 2024, draws closer, a vibrant community of enthusiastic amateur radio operators, known as “hams,” is gearing up for an exciting project with the Ham Radio Science Citizen Investigation (HamSCI) group. Our goal is clear and ambitious: to use the Moon’s shadow as a natural laboratory to uncover the intricacies of the ionosphere, a layer of Earth’s atmosphere crucial for radio communication.

This rare event offers an unmatched opportunity to observe the ionosphere’s response to the temporary absence of solar radiation during the eclipse. HamSCI, a collective of citizen scientists and professional researchers, plans to seize this opportunity by conducting radio experiments across North America.

This image captures the Moon passing in front of the Sun during an eclipse on Jan. 30, 2014, seen in space by NASA’s Solar Dynamics Observatory. NASA/SDO

Our mission centers on two main activities: the Solar Eclipse QSO Party (SEQP) and the Gladstone Signal Spotting Challenge. For the SEQP, amateur radio operators across the continent will aim to establish as many radio contacts (called QSOs) as possible before, during, and after the eclipse, creating a lively scene filled with radio signals. This effort will generate a vast network of observations on radio wave behavior under the eclipse’s unique conditions. The SEQP, a competitive yet friendly event, encourages wide participation and adds an element of excitement.

The Gladstone Signal Spotting Challenge, named in honor of ham radio operator Philip Gladstone for his significant contributions to radio science, adopts a focused approach. Participants will use special equipment to monitor select radio frequencies, aiding in our observation of the ionosphere’s reaction to the eclipse. This crucial aspect of our project validates scientific models of the ionosphere and enriches our understanding of its interaction with solar radiation.

Amateur radio enthusiasts of all backgrounds and skill levels are invited to join these events, united by a shared enthusiasm for scientific exploration and a collective curiosity about the upper atmosphere. Through the support of the amateur radio community, HamSCI demonstrates the profound impact of citizen science in contributing to our scientific knowledge.

As the eclipse ends, our analytical work begins. We will delve into the collected data, interpret it, and publish our findings. These efforts are expected to significantly advance our understanding of the ionosphere and showcase the value of community involvement in scientific discovery.

HamSCI is an organization that aims to inspire wonder and encourage people to participate in scientific discovery. The community of citizen scientists associated with HamSCI believe that the seamless fusion of science and amateur radio is an excellent example of what can be achieved when people come together, driven by curiosity and a passion for exploration.

For more information about HamSCI and details on the SEQP and the Gladstone Signal Spotting Challenge, please visit:

By McKenzie Denton
HamSCI Citizen Science Team Member

Share

Details

Last Updated

Apr 04, 2024

Related Terms Explore More

5 min read Scientists Pursue the Total Solar Eclipse with NASA Jet Planes

Article


23 hours ago

5 min read That Starry Night Sky? It’s Full of Eclipses

Article


2 days ago

4 min read Scientists Use NASA Data to Predict Solar Corona Before Eclipse

Article


2 days ago

Keep Exploring Discover Related Topics

Missions


Humans in Space


Climate Change


Solar System

Categories: NASA

How NASA’s Roman Telescope Will Measure Ages of Stars

NASA - Breaking News - Thu, 04/04/2024 - 10:00am

Guessing your age might be a popular carnival game, but for astronomers it’s a real challenge to determine the ages of stars. Once a star like our Sun has settled into steady nuclear fusion, or the mature phase of its life, it changes little for billions of years. One exception to that rule is the star’s rotation period – how quickly it spins. By measuring the rotation periods of hundreds of thousands of stars, NASA’s Nancy Grace Roman Space Telescope promises to bring new understandings of stellar populations in our Milky Way galaxy after it launches by May 2027.

Stars are born spinning rapidly. However, stars of our Sun’s mass or smaller will gradually slow down over billions of years. That slowdown is caused by interactions between a stream of charged particles known as the stellar wind and the star’s own magnetic field. The interactions remove angular momentum, causing the star to spin more slowly, much like an ice skater will slow down when they extend their arms.

This effect, called magnetic braking, varies depending on the strength of the star’s magnetic field. Faster-spinning stars have stronger magnetic fields, which causes them to slow down more rapidly. Due to the influence of these magnetic fields, after about one billion years stars of the same mass and age will spin at the same rate. Therefore, if you know a star’s mass and rotation rate, you potentially can estimate its age. By knowing the ages of a large population of stars, we can study how our galaxy formed and evolved over time.

Measuring Stellar Rotation

How do astronomers measure the rotation rate of a distant star? They look for changes in the star’s brightness due to starspots. Starspots, like sunspots on our Sun, are cooler, darker patches on a star’s surface. When a starspot is in view, the star will be slightly dimmer than when the spot is on the far side of the star.

This image of our Sun was taken in August 2012 by NASA’s Solar Dynamics Observatory. It shows a number of sunspots. Other stars also experience starspots, which cause the star’s observed brightness to vary as the spots rotate in and out of view. By measuring those changes in brightness, astronomers can infer the star’s rotation period. NASA’s Nancy Grace Roman Space Telescope will collect brightness measurements for hundreds of thousands of stars located in the direction of the center of our Milky Way galaxy, yielding information about their rotation rates.Credit: NASA

If a star has a single, large spot on it, it would experience a regular pattern of dimming and brightening as the spot rotated in and out of view. (This dimming can be differentiated from a similar effect caused by a transiting exoplanet.) But a star can have dozens of spots scattered across its surface at any one time, and those spots vary over time, making it much more difficult to tease out periodic signals of dimming from the star’s rotation.

Applying Artificial Intelligence

A team of astronomers at the University of Florida is developing new techniques to extract a rotation period from measurements of a star’s brightness over time, through a program funded by NASA’s Nancy Grace Roman Space Telescope project.

They are using a type of artificial intelligence known as a convolutional neural network to analyze light curves, or plots of a star’s brightness over time. To do this, the neural network first must be trained on simulated light curves. University of Florida postdoctoral associate Zachary Claytor, the science principal investigator on the project, wrote a program called “butterpy” to generate such light curves.

A star can have dozens of spots scattered across its surface at any one time, causing irregular brightness fluctuations that make it difficult to tease out periodic signals of dimming due to the star’s rotation. This graph of data from the butterpy program shows how the observed brightness of a simulated star would vary over a single rotation period. NASA’s Roman Space Telescope will be able to measure the light curves, and therefore rotation rates, of hundreds of thousands of stars, bringing new insights into stellar populations in our galaxy.Credit: NASA, Ralf Crawford (STScI)

“This program lets the user set a number of variables, like the star’s rotation rate, the number of spots, and spot lifetimes. Then it will calculate how spots emerge, evolve, and decay as the star rotates and convert that spot evolution to a light curve – what we would measure from a distance,” explained Claytor.

The team has already applied their trained neural network to data from NASA’s TESS (Transiting Exoplanet Survey Satellite). Systematic effects make it more challenging to accurately measure longer stellar rotation periods, yet the team’s trained neural network was able to accurately measure these longer rotation periods using the TESS data.

Roman’s Star Survey

The upcoming Roman Space Telescope will gather data from hundreds of millions of stars through its Galactic Bulge Time Domain Survey, one of three core community surveys it will conduct. Roman will look toward our galaxy’s center – a region crowded with stars – to measure how many of these stars change in brightness over time. These measurements will enable multiple science investigations, from searching for distant exoplanets to determining the stars’ rotation rates.

The specific survey design is still being developed by the astronomical community. The NASA-funded study on stellar rotation promises to help inform potential survey strategies.

“We can test which things matter and what we can pull out of the Roman data depending on different survey strategies. So when we actually get the data, we’ll already have a plan,” said Jamie Tayar, assistant professor of astronomy at the University of Florida and the program’s principal investigator.

“We have a lot of the tools already, and we think they can be adapted to Roman,” she added.

The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc. in Boulder, Colorado; L3Harris Technologies in Melbourne, Florida; and Teledyne Scientific & Imaging in Thousand Oaks, California.

By Christine Pulliam
Space Telescope Science Institute, Baltimore, Md.

​​Media Contact:
Claire Andreoli
NASA’s Goddard Space Flight Center, Greenbelt, Md.
301-286-1940

Christine Pulliam
Space Telescope Science Institute, Baltimore, Md.

Explore More 6 min read Why NASA’s Roman Mission Will Study Milky Way’s Flickering Lights Article 5 months ago 5 min read NASA’s Roman to Search for Signs of Dark Matter Clumps Article 3 months ago 6 min read NASA’s Roman Mission Predicted to Find 100,000 Transiting Planets Article 3 years ago Share Details Last Updated Apr 04, 2024 LocationGoddard Space Flight Center Related Terms
Categories: NASA

NASA Achieves Milestone for Engines to Power Future Artemis Missions

NASA - Breaking News - Thu, 04/04/2024 - 9:59am

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA conducted a full-duration RS-25 hot fire April 3 on the Fred Haise Test Stand at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, achieving a major milestone for future Artemis flights of NASA’s SLS (Space Launch System) rocket. It marked the final test of a 12-test series to certify production of new RS-25 engines by lead contractor Aerojet Rocketdyne, an L3Harris Technologies company, to help power NASA’s SLS rocket on Artemis missions to the Moon and beyond, beginning with Artemis V. NASA/Danny Nowlin Crews transport RS-25 developmental engine E0525 to the Fred Haise Test Stand at NASA’s Stennis Space Center on Aug. 30, 2023, for the second and final certification test series.NASA/Danny Nowlin A crane lifts developmental engine E0525 onto the Fred Haise Test Stand at NASA’s Stennis Space Center on Aug. 30, 2023, in preparation for a series of 12 tests to collect performance data for lead SLS (Space Launch System) engines contractor Aerojet Rocketdyne, an L3Harris Technologies company, to produce engines that will help power the SLS rocket, beginning with Artemis V.NASA/Danny Nowlin Crews prepare to place RS-25 engine E0525 on the engine vertical installer on the Fred Haise Test Stand at NASA’s Stennis Space Center on Aug. 30, 2023. NASA/Danny Nowlin Team members ready RS-25 engine E0525 for full installation on the Fred Haise Test Stand at NASA’s Stennis Space Center on Aug. 30, 2023, for a second certification test series to collect data for the final RS-25 design certification review.NASA/Danny Nowlin The second – and final – RS-25 certification test series begins Oct. 17, 2023. When the liquid hydrogen and liquid oxygen propellants mix and ignite, an extremely high temperature exhaust, of up to 6,000-degrees Fahrenheit, mixes with water to form steam that exits the flame deflector and rises into the atmosphere, forming a cloud that subsequently cools.NASA/Danny Nowlin A cloud of steam is visible at NASA’s Stennis Space Center during an Oct. 17, 2023, hot fire that marks the first test in the critical series to support future SLS (Space Launch System) missions to deep space.NASA/Danny Nowlin An RS-25 hot fire at NASA’s Stennis Space Center on Nov. 15, 2023, marks the second test of a 12-test engine certification series. The NASA Stennis test team typically fires the certification engine for 500 seconds, the same amount of time engines must fire to help launch the SLS (Space Launch System) rocket to space with astronauts aboard the Orion spacecraft. NASA/Danny Nowlin Operators fire the RS-25 engine at NASA’s Stennis Space Center on Nov. 15, 2023, up to the 113% power level. The first four Artemis missions are using modified space shuttle main engines that can power up to 109% of their rated level. New RS-25 engines will power up to the 111% level to provide additional thrust, so testing up to the 113% power level provides a margin of operational safety.NASA/Danny Nowlin NASA demonstrates a key RS-25 engine capability necessary for flight of the SLS (Space Launch System) rocket during a hot fire on Nov. 29, 2023. Crews gimbaled, or pivoted, the RS-25 engine around a central point during the almost 11-minute (650 seconds) hot fire on the Fred Haise Test Stand at NASA’s Stennis Space Center.NASA/Danny Nowlin The first RS-25 engine test of 2024 takes place on Jan. 17, 2024, at NASA’s Stennis Space Center as crews complete a 500-second hot fire on the Fred Haise Test Stand. NASA/Danny Nowlin A remote field camera offers a head-on view of an RS-25 engine hot fire on the Fred Haise Test Stand at NASA’s Stennis Space Center on Jan. 23, 2024.NASA/Danny Nowlin NASA marks the halfway point of its second RS-25 certification series on Jan. 27, 2024, with the sixth test of the series on the Fred Haise Test Stand at NASA’s Stennis Space Center. For each Artemis mission, four RS-25 engines, along with a pair of solid rocket boosters, power the SLS (Space Launch System) rocket, producing more than 8.8 million pounds of thrust at liftoff. NASA/Danny Nowlin Teams at NASA’s Stennis Space Center install a second production nozzle, left, on Feb. 6, 2024, to gather additional performance data on the RS-25 certification engine at the Fred Haise Test Stand.NASA/Danny Nowlin A new RS-25 engine production nozzle is lifted on the Fred Haise Test Stand at NASA’s Stennis Space Center on Feb. 6, 2024. Crews used specially adapted procedures and tools to swap out the nozzles with the engine in place on the stand.NASA/Danny Nowlin Operators fire RS-25 engine E0525 for 550 seconds and up to a power level of 113% on the Fred Haise Test Stand at NASA’s Stennis Space Center on Feb. 23, 2024. The hot fire test was the first featuring a new engine nozzle, allowing engineers to collect and compare performance data on a second production unit.NASA/Danny Nowlin The third RS-25 hot fire of 600 seconds or more is conducted March 6, 2024, at NASA’s Stennis Space Center. The full-duration test on the Fred Haise Test Stand marked the ninth in a 12-test certification series for production of new engines to help power NASA’s SLS (Space Launch System) rocket on Artemis missions to the Moon and beyond, beginning with Artemis V. NASA/Danny Nowlin The test team at NASA’s Stennis Space Center conduct the first RS-25 hot fire of spring 2024 on March 22, powering the engine for a full duration 500 seconds and up to a power level of 113%.NASA/Danny Nowlin NASA closes in on a milestone for production of new RS-25 engines to help power future Artemis missions to the Moon and beyond following a successful full duration test on March 27, 2024, at NASA’s Stennis Space Center. The hot fire marked the 11th test of a 12-test series.NASA/Danny Nowlin NASA conducted a full-duration RS-25 hot fire April 3 on the Fred Haise Test Stand at NASA’s Stennis Space Center near Bay St. Louis, Mississippi.NASA/Danny Nowlin

NASA achieved a major milestone April 3 for production of new RS-25 engines to help power its Artemis campaign to the Moon and beyond with completion of a critical engine certification test series at NASA’s Stennis Space Center near Bay St. Louis, Mississippi.

The 12-test series represents a key step for lead engines contractor Aerojet Rocketdyne, an L3Harris Technologies company, to build new RS-25 engines, using modern processes and manufacturing techniques, for NASA’s SLS (Space Launch System) rockets that will power future lunar missions, beginning with Artemis V.

“The conclusion of the certification test series at NASA Stennis is just the beginning for the next generation of RS-25 engines that will help power human spaceflight for Artemis,” said Johnny Heflin, SLS liquid engines manager. “The newly produced engines on future SLS rockets will maintain the high reliability and safe flight operational legacy the RS-25 is known for while enabling more affordable high-performance engines for the next era of deep space exploration.”

Through Artemis, NASA will establish the foundation for long-term scientific exploration at the Moon; land the first woman, first person of color, and first international partner astronaut on the lunar surface; and prepare for human expeditions to Mars for the benefit of all.

Contributing to that effort, the NASA Stennis test team conducted a full-duration, 500-second hot fire to complete the 12-test series on developmental engine E0525, providing critical performance data for the final RS-25 design certification review. The April 3 hot fire completed a test series that began in October 2023.

RS-25 engines are evolved space shuttle main engines, upgraded with new components to produce the additional power needed to help launch NASA’s SLS rocket. The first four Artemis missions are using modified space shuttle main engines also tested at NASA Stennis. For each Artemis mission, four RS-25 engines, along with a pair of solid rocket boosters, power the SLS rocket, producing more than 8.8 million pounds of total combined thrust at liftoff.

“This was a critical test series, and credit goes to the entire test team for their dedication and unique skills that allowed us to meet the schedule and provide the needed performance data,” said Chip Ellis, project manager for RS-25 testing at NASA Stennis. “The tests conducted at NASA Stennis help ensure the safety of our astronauts and their future mission success. We are proud to be part of the Artemis mission.”

The E0525 developmental engine featured new key components – including a nozzle, hydraulic actuators, flex ducts, and turbopumps – that matched design features of those used during an initial certification test series completed at NASA Stennis last summer.

The two certification test series helped verify the new engine components meet all Artemis flight requirements moving forward. Aerojet Rocketdyne is using techniques such as 3D printing to produce new RS-25 engines more efficiently, while maintaining high performance and reliability. NASA has awarded the company contracts to provide 24 new engines, supporting SLS launches for Artemis V through Artemis IX.

“Successfully completing this rigorous test series is a testament to the outstanding work done by the team to design, implement and test this upgraded version of the RS-25 that reduces the cost by 30% from the space shuttle program,” said Mike Lauer, RS-25 program director at Aerojet Rocketdyne. “We tested the new RS-25 engines to the extreme limits of operation to ensure the engines can operate at a higher power level needed for SLS and complete the mission with margin.”

RS-25 Final Certification Test Series by the Numbers

All RS-25 engines are tested and proven flightworthy at NASA Stennis prior to use on Artemis missions. RS-25 tests at the center are conducted by a diverse team of operators from NASA, Aerojet Rocketdyne, and Syncom Space Services, prime contractor for site facilities and operations.

Facebook logo @NASASTENNIS @NASASTENNIS Instagram logo @NASASTENNIS Share Details Last Updated Apr 04, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms Explore More 3 min read NASA to Continue Testing for New Artemis Moon Rocket Engines Article 1 month ago 2 min read NASA Marks Halfway Point for Artemis Moon Rocket Engine Certification Series Article 2 months ago 3 min read NASA Stennis Continues Preparations for Future Artemis Testing Article 4 months ago Keep Exploring Discover More Topics from NASA Stennis

Doing Business with NASA Stennis

About NASA Stennis

Visit NASA Stennis

NASA Stennis Media Resources

Categories: NASA

Eclipses Near and Far

NASA - Breaking News - Thu, 04/04/2024 - 8:39am

On April 8, 2024, North America will witness its last total solar eclipse for more than twenty years. Other parts of the world will experience the rare celestial event in the coming decade. A total solar eclipse occurs when the Moon passes directly between the Sun and the Earth, blocking its disk from view but making its corona visible in a dazzling display. Although spectacular when seen from the ground, observed from space, solar eclipses appear as large shadows moving across the face of the Earth. The unique geometry of the Earth-Sun-Moon system allows total solar eclipses to occur. Eclipses also occur outside the Earth-Moon system, although the geometries of those worlds rarely if ever produce the stunning display visible on Earth. Spacecraft exploring other worlds have documented these extraterrestrial eclipses.


Left: Schematic geometry of a solar eclipse; sizes and distances not to scale. Right: Path of the April 8, 2024, total solar eclipse. Image credit: courtesy Sky & Telescope.

A solar eclipse occurs when the Moon passes between the Sun and the Earth, with the Moon casting its  shadow on its home planet. Although the Sun is much larger than the Moon, it is also much farther away. As seen from Earth, the Sun and Moon have roughly the same angular diameter and appear roughly the same size in the sky. A total eclipse occurs when the Moon blocks out the Sun’s disk entirely. Because the Moon does not orbit in a perfect circle around the Earth, it appears smaller at its farthest point thus creating annular eclipses. Moons around other planets can also create eclipses although their different sizes relative to the Sun do not create our familiar eclipses. Planets with multiple moons can have more than one eclipse occur at the same time.


Left: Gemini XII astronauts photograph the total solar eclipse from Earth orbit in November 1966. Middle: Surveyor 3 observes a solar eclipse from the Moon in April 1967. Right: In November 1969, Apollo 12 astronauts returning from Moon experienced a solar eclipse as the Earth blocked the Sun shortly before splashdown.

Gemini XII astronauts James A. Lovell and Edwin E. “Buzz” Aldrin for the first time photographed a solar eclipse from Earth orbit on Nov. 12, 1966. Sixteen hours into their flight, the nearly total eclipse came into view as they flew over the Galapagos Islands and Aldrin took several photographs and a short film clip. Calculations showed that Gemini XII passed within 3.4 miles of the center of the eclipse’s path that traversed South America. The Surveyor 3 spacecraft observed the first solar eclipse from the Moon on April 24, 1967. Unlike solar eclipses observed on Earth, this time the Earth itself blocked the Sun – observers on Earth saw the event as a lunar eclipse as the Moon passed through the Earth’s shadow.  In November 1969, as Apollo 12 astronauts Charles “Pete” Conrad, Richard F. Gordon, and Alan L. Bean neared Earth on their return from the second lunar landing – during which they visited Surveyor 3 –  orbital mechanics had a show in store for them. Their trajectory passed through Earth’s shadow, treating them to a total solar eclipse. From their perspective, the Earth appeared about 15 times larger than the Sun. Gordon radioed Mission Control, “We’re getting a spectacular view at eclipse,” and Bean proclaimed it a “fantastic sight.” Conrad reported on the rapidly changing scenery, with the Sun illuminating the Earth’s atmosphere in a 360-degree ring with ever-changing colors while the planet remained pitch black. In the darkness, they could see flashes of lightning in thunderstorms appearing as fireflies. As their eyes adapted to the dark portion of the Earth, they saw landmasses such as India and even city lights. In the center of the Earth’s dark disc they reported seeing a large bright circle that turned out to be the glint of the full Moon reflecting off the Indian Ocean.


Left: The Moon’s shadow photographed from Mir during the August 1999 eclipse. Image credit: courtesy French space agency CNES. Middle: NASA astronaut Donald R. Pettit observed the first solar eclipse from the International Space Station during Expedition 6 in December 2002. Right: Pettit’s second eclipse during Expedition 31 in May 2012.

The credit belongs to French astronaut Jean-Pierre Haigneré for taking the first photograph from Earth orbit of the Moon’s shadow during a solar eclipse. He photographed the Aug. 11, 1999, total eclipse pass over England while onboard the Russian space station Mir as an Expedition 27 flight engineer. NASA astronaut Donald R. Pettit claims the title as the first person to photograph an eclipse from the International Space Station when he observed the Dec. 2, 2002, total eclipse during Expedition 6. As an additional claim, on May 20, 2012, Pettit observed his second eclipse from the space station during Expedition 31, this one an annular eclipse over the Western Pacific Ocean.


Left: Expedition 12 image of the March 2006 total eclipse over the eastern Mediterranean Sea. Middle: Expedition 52 image of the August 2017 total eclipse over North America. Right: Expedition 63 image of the June 2020 annular eclipse.


Left and middle: Two views of the eclipse over Antarctica in December 2021, from the Expedition 66 crew aboard the space station, left, and from the Deep Space Climate Observatory (DSCOVR) satellite. Right: DSCOVR image of the October 2023 annular solar eclipse over North America.

Space station crews have observed and documented a number of solar eclipses in addition to Pettit’s two sightings, their ability to see the Moon’s shadow as it traverses the Earth’s surface determined by their orbital trajectory. Expedition 12 observed the total eclipse on March 29, 2006, Expedition 43 documented the total eclipse on March 25, 2015, Expedition 52 observed the most recent total eclipse visible from North America on Aug. 21, 2017, Expedition 61 observed the annular eclipse on Dec. 26, 2019, Expedition 63 saw the annular eclipse on June 21, 2020, Expedition 66 imaged the total eclipse over Antarctica on Dec. 4, 2021, and Expedition 70 viewed the annular eclipse visible in North America on Oct. 14, 2023. Positioned nearly one million miles away at the L1 Earth-Sun Lagrange point, the National Oceanic and Atmospheric Administration’s Deep Space Climate Observatory (DSCOVR) satellite keeps a watchful eye on Earth’s climate. NASA’s Earth Polychromatic Imaging Camera (EPIC), a camera and telescope aboard DSCOVR, has taken stunning images of the Moon’s shadow during eclipses as well as the Moon transiting across the face of the Earth.

Mars

Beyond the Earth-Moon system, eclipses do not occur on Mercury and Venus since they lack natural satellites to block out the Sun. Mars has two small satellites, Phobos and Deimos, both too small to fully eclipse the Sun, even though it appears only half as big as on Earth. Several rovers have captured Phobos and Deimos as they form annular eclipses. Some astronomers contend that due to the small sizes of the Martian satellites, especially Deimos, compared to the Sun, these are technically transits, not eclipses, but no formal definition exists. The Mars Exploration Rover Opportunity imaged the first eclipses from the surface of Mars shortly after its arrival on the planet, first of Deimos on March 4, 2004, followed by Phobos three days later. More recently, the Mars 2020 Perseverance rover imaged the annular eclipse of Phobos on April 20, 2022, and the eclipse (or transit) of Deimos on Jan. 22, 2024.


Left: Mars Exploration Rover Opportunity images of Deimos, left, and Phobos crossing in front of the Sun. Middle: Perseverance image of a Phobos annular eclipse in April 2022. Right: Perseverance image of a Deimos eclipse (or transit) in January 2024.

Jupiter


Left: Hubble Space Telescope infrared image of a triple eclipse on Jupiter on March 28, 2004, with moons Ganymede, Io, and Callisto casting shadows on the planet. Middle: Hubble Space Telescope image of the Jan. 24, 2015, multiple eclipse on Jupiter, with five of its moons – Callisto, Io, Europa, Amalthea, and Thebe – casting shadows on the planet. Right: Europa eclipses Io in December 2014, as observed through an Earth-based telescope. Image credit: courtesy Jen Miller and Joy Chavez, Gemini Observatory.

Since the outer gas giant planets do not have solid surfaces, no spacecraft has imaged an actual eclipse by one of the multitude of moons orbiting these worlds. What we can observe, through ground-based and orbiting telescopes and spacecraft are the shadows cast by the moons on their home planets. Eclipses on Jupiter are not exceptionally rare given the planet’s large size compared to its many moons and greater distance from the Sun. Only five of Jupiter’s moons, Amalthea, Io, Europe, Ganymede, and Callisto are either large enough or close enough to the planet to completely occult the Sun. And given the low tilts of the moons’ orbits, they cast a shadow on every revolution. Double, triple and multiple simultaneous eclipses are not uncommon. The Hubble Space Telescope has observed numerous such events. Given the number of Jupiter’s moons, especially the four large Galilean moons, and that their orbits all lie very close to Jupiter’s equatorial plane, they occasionally eclipse each other, with the outer moons passing between the Sun and the inner moons. When Earth passes through Jupiter’s equatorial plane, fortunate observers can capture these rare events using ground-based telescopes, sometimes accidentally as they observe the Galilean moons for other reasons.


Left: Juno image of Io’s shadow on Jupiter in September 2019. Right: Juno image of Jupiter’s moon Ganymede casting its shadow on the planet in February 2022.

The Juno spacecraft, in orbit around Jupiter since 2016, has returned stunning images of Jupiter’s cloud patterns. On Sept. 11, 2019, it captured a spectacular image of Io’s shadow on Jupiter’s colorful cloud tops. On Feb. 25, 2022, Juno imaged the largest moon Ganymede’s shadow.

Saturn and beyond


Left: As it orbited Saturn, in November 2009 Cassini imaged eclipses of moons Titan, center, and Enceladus, lower right of Titan, and the planet’s rings. Middle: Titan casts its shadow, elongated by the planet’s curvature, on Saturn in this November 2009 image from the Cassini orbiter. Right: Sequential Hubble Space Telescope February 2009 images of a quadruple eclipse, as Saturn’s moons Enceladus, Dione, Titan, and Mimas cast their shadows on the planet.

Like Jupiter, dozens of moons orbit around the ringed planet Saturn, providing ample opportunities for telescopes and spacecraft to observe them passing in front of and casting their shadows onto the planet. The Cassini spacecraft, in orbit around Saturn between 2004 and 2017, captured thousands of images of the planet, its rings, and its moons. On many occasions, Cassini passed behind the planet and its moons, creating artificial eclipses, while at other times the spacecraft imaged the moons’ shadows on the planet’s cloud tops. The Hubble Space Telescope captured a series of images of a rare quadruple eclipse on Feb. 24, 2009, as Saturn’s moons Enceladus, Dione, Titan, and Mimas transited across the planet, casting their shadows on the cloud tops.


The Cassini spacecraft created this artificial eclipse of Saturn in November 2013 as it traveled beyond Saturn during one of its orbits, with many objects, including Earth, made visible.

On July 19, 2013, Cassini took a series of images from a distance of about 750,000 miles as Saturn eclipsed the Sun. In the event dubbed The Day the Earth Smiled, people on Earth received notification in advance that Cassini would be taking their picture from 900 million miles away, and were encouraged to smile at its camera. In addition to the Earth and Moon, Cassini captured Venus, Mars, and seven of Saturn’s satellites in the photograph.


Left: Composite image showing the relative apparent sizes of the Sun and a selection of planetary moons. Image credit: courtesy sdoisgo.blogspot.com. Middle: July 2006 Hubble Space Telescope image of Uranus and its moon Ariel casting a shadow on the planet. Right: The New Horizons spacecraft created an artificial eclipse as it flew behind Pluto during its July 2015 flyby, the Sun’s rays highlighting its tenuous atmosphere.

The Earth occupies a unique position with the nearly equal apparent diameters of the Moon and the Sun, providing opportunities for annular and total solar eclipses. As viewed from planets farther in the solar system, the Sun’s apparent diameter diminishes, with the apparent sizes of the moons orbiting those planets either larger or smaller than the Sun. Eclipses as we know them do not exist elsewhere in the solar system. Spacecraft exploring those remote worlds easily create artificial eclipses by passing through the planets’ shadows, often revealing important information, such as New Horizons imaging the tenuous atmosphere surrounding Pluto.


Paths of solar eclipses between 2021 and 2030. Image credit: courtesy Greatamericaneclipse.com.

The next total solar eclipse visible in North America will not occur until 2044, but over the next few years, several eclipses visible in other parts of the world will no doubt be targets of opportunity for astronauts’ cameras aboard the space station. And spacecraft exploring planets in the solar system will continue to document eclipses in those faraway places.

Explore More 7 min read 65 Years Ago: NASA Selects America’s First Astronauts Article 2 days ago 6 min read 45 Years Ago: Space Shuttle Columbia Arrives at NASA’s Kennedy Space Center Article 2 weeks ago 21 min read 55 Years Ago: Four Months Until the Moon Landing Article 2 weeks ago
Categories: NASA

Galileo's Europa

APOD - Thu, 04/04/2024 - 8:00am

Looping through the Jovian system in the late 1990s, the


Categories: Astronomy, NASA

NASA Announces Summer 2023 Hottest on Record

Earth News - Thu, 09/14/2023 - 4:05pm
The summer of 2023 was Earth’s hottest since global records began in 1880, according to scientists at NASA’s Goddard Institute of Space Studies (GISS) in New York.
Categories: NASA

NASA: El verano de 2023 es el más caluroso en el registro

Earth News - Thu, 09/14/2023 - 12:03pm
El verano boreal de 2023 fue el más caluroso para la Tierra desde que se establecieron registros mundiales de temperaturas en 1880, según un análisis realizado por científicos del Instituto Goddard de Estudios Espaciales (GISS, por sus siglas en inglés) de la NASA en Nueva York.
Categories: NASA