Feed aggregator
The US may start vaccinating chickens and cows against bird flu
The US may start vaccinating chickens and cows against bird flu
Kachemak Bay’s Stony Waters
Kachemak Bay’s Stony Waters
The OLI (Operational Land Imager) on Landsat 8 captured an image of Kachemak Bay’s turbid, cloudy waters on September 20, 2024. This cloudiness comes from glacial flour: bits of pulverized rock ground down by glaciers that has the consistency of flour. Several meltwater streams rich with the particles, sometimes called suspended sediment, absorb and scatter sunlight in ways that turn water a milky blue-green hue. The water that flows into the bay from the Grewingk-Yalik Glacier Complex to the east carries sediment-infused waters that transform the appearance of the bay during the summer, raising questions about how much the influx of sediment affects the bay’s marine life.
Learn more about efforts to study Kachemak Bay’s sediment plumes.
Text credit: Adam Voiland
Image credit: NASA/Michala Garrison, USGS
NASA Invites You to Share Excitement of Agency’s SpaceX Crew-10 Launch
NASA invites the public to take part in virtual activities for the launch of the agency’s SpaceX Crew-10 mission to the International Space Station.
NASA astronauts Anne McClain, commander, and Nichole Ayers, pilot, along with mission specialists JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi and Roscosmos cosmonaut Kirill Peskov, will embark on a flight aboard a SpaceX Dragon spacecraft to the orbiting laboratory. The launch, aboard a SpaceX Falcon 9 rocket, is targeted for 7:48 p.m. EDT Wednesday, March 12, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
The public can register to be a virtual launch guest and receive curated resources, interactive opportunities, timely launch updates, and a mission-specific collectible stamp for their virtual guest passport after liftoff – all sent straight to their inbox.
A new way to collect and share stamps has arrived. Print one for your virtual guest passport and receive another, made special for sharing on social media. Don’t have a passport yet? Print one here and be ready to add a stamp!
Want to learn more about the mission and NASA’s Commercial Crew Program? Follow along with the Crew-10 mission blog, Commercial Crew blog, @commercial_crew on X, or check out Commercial Crew on Facebook.
What You Need to Know about NASA’s SpaceX Crew-10 Mission
Four crew members are preparing to launch to the International Space Station as part of NASA’s SpaceX Crew-10 mission to perform research, technology demonstrations, and maintenance activities aboard the microgravity laboratory.
NASA astronauts Anne McClain, Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov will lift off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
The flight is the 10th crew rotation mission with SpaceX to the space station, and the 11th human spaceflight as part of NASA’s Commercial Crew Program.
As teams progress through Dragon spacecraft milestones for Crew-10, they also are preparing a second-flight Falcon 9 booster for the mission. Once all rocket and spacecraft system checkouts are complete and all components are certified for flight, teams will mate Dragon to the Falcon 9 rocket in SpaceX’s hangar at the launch site. The integrated spacecraft and rocket will then be rolled to the pad and raised to vertical for a dry dress rehearsal with the crew and an integrated static fire test prior to launch.
Crew The four members of NASA’s SpaceX Crew-10 mission (from left) Mission Specialist Kirill Peskov of Roscosmos, NASA Astronauts Nichole Ayers, pilot, and Anne McClain, commander, along with Mission Specialist Takuya Onishi of JAXA (Japan Aerospace Exploration Agency) are pictured training inside a Dragon training spacecraft at SpaceX in Hawthorne, California.SpaceXSelected by NASA as an astronaut in 2013, this will be McClain’s second spaceflight. A colonel in the U.S. Army, she earned her bachelor’s degree in Mechanical Engineering from the U.S. Military Academy at West Point, New York, and holds master’s degrees in Aerospace Engineering, International Security, and Strategic Studies. The Spokane, Washington, native was an instructor pilot in the OH-58D Kiowa Warrior helicopter and is a graduate of the U.S. Naval Test Pilot School in Patuxent River, Maryland. McClain has more than 2,300 flight hours in 24 rotary and fixed-wing aircraft, including more than 800 in combat, and was a member of the U.S. Women’s National Rugby Team. On her first spaceflight, McClain spent 204 days as a flight engineer during Expeditions 58 and 59 and completed two spacewalks, totaling 13 hours and 8 minutes. Since then, she has served in various roles, including branch chief and space station assistant to the chief of NASA’s Astronaut Office. Follow @astroannimal on X and @astro_annimal on Instagram.
This mission will be the first spaceflight for Ayers, who was selected as a NASA astronaut in 2021. Ayers is a major in the U.S. Air Force and the first member of NASA’s 2021 astronaut class named to a crew. The Colorado native graduated from the Air Force Academy in Colorado Springs with a bachelor’s degree in Mathematics and a minor in Russian, and was a member of the academy’s varsity volleyball team. She later earned a master’s in Computational and Applied Mathematics from Rice University in Houston. Ayers served as an instructor pilot and mission commander in the T-38 ADAIR and F-22 Raptor, leading multinational and multiservice missions worldwide. She has more than 1,400 total flight hours, including more than 200 in combat. Follow @astro_ayers on X and @astro_ayers on Instagram.
With 113 days in space, Crew-10 will mark Onishi’s second trip to the space station. After being selected as an astronaut by JAXA in 2009, he flew as a flight engineer for Expeditions 48 and 49, becoming the first Japanese astronaut to robotically capture the Cygnus spacecraft. He also constructed a new experimental environment aboard Kibo, the station’s Japanese experiment module. After his first spaceflight, Onishi became certified as a JAXA flight director, leading the team responsible for operating Kibo from JAXA Mission Control in Tsukuba, Japan. He holds a bachelor’s degree in Aeronautics and Astronautics from the University of Tokyo, and was a pilot for All Nippon Airways, flying more than 3,700 flight hours in the Boeing 767. Follow astro_onishi on X.
The Crew-10 mission also will be Peskov’s first spaceflight. Before his selection as a cosmonaut in 2018, he earned a degree in Engineering from the Ulyanovsk Civil Aviation School and was a co-pilot on the Boeing 757 and 767 aircraft for airlines Nordwind and Ikar. Assigned as a test cosmonaut in 2020, he has additional experience in skydiving, zero-gravity training, scuba diving, and wilderness survival.
Mission Overview NASA’s SpaceX Crew-10 members stand between Falcon 9 first-stage boosters at SpaceX’s HangarX facility at NASA’s Kennedy Space Center in Florida. From left are Mission Specialist Kirill Peskov of Roscosmos, Mission Specialist Takuya Onishi of JAXA (Japan Aerospace Exploration Agency), along with NASA Astronauts Commander Anne McClain and Pilot Nichole Ayers.SpaceXFollowing liftoff, the Falcon 9 rocket will accelerate Dragon to approximately 17,500 mph. Once in orbit, the crew and SpaceX mission control in Hawthorne, California, will monitor a series of maneuvers that will guide Dragon to the forward-facing port of the station’s Harmony module. The spacecraft is designed to dock autonomously, but the crew can take control and pilot manually, if necessary.
After docking, Crew-10 will be welcomed aboard the station by the seven-member crew of Expedition 72 and conduct a short handover period on science and maintenance activities with the departing Crew-9 crew members. Then, NASA astronauts Nick Hague, Suni Williams, Butch Wilmore, and Roscosmos cosmonaut Aleksandr Gorbunov will undock from the space station and return to Earth. Ahead of Crew-9 return, mission teams will review weather conditions at the splashdown sites off the coast of Florida prior to departure from station.
Crew-10 will conduct new scientific research to prepare for human exploration beyond low Earth orbit and benefit humanity on Earth. The crew is scheduled to conduct material flammability tests for future spacecraft designs, engage with students via ham radio and use its existing hardware to test a backup lunar navigation solution, and participate in an integrated study to better understand physiological and psychological changes to the human body to provide valuable insights for future deep space missions.
These are just a few of the more than 200 scientific experiments and technology demonstrations taking place during the mission.
While aboard the orbiting laboratory, Crew-10 will welcome a Soyuz spacecraft with three new crew members, including NASA astronaut Jonny Kim, and they will bid farewell to the Soyuz carrying NASA astronaut Don Pettit. The crew also is expected to see the arrival of the SpaceX Dragon, Roscosmos Progress, and Northrop Grumman’s Cygnus cargo spacecraft, as well as the short-duration private Axiom Mission 4 crew.
The cadre will fly aboard the SpaceX Dragon spacecraft, named Endurance, which previously flew NASA’s SpaceX Crew-3, Crew-5, and Crew-7 missions.
Commercial crew missions enable NASA to maximize use of the space station, where astronauts have lived and worked continuously for more than 24 years, testing technologies, performing research, and developing the skills needed to operate future commercial destinations in low Earth orbit, and explore farther from Earth. Research conducted on the space station benefits people on Earth and paves the way for future long-duration missions to the Moon and beyond through NASA’s Artemis missions.
Learn more about the space station, its research, and crew, at: https://www.nasa.gov/station
NASA’s Voyager Probes Lose One Instrument Each as Power Wanes
NASA’s twin Voyager probes, which launched in 1977, are the longest-running missions to send data home. But as their power supplies wane, scientists are saying goodbye to one instrument on each spacecraft
NASA Seeks Commercial Partner for Robots Aboard Space Station
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)As NASA continues to enable a sustainable, cost-effective commercial space economy, the agency is seeking partnership proposals for the operations, sustaining engineering, and utilization of Astrobee, a free-flying robotic system aboard the International Space Station.
The Announcement for Partnership Proposal contains instructions and criteria for transferring responsibility of the Astrobee system to a commercial provider. Submissions are due to NASA by Friday, March 21.
Astrobee has operated aboard the space station since 2019, working autonomously or managed by flight controllers or researchers on the ground. Technology like the Astrobee system can help astronauts with routine duties, like inventory or documentation, freeing up time for complex work and additional experiments.
The Astrobee system includes three cube-shaped robots aboard the space station, software, and a docking station for recharging. On the ground, three robots function as flight spares and are used for software and maintenance testing. The system is an important technology demonstration and science, technology, engineering, and mathematics outreach platform.
The robots can fly freely through the station’s microgravity environment, with cameras and sensors to help guide them. Their perching arms can grasp station handrails or grab and hold items. Past experiments involving the Astrobee robots include testing mechanical adhesive technology, mapping the station, and identifying potential life support system issues.
“Astrobee has been a beacon for robotic and autonomous research in space for many years, working with academia and industry partners across our country and internationally,” said Eugene Tu, center director at NASA’s Ames Research Center in California’s Silicon Valley, which led the Astrobee project. “We’re excited about the opportunity to continue this mission with a commercial partner.”
As part of the agreement, the commercial partner will provide ground-based testing, equipment, and lab space as needed. The partner will be responsible for the Astrobee system through the end of the space station’s operational life. The commercial partner also will provide milestone objectives and ensure the continued development of Astrobee technology to support the future of commercial space.
The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For more than 24 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth orbit economy and NASA’s next great leaps in exploration, including missions to the Moon under Artemis and, ultimately, human exploration of Mars.
Learn more about the International Space Station, its research, and its crew, at:
Learn more about NASA Ames’ world-class research and development in aeronautics, science, and exploration technology at:
-end-
Tara Friesen
Ames Research Center, Silicon Valley
650-604-4789
tara.l.friesen@nasa.gov
Request for Proposals
Redshift Wranglers Reach Remarkable Milestones
A “classification” is when a volunteer or citizen scientist finishes marking up or sorting one image or other piece of data. Each classification done by volunteers for the Redshift Wrangler project tells us something about the distance and age of a far-away galaxy, bringing us one step closer to understanding how galaxies evolve. These volunteers met a major milestone this week: 200,000 classifications completed!
That’s not all. The Redshift Wrangler project has received over 3,000 comments on Zooniverse talk boards, and has begun preparing a paper on their first batch of 11,000 galaxies. The paper will incorporate data from the DEep Imaging Multi-Object Spectrograph (DEIMOS) from NASA’s Keck Observatory Archive, as well as data from the Gemini and Subaru telescopes.
“NASA’s citizen science is a blessing, as I’ve found the Redshift Wrangler project to be such a rewarding experience,” said project volunteer, Baba Karthik Kalapatapu. “This project holds special meaning for me, as I had the unforgettable experience of visiting the Mauna Kea observatories, where I watched the Gemini North and Keck telescopes power on at sunset. I never could have imagined that I’d one day be working with data from those very telescopes—an incredible full-circle moment in my journey into understanding the cosmos.”
Ready to wrassle some distant galaxies yourself? Join the Redshift Wrangler project today! Lasso not required.
Share Details Last Updated Mar 06, 2025 Editor NASA Science Editorial Team Related Terms Explore More 2 min read 2025 Aviation Weather Mission: Civil Air Patrol Cadets Help Scientists Study the Atmosphere with GLOBE CloudsArticle
2 days ago
6 min read NASA’s Hubble Finds Kuiper Belt Duo May Be Trio
Article
2 days ago
1 min read Hubble Captures New View of Colorful Veil
Article
6 days ago
Intuitive Machines’ Athena Lander Reaches the Moon Lopsided—Just Like Its Predecessor
Despite some connection delays postlanding, the lunar lander Athena is officially set to study what lies beneath the moon’s surface over the next 10 days
Intuitive Machines' private Athena probe lands near lunar south pole — but it may have tipped over
Ariane 6 takes flight for the second time
Europe’s newest rocket, Ariane 6, took flight for the second time from Europe’s Spaceport in French Guiana at 13:24 local time on 6 March (16:24 GMT, 17:24 CET). This was the first commercial flight for Ariane 6, flight VA263, delivering the CSO-3 satellite to orbit. Arianespace was the operator and launch service provider for the French Procurement agency (DGA) and France’s space agency CNES on behalf of the French Air and Space Force’s Space Command (CDE).
Ariane 6 takes flight for the second time
Europe’s newest rocket, Ariane 6, took flight for the second time from Europe’s Spaceport in French Guiana at 13:24 local time on 6 March (16:24 GMT, 17:24 CET). This was the first commercial flight for Ariane 6, flight VA263, delivering the CSO-3 satellite to orbit. Arianespace was the operator and launch service provider for the French Procurement agency (DGA) and France’s space agency CNES on behalf of the French Air and Space Force’s Space Command (CDE).
Trump's CDC Firings Will Gut Public Health at the State and Local Level
The Trump administration’s sudden dismissals have stripped training programs across the nation that bolstered state and local public health departments
Private Blue Ghost lander spotted on the moon by NASA lunar orbiter (photo)
2024 Associate Administrator Awards Honorees
7 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA / Maria WerriesThe ARMD 2024 Associate Administrator Awards were presented to NASA employees, contractors, and students or interns who distinguished themselves, either individually or as part of a group, through their overall approach to their work and through results they achieved during the award year.
LEGEND: ARMD NASA CENTERS
ARC = Ames Research Center
AFRC = Armstrong Flight Research Center
GRC = Glenn Research Center
HQ = Headquarters
LaRC = Langley Research Center
Honoree (Individual)
Kenneth R. Lyons, ARC
Kenneth R. Lyons made significant contributions this past year that were successfully applied in advancing NASA’s state-of-the-art unsteady Pressure Sensitive Paint (uPSP) experimental measurement in NASA’s wind tunnels. Lyons was key to the development of innovative data processing capabilities such as custom software drivers necessary to transfer the high-speed uPSP data from NASA’s wind tunnels to its High-End Computer facility – as well as other data management and methodologies overall. The uPSP development team’s principal investigator referred to his work on replacing older legacy systems as a “masterpiece.”
Honoree (Group)
NASA GRX-810 Licensing Team
NASA’s GRX-810 Licensing Team demonstrated exemplary performance by developing a technologically significant new material, meeting community demands for rapid evaluation, and enabling broad industry availability through timely commercialization. The team’s efforts led to successful licensing to multiple parties, pioneering a novel approach for NASA by using co-exclusive licenses, and the negotiation of four co-exclusive licenses with commercial partners. This license structure will increase competition within the marketplace and provide incentive for each company to fast-track product development.
Team Lead: Dr. Timothy M. Smith, GRC
View Group Honorees
Honorable Mention
Shishir Pandya, ARC
Shishir Pandya’s exemplary actions as the formulation and technical lead for the Propulsion/Airframe Integration (PAI) emerging technical challenge were instrumental in creating an actionable project plan that will examine complex aerodynamic interactions between sustainable propulsor technologies – such as open rotor concepts envisioned in programs like General Electric’s Revolutionary Innovation for Sustainable Engines (RISE). Pandya was instrumental in classifying the current PAI analysis capabilities at NASA, and scoping NASA’s, GE’s, and Boeing’s roles and responsibilities for open fan integration studies, both computational and experimental.
Honorable Mention (Group)
Electric Vertical Takeoff and Landing (eVTOL) Propulsion Team
The Revolutionary Vertical Lift and Technology project’s Electric Propulsion Team achieved major accomplishments – successfully completing a technical challenge to improve propulsion system component reliability by demonstrating significant improvements in 100-kilowatt electric motors. Through an integrated interdisciplinary approach including external partner collaborations, the team produced six major technological capabilities towards further development of NASA’s Advanced Air Mobility mission.
Team Lead: Mark Valco, GRC
View Honorable Mention Group Honorees
Honorable Mention (Group)
Self-Aligned Focusing Schlieren Team
The Self-Aligned Focusing Schlieren Team developed a highly innovative and impactful Schlieren system that revolutionizes high-speed flow visualization in aeronautics research by enabling the use of a highly efficient, non-intrusive optical measurement technique in physically constrained environments. This new approach drastically improves efficiency in accurately capturing and analyzing complex, high-speed airflows around advanced aerospace vehicles in a non-intrusive manner – providing precise visualization without requiring the cumbersome alignment procedures of traditional Schlieren systems.
Team Lead: Brett Bathel, LaRC
View Honorable Mention Group Honorees
Honoree
Anthony Nerone, GRC
Anthony Nerone demonstrated strong leadership in formulating and leading the implementation of the Hybrid Thermally Efficient Core project. He has successfully set up a framework to establish a high-performing project team that has been an example for other Aeronautics projects. Nerone’s strong project management has led industry to accelerate the development of advanced engine technologies which have started to see infusion into products – continuing United States leadership in sustainable aviation.
Honoree
Diana Fitzgerald, LaRC (Booz Allen Hamilton)
Diana Fitzgerald has demonstrated innovation, responsiveness, and impact in her contributions to the Transformational Tools and Technologies (TTT) project. Her creative and comprehensive approach to enhancing TTT’s communication processes has significantly improved the efficiency and effectiveness of the project’s operations, enabling ARMD to advance critical strategic capabilities and partnerships. Her dedication has garnered widespread recognition from colleagues and leadership and has had a substantial and measurable impact.
Honoree (Group)
Airspace Operations Safety Program (AOSP) Resource Analyst Group
The AOSP Resource Analyst Group worked tirelessly to skillfully review and analyze the NASA Aeronautics budget – preparing programs and projects for planning, budget, and execution inputs. Their extraordinary performance in numerous AOSP activities building, tracking, and executing milestones resulted in a smooth and transparent execution of the program’s annual budget. The group has gone beyond the call of duty and their hard work and dedication is reflected in their discipline and commitment to NASA through critical, time-sensitive attention to detail and solution-focused problem solving.
Team Leads: Michele Dodson, HQ and Jeffrey Farlin, HQ
View Group Honorees
Honorable Mention (Individual)
Shannon Eichorn, GRC
Shannon Eichorn developed and authored a compelling, creative vision for the future of aeronautics research and of NASA’s working environment. She envisioned and described a future in which NASA’s aeronautics research goals, future technologies, workforce, and capabilities are in synergy to maximize research quality and impact. Eichorn presented this vision to numerous leaders and groups at NASA, and the excitement in the room at each presentation led to engaging follow-on discussions and several workstream groups requested Eichorn to present to their full group. Her efforts inspire not only ARMD, but the entire agency.
Honoree
Matthew Webster, LaRC
Matthew Webster has had significant impact and contributions to meeting goals in the Convergent Aeronautics Solutions and Transformational Tools and Technologies projects. In his short time at NASA, he has rapidly demonstrated exceptional ability to adapt and apply technical expertise across multiple NASA projects to advance towards project technical goals. Webster has shown his leadership ability, providing exceptional skills at creating a healthy team environment enabling the group to successfully meet project goals.
Honorable Mention
Dahlia Pham, ARC
Dhalia Pham’s contributions as a system analyst, researcher, and teammate in support of NASA’s efforts in electrified aircraft propulsion have shown an ability to creatively solve problems, analyze impacts, present results with strong communication skills, and collaborate with and mentor others. Her technical acumen and leadership ability raise the bar, making her an established leader amongst her peers.
Honoree
Salvatore Buccellato, LaRC
Salvatore Buccellato identified collaborative opportunities in hypersonics research that were mutually beneficial to NASA, the Defense Advanced Research Projects Agency (DARPA), and other non-NASA entities through his program management experience and knowledge of NASA people and capabilities. Buccellato was able to leverage NASA and non-NASA expertise and capabilities, along with DARPA funding, to further mature and advance hypersonic technologies via ground and flight tests with the goal of enabling operational flight systems. His exemplary work helped to significantly advanced hypersonic technologies and its workforce, and are expected to lead to further partnered activities for NASA.
Honoree (Group)
Advanced Power Electronics Team, GRC
The Advanced Power Electronics Team of the Advanced Air Transport Technology project completed an ambitious design of a prototype flight-packaged, altitude-capable electric motor drive for aviation. Their work pushed past the state of the art in flight motor drives in several areas including power density, efficiency, and power quality – and is a steppingstone towards megawatt-level, cryogenically cooled motor drives. The electric motor design underwent many successful tests and exercises, and the team’s subsequent publications and expertise help the electrified aircraft industry push past several barriers.
Team Leads: Matthew G. Granger, GRC
View Group Honorees
ARMD Associate Administrator Award
Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASAes Instagram logo @NASA@NASAaero@NASAes Linkedin logo @NASA Keep Exploring Discover More Topics From NASAAeronautics Research Mission Directorate
Aeronautics
Drones & You
Green Aviation Tech
Share Details Last Updated Mar 06, 2025 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related TermsAs Trump and DOGE Block Federal Grants, Wildfire Prevention Projects Are at Risk
Efforts to limit wildfires in a conservative swath of northern Colorado are the latest casualty of the Trump administration’s on-and-off federal spending freeze
7 fascinating facts about lunar eclipses
2024 AA Awards for Technology and Innovation (Group)
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA GRX-810 Licensing Team, GRC* Denotes Team Lead
NASA Ames Research Center
John Lawson
NASA Glenn Research Center
Steven M. Arnold
Aaron B. Brister
Robert W. Carter
Robert H. Earp
Timothy P. Gabb
Christopher J. Giuffre
Paul R. Gradl
Jason M. Hanna
Bryan J. Harder
Amy B. Hiltabidel
Dale A. Hopkins
Christopher A. Kantzos
Michael J. Kulis
Geoffrey S. Minter
Brian T. Newbacher
Callista M. Puchmeyer
Richard W. Rauser
Harvey L. Schabes
Timothy M. Smith*
Aaron C. Thompson
Mary F. Wadel
Austin J. Whitt
Laura G. Wilson
NASA’s Marshall Space Flight Center
Paul Gradl
HX5, LLC
Christopher J. Giuffre
Aaron C. Thompson
Austin J. Whitt
University of Toledo
Richard W. Rauser
ARMD Associate Administrator Awards
Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASAes Instagram logo @NASA@NASAaero@NASAes Linkedin logo @NASA Keep Exploring Discover More Topics From NASAMissions
Artemis
Aeronautics STEM
Explore NASA’s History
Share Details Last Updated Mar 06, 2025 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms2024 AA Awards for Technology and Innovation (Group Honorable Mention)
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) eVTOL Propulsion Team, GRC* Denotes Team Lead
NASA Glenn Research Center
Aaron D. Anderson
Devin K. Boyle
Jeffryes W. Chapman
Peggy A. Cornell
Timothy P. Dever
Justin P. Elchert
Henry B. Fain
Xavier Collazo Fernandez
Matthew G. Granger
Jonathan M. Gutknecht
Michael C. Halbig
Patrick A. Hanlon
Hashmatullah Hasseeb
David Hausser
Scott A. Hensley
Keith R. Hunker
Michael J. Hurrell
Keith P. Johnson
Greg L. Kimnach
John M. Koudelka
Timothy L. Krantz
Brian P. Malone
Sandi G. Miller
Nuha S. Nawash
Paul M. Nowak
Joseph J. Pinakidis
Meelad Ranaiefar
Trey D. Rupp
David J. Sadey
Jonathan A. Salem
Justin J. Scheidler
Andrew D. Smith
Mark A. Stevens
Thomas F. Tallerico
Linda M. Taylor
Casey J. Theman
Mark J. Valco*
Joseph S. Wisniewski
NASA’s Goddard Space Flight Center
Zachary A. Cameron
Amentum
Francis R. Gaspare
David J. Henrickson
Ryan M. McManamon
Alan J. Revilock
Connecticut Reserve Technologies
Eric H. Baker
HX5 Sierra
Nathan A. Baker
John W. Gresh
George E. Horning
Sigurds L. Lauge
Brett M. Norris
Nicolas Umpierre
Bill J. Vaccareillo
John Veneziano
NASA Financial Support Services
Madeline Duncan
Ohio Aerospace Institute
Mrityunjay Singh
Universities Space Research Association
Paula J. Heimann
ARMD Associate Administrator Awards
Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASAes Instagram logo @NASA@NASAaero@NASAes Linkedin logo @NASA Keep Exploring Discover More Topics From NASAMissions
Artemis
Aeronautics STEM
Explore NASA’s History
Share Details Last Updated Mar 06, 2025 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms