Behold, directly overhead, a certain strange star was suddenly seen...
Amazed, and as if astonished and stupefied, I stood still.

— Tycho Brahe

Feed aggregator

Webb and Hubble examine spooky galaxy pair

ESO Top News - Thu, 10/31/2024 - 10:00am

Stare deeply at these galaxies. They appear as if blood is pumping through the top of a flesh-free face. The long, ghastly ‘stare’ of their searing eye-like cores shines out into the supreme cosmic darkness.

Categories: Astronomy

Why NASA’s SPHEREx Mission Will Make ‘Most Colorful’ Cosmic Map Ever

NASA - Breaking News - Thu, 10/31/2024 - 9:59am

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA’s SPHEREx observatory undergoes integration and testing at BAE Systems in Boulder, Colorado, in April 2024. The space telescope will use a technique called spectroscopy across the entire sky, capturing the universe in more than 100 colors. BAE Systems

The space telescope will detect over 100 colors from hundreds of millions of stars and galaxies. Here’s what astronomers will do with all that color.

NASA’s SPHEREx mission won’t be the first space telescope to observe hundreds of millions of stars and galaxies when it launches no later than April 2025, but it will be the first to observe them in 102 colors. Although these colors aren’t visible to the human eye because they’re in the infrared range, scientists will use them to learn about topics that range from the physics that governed the universe less than a second after its birth to the origins of water on planets like Earth.

“We are the first mission to look at the whole sky in so many colors,” said SPHEREx Principal Investigator Jamie Bock, who is based jointly at NASA’s Jet Propulsion Laboratory and Caltech, both in Southern California. “Whenever astronomers look at the sky in a new way, we can expect discoveries.”

Short for Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer, SPHEREx will collect infrared light, which has wavelengths slightly longer than what the human eye can detect. The telescope will use a technique called spectroscopy to take the light from hundreds of millions of stars and galaxies and separate it into individual colors, the way a prism transforms sunlight into a rainbow. This color breakdown can reveal various properties of an object, including its composition and its distance from Earth.

NASA’s SPHEREx mission will use spectroscopy — the splitting of light into its component wavelengths — to study the universe. Watch this video to learn more about spectroscopy. NASA’s Goddard Space Flight Center

Here are the three key science investigations SPHEREx will conduct with its colorful all-sky map.

Cosmic Origins

What human eyes perceive as colors are distinct wavelengths of light. The only difference between colors is the distance between the crests of the light wave. If a star or galaxy is moving, its light waves get stretched or compressed, changing the colors they appear to emit. (It’s the same with sound waves, which is why the pitch of an ambulance siren seems to go up as its approaches and lowers after it passes.) Astronomers can measure the degree to which light is stretched or compressed and use that to infer the distance to the object.

SPHEREx will apply this principle to map the position of hundreds of millions of galaxies in 3D. By doing so, scientists can study the physics of inflation, the event that caused the universe to expand by a trillion-trillion fold in less than a second after the big bang. This rapid expansion amplified small differences in the distribution of matter. Because these differences remain imprinted on the distribution of galaxies today, measuring how galaxies are distributed can tell scientists more about how inflation worked.

Galactic Origins

SPHEREx will also measure the collective glow created by all galaxies near and far — in other words, the total amount of light emitted by galaxies over cosmic history. Scientists have tried to estimate this total light output by observing individual galaxies and extrapolating to the trillions of galaxies in the universe. But these counts may leave out some faint or hidden light sources, such as galaxies too small or too distant for telescopes to easily detect.

With spectroscopy, SPHEREx can also show astronomers how the total light output has changed over time. For example, it may reveal that the universe’s earliest generations of galaxies produced more light than previously thought, either because they were more plentiful or bigger and brighter than current estimates suggest. Because light takes time to travel through space, we see distant objects as they were in the past. And, as light travels, the universe’s expansion stretches it, changing its wavelength and its color. Scientists can therefore use SPHEREx data to determine how far light has traveled and where in the universe’s history it was released.

Water’s Origins

SPHEREx will measure the abundance of frozen water, carbon dioxide, and other essential ingredients for life as we know it along more than 9 million unique directions across the Milky Way galaxy. This information will help scientists better understand how available these key molecules are to forming planets. Research indicates that most of the water in our galaxy is in the form of ice rather than gas, frozen to the surface of small dust grains. In dense clouds where stars form, these icy dust grains can become part of newly forming planets, with the potential to create oceans like the ones on Earth.

The mission’s colorful view will enable scientists to identify these materials, because chemical elements and molecules leave a unique signature in the colors they absorb and emit.

Big Picture

Many space telescopes, including NASA’s Hubble and James Webb, can provide high-resolution, in-depth spectroscopy of individual objects or small sections of space. Other space telescopes, like NASA’s retired Wide-field Infrared Survey Explorer (WISE), were designed to take images of the whole sky. SPHEREx combines these abilities to apply spectroscopy to the entire sky.

By combining observations from telescopes that target specific parts of the sky with SPHEREx’s big-picture view, scientists will get a more complete — and more colorful — perspective of the universe.

More About SPHEREx

SPHEREx is managed by JPL for NASA’s Astrophysics Division within the Science Mission Directorate in Washington. BAE Systems (formerly Ball Aerospace) built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions across the U.S. and in South Korea. Data will be processed and archived at IPAC at Caltech, which manages JPL for NASA. The mission principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset will be publicly available.

For more information about the SPHEREx mission visit:

https://www.jpl.nasa.gov/missions/spherex/

News Media Contact

Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov

2024-152

Share Details Last Updated Oct 31, 2024 Related Terms Explore More 4 min read International SWOT Satellite Spots Planet-Rumbling Greenland Tsunami Article 2 hours ago 5 min read ‘Blood-Soaked’ Eyes: NASA’s Webb, Hubble Examine Galaxy Pair

Stare deeply at these galaxies. They appear as if blood is pumping through the top…

Article 10 hours ago
3 min read Buckle Up: NASA-Funded Study Explores Turbulence in Molecular Clouds

On an airplane, motions of the air on both small and large scales contribute to…

Article 1 day ago
Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

A bizarre skeleton from a Roman grave has bones from eight people

New Scientist Space - Cosmology - Thu, 10/31/2024 - 9:51am
Radiocarbon dating and DNA analysis have revealed that a complete skeleton found in a 2nd-century cemetery is made up of bones from many people spanning thousands of years – but we don’t know who assembled it or why
Categories: Astronomy

A bizarre skeleton from a Roman grave has bones from eight people

New Scientist Space - Space Headlines - Thu, 10/31/2024 - 9:51am
Radiocarbon dating and DNA analysis have revealed that a complete skeleton found in a 2nd-century cemetery is made up of bones from many people spanning thousands of years – but we don’t know who assembled it or why
Categories: Astronomy

A bizarre skeleton from a Roman grave has bones from seven people

New Scientist Space - Cosmology - Thu, 10/31/2024 - 9:51am
Radiocarbon dating and DNA analysis have revealed that a complete skeleton found in a 2nd-century cemetery is made up of bones from many people spanning thousands of years – but we don’t know who assembled it or why
Categories: Astronomy

A bizarre skeleton from a Roman grave has bones from seven people

New Scientist Space - Space Headlines - Thu, 10/31/2024 - 9:51am
Radiocarbon dating and DNA analysis have revealed that a complete skeleton found in a 2nd-century cemetery is made up of bones from many people spanning thousands of years – but we don’t know who assembled it or why
Categories: Astronomy

Amazing Reader Views of Comet A3 Tsuchinshan-ATLAS From Around the World

Universe Today - Thu, 10/31/2024 - 9:32am

Comet C/2023 A3 Tsuchinshan-ATLAS survived perihelion to become a fine dusk object for northern hemisphere observers.

It was an amazing month for astronomy. Not only were we treated to an amazing second solar storm for 2024 that sent aurorae as far south as the Caribbean, but we had a fine naked eye comet: C/2023 A3 Tsuchinshan-ATLAS.

The comet on October 24th, along with the Milky Way over the Sea of Japan as seen from Yuzhno-Morskoy (Nakhodka) Russia. Credit: Filipp Romanov.

Discovered in early 2023, this one actually performed as expected, and topped out as the best comet for 2024. Southern hemisphere observers got a portent of things to come in September, as the comet threaded the dawn skies.

The evolution of the comet post-perihelion through October 25-30th. Credit: Eliot Herman Peril at Perihelion

Then came the big wild card of perihelion. The comet passed just 58.6 million kilometers from the Sun on September 27th. At its maximum, the comet hit nearly -5th magnitude. The dust and plane crossing for the comet were both especially dramatic, as we saw a sharp spiky anti-tail trace out the comet’s orbital trail and appear to pierce the Sun as seen in views from SOHO’s LASCO C2 and C3 imagers.

But would the comet remain bright for its evening encore? This time, luck was on our side, as the comet held at +1st magnitude for about a week, and joined Venus in the dusk sky. As it began its rapid ascent, Comet ‘T-ATLAS’ unfurled its tail about a dozen degrees in length, all while keeping its remarkable anti-tail pointing sunward.

The comet from October 18th, still exhibiting a spiky ‘anti-tail. Credit: Efrain Morales. A ‘Just Point-and-Shoot’ Comet

And then the pictures came pouring in. Comet T-ATLAS was at its photogenic best in early October, as it became an easy target against the starry backdrop. Usually, +2nd magnitude or brighter is the cutoff for catching a comet along with foreground objects. This time, you could actually simply set your smartphone camera to night mode, and capture a decent handheld shot of the comet.

The comet from October 19th, as seen from Ottawa, Canada. Credit: Andrew Symes

Plus, light pollution didn’t seem to faze this comet. We saw shots of the comet from downtown Los Angeles and other urban areas, as folks were treated to the best comet in recent memory since the dawn apparition of F3 NEOWISE in 2020.

Venus, a meteor, an airplane trail, and Comet T-ATLAS from Malaysia. Credit: Shahrin Ahmad.

And to think: the last time a really brilliant comet swung by (C/1995 O1 Hale-Bopp a generation ago in 1997) digital imaging was in its infancy, and film still dominated the market… just think what we might manage to do with such a comet today?

“I drove north for more than three hours, and reached the seashore facing the Sea of Japan after sunset,” says astrophotographer Hisayoshi Kato on Flickr, “It was fortunate that the sky was clear at the site, and I could enjoy the comet sinking into the Sea of Japan (over) the weekend.”

Comet C/2023 A3 Tsuchinshan-ATLAS from October 26th. Credit: Hisayoshi Kato. Awaiting Next ‘Great Comet’

To be sure, it’s only a matter of time before the next ‘Comet of the Century’ makes itself known. Right now, Comet T-ATLAS is still a decent +6th magnitude binocular object in Ophiuchus, outbound on its nearly quarter-of-a-million-year orbit. Alas, a second sungrazer encore for October never came to pass, as Comet C/2024 S1 ATLAS ended its cometary career at perihelion earlier this week…

An amazing parting shot of the comet from October 29th. Credit: Gianluca Masi.

“These days, we all had an extraordinary proof of the splendor of the night sky,” astronomer Gianluca Masi noted in a recent Facebook post. “Comet C/2023 A3 Tsuchinshan-ATLAS is still putting on a show… but the firmament is always a prodigy of emotions and wonders, as those who regularly turn their gaze to the stars know.”

Comet T-ATLAS from downtown Bristol, Tennessee. Credit: Dave Dickinson.

When’s the next one? Well, we do have the promise of a similar comet coming right up in January 2025. C/2024 G3 ATLAS may reach -1st magnitude or brighter near perihelion.

Thanks to everyone that got out there and sent images to the Universe Today Flickr pool. Here’s to the next yet-to-be named bright comet, waiting in the wings to take center stage in the drama of the inner solar system and the skies of Earth.

The post Amazing Reader Views of Comet A3 Tsuchinshan-ATLAS From Around the World appeared first on Universe Today.

Categories: Astronomy

Happy Dark Matter Day! Meet the usual — and unusual — suspects in this cosmic mystery

Space.com - Thu, 10/31/2024 - 9:00am
Dark matter makes up 85% of the stuff in the cosmos, but scientists have no idea what it is. On Dark Matter Day (Oct. 31), Space.com invites you to interrogate the suspects.
Categories: Astronomy

‘Blood-Soaked’ Eyes: NASA’s Webb, Hubble Examine Galaxy Pair

NASA - Breaking News - Thu, 10/31/2024 - 9:00am
5 Min Read ‘Blood-Soaked’ Eyes: NASA’s Webb, Hubble Examine Galaxy Pair

This observation combines mid-infrared light from NASA’s James Webb Space Telescope, and ultraviolet and visible light from NASA’s Hubble Space Telescope. The galaxies grazed one another millions of years ago. The smaller spiral on the left, cataloged as IC 2163, passed behind NGC 2207, the larger spiral galaxy at right.

Credits:
NASA, ESA, CSA, STScI

Stare deeply at these galaxies. They appear as if blood is pumping through the top of a flesh-free face. The long, ghastly “stare” of their searing eye-like cores shines out into the supreme cosmic darkness.

It’s good fortune that looks can be deceiving.

These galaxies have only grazed one another to date, with the smaller spiral on the left, cataloged as IC 2163, ever so slowly “creeping” behind NGC 2207, the spiral galaxy at right, millions of years ago.

The pair’s macabre colors represent a combination of mid-infrared light from NASA’s James Webb Space Telescope with visible and ultraviolet light from NASA’s Hubble Space Telescope.

Image A: Galaxies IC 2163 and NGC 2207 (Webb and Hubble Image) This observation combines mid-infrared light from NASA’s James Webb Space Telescope, and ultraviolet and visible light from NASA’s Hubble Space Telescope. The galaxies grazed one another millions of years ago. The smaller spiral on the left, cataloged as IC 2163, passed behind NGC 2207, the larger spiral galaxy at right. NASA, ESA, CSA, STScI

Look for potential evidence of their “light scrape” in the shock fronts, where material from the galaxies may have slammed together. These lines represented in brighter red, including the “eyelids,” may cause the appearance of the galaxies’ bulging, vein-like arms.

The galaxies’ first pass may have also distorted their delicately curved arms, pulling out tidal extensions in several places. The diffuse, tiny spiral arms between IC 2163’s core and its far left arm may be an example of this activity. Even more tendrils look like they’re hanging between the galaxies’ cores. Another extension “drifts” off the top of the larger galaxy, forming a thin, semi-transparent arm that practically runs off screen.

Image B: Galaxies IC 2163 and NGC 2207 (MIRI Image) This mid-infrared image from NASA’s James Webb Space Telescope excels at showing where the cold dust, set off in white, glows throughout these two galaxies, IC 2163 and NGC 2207. The telescope also helps pinpoint where stars and star clusters are buried within the dust. These regions are bright pink. Some of the pink dots may be extremely distant active supermassive black holes known as quasars. NASA, ESA, CSA, STScI

Both galaxies have high star formation rates, like innumerable individual hearts fluttering all across their arms. Each year, the galaxies produce the equivalent of two dozen new stars that are the size of the Sun. Our Milky Way galaxy only forms the equivalent of two or three new Sun-like stars per year. Both galaxies have also hosted seven known supernovae in recent decades, a high number compared to an average of one every 50 years in the Milky Way. Each supernova may have cleared space in their arms, rearranging gas and dust that later cooled, and allowed many new stars to form.

To spot the star-forming “action sequences,” look for the bright blue areas captured by Hubble in ultraviolet light, and pink and white regions detailed mainly by Webb’s mid-infrared data. Larger areas of stars are known as super star clusters. Look for examples of these in the top-most spiral arm that wraps above the larger galaxy and points left. Other bright regions in the galaxies are mini starbursts — locations where many stars form in quick succession. Additionally, the top and bottom “eyelid” of IC 2163, the smaller galaxy on the left, is filled with newer star formation and burns brightly.

Image C: Galaxies IC 2163 and NGC 2207 (Hubble and Webb Images Side by Side) Image Before/After

What’s next for these spirals? Over many millions of years, the galaxies may swing by one another repeatedly. It’s possible that their cores and arms will meld, leaving behind completely reshaped arms, and an even brighter, cyclops-like “eye” at the core. Star formation will also slow down once their stores of gas and dust deplete, and the scene will calm.

Video A: Tour of Galaxies IC 2163 and NGC 2207

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.

Downloads

Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.

View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.

Media Contacts

Laura Betz – laura.e.betz@nasa.gov, Claire Andreoliclaire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Claire Blomecblome@stsci.edu, Christine Pulliamcpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.

Related Information

Other images: View of NGC 2207 in optical, x-ray, and infrared light

Video: What happens when galaxies collide?

Video: Galaxy Collisions: Simulations vs. Observations

Article: More about Galaxy Evolution

Video: Learn more about galactic collisions

More Webb News

More Webb Images

Webb Science Themes

Webb Mission Page

Hubble Mission Page

Related For Kids

What is a galaxy?

What is the Webb Telescope?

The Amazing Hubble Telescope

SpacePlace for Kids

En Español

¿Qué es una galaxia?

Ciencia de la NASA

NASA en español 

Space Place para niños

Keep Exploring Related Topics

James Webb Space Telescope

Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


Hubble Space Telescope

Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


Hubble vs. Webb


Galaxies

Share

Details

Last Updated

Oct 31, 2024

Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov

Related Terms
Categories: NASA

Spies can eavesdrop on phone calls by sensing vibrations with radar

New Scientist Space - Cosmology - Thu, 10/31/2024 - 8:52am
An off-the-shelf millimetre wave sensor can pick out the tiny vibrations made by a smartphone's speaker, enabling an AI model to transcribe the conversation, even at a distance in a noisy room
Categories: Astronomy

Spies can eavesdrop on phone calls by sensing vibrations with radar

New Scientist Space - Space Headlines - Thu, 10/31/2024 - 8:52am
An off-the-shelf millimetre wave sensor can pick out the tiny vibrations made by a smartphone's speaker, enabling an AI model to transcribe the conversation, even at a distance in a noisy room
Categories: Astronomy

The Climate and the Health of our Children Is on the Ballot on November 5

Scientific American.com - Thu, 10/31/2024 - 8:30am

The 2024 presidential election will have enormous consequences for the climate, and the health and future of children

Categories: Astronomy

What Made This Bizarre ‘Dandelion’ Supernova?

Scientific American.com - Thu, 10/31/2024 - 8:00am

A strange supernova remnant first appeared as a “guest star” seen in 1181 by sky watchers in China and Japan

Categories: Astronomy

Astronomer Calculates When van Gogh Painted This

Universe Today - Thu, 10/31/2024 - 7:41am

One of my favorite paintings is Starry Night by Vincent van Gogh — for obvious astronomical reasons. But another favorite of van Gogh’s works is Lane of Poplars at Sunset. This painting depicts the setting Sun perfectly aligned with a long lane of trees, casting long shadows.

The geometry of the Earth and Sun means that this scene had to be painted on one specific day of the year when the alignment would be possible. An astronomer has now used 19th-century maps to discover where the lane was, and then used astronomical calculations to determine which date the Sun would be in the exact position as the painting. His result? The painting depicts a stretch of road known as Weverstraat in the Dutch town of Nuenen, on November 13 or 14, 1884.

Professor Donald Olson is an astronomer and physics professor emeritus at Texas State University (TSU). He is no stranger to studying van Gogh paintings, as in the past he has uncovered clues to help date three other of the noted painter’s works: Moonrise (July 13, 1889), Road with Cypress and Star (May 1890) and White House at Night (June 1890).

Van Gogh produced more than 2,000 paintings, drawings, and sketches in his lifetime, and many include scenery from The Netherlands, the Dutch master’s home. Olson was originally inspired to determine the date of Lane of Poplars at Sunset because the scene shows something similar to what happens twice a year for New York City’s “Manhattanhenge,” where the setting sun aligns with Manhattan’s east–west streets on dates near May 29 and July 12.  

Manhattanhenge from 42nd Street shot at 8:23 p.m. on July 13, 2006, the building on the right is the Chrysler Building. Photo by Roger Rowlett, via Wikipedia.

The first thing Olson wanted to figure out was where the lane might be.

“If we could identify the lane on 19th-century maps, then we’d be able to establish the compass direction of the road appearing in the artworks,” Olson explained in a news release from TSU. “Next, we could use astronomical calculations to determine the date when the disk of the setting sun aligned as van Gogh portrayed it.”

Olson called in assistance from Louis Verbraak and Ferry Zijp, members of the Eindhoven Weather and Astronomy Club in the Netherlands. After an exhaustive search of maps and correlating historic and recent imagery, the team narrowed it down to three possible streets. Further investigations led them to determine that Weverstraat in Nuenen must be the street, as it contained a long straightaway of 1,200 feet, or 365 meters, more than long enough for the scene painted by van Gogh.

As for determining the date, Olson and team relied on historical information. All of van Gogh’s paintings assigned catalog numbers, in order by dates determined by art historians. Lane of Poplars at Sunset is assigned as F123. The previous painting in the catalog, F122, is called Lane of Poplars in the Autumn, which shows the same scenes with vivid fall colors, while the leaves are almost completely gone from the trees in the sunset depiction. That means the painting had to be done in late fall.

The painting “Line of Poplars in Autumn” by Vincent van Gogh (F122, Nueun 1884).

Art historians have also long depended on van Gogh’s many letters to his brother Theo to help date most of the artist’s work. A total of three letters, written by Vincent during late October and early November of 1884, describe the lovely autumn weather he was experiencing. One letter, dated on or about Oct. 25, 1884, includes a description that matches Lane of Poplars in the Autumn:

“The last thing that I made is a rather large study of a lane of poplars with the yellow autumn leaves, where the Sun makes glittering patches here and there on the fallen leaves on the ground, alternating with the long shadows cast by the trunks. At the end of the road is a peasant cottage, and above it the blue sky between the autumn leaves.”

“White House at Night” by Vincent van Gogh. (F766 Auvers-sur-Oise, 1990).

A subsequent letter dated on or about Nov. 14, 1884, van Gogh indicated that freezing weather forced him to abandon painting outdoors for the rest of the season. Additional letters helped establish a time frame between Nov. 5-Nov. 14 for van Gogh to have painted Lane of Poplars at Sunset. Within this range of dates, planetarium software shows that the sun set in the southwest, in the range of azimuths, or compass direction of a celestial object, between 240° and 244°.

Then using astronomical calculations, Olson and team determined the setting sun would’ve been visible setting over Weverstraat on Nov. 13 or 14, 1884. Historical weather records indicate these dates fall within a five-day span where the area experienced unseasonably clear weather.

Olson said that because van Gogh rarely painted from memory and preferred to have his subject in front of him, Nov. 13 or 14, 1884, are the only possible dates for the creation of Lane of Poplars at Sunset.

“Today, we can still gaze down the same stretch of road where van Gogh walked on a chilly autumn afternoon and ponder how the artist, in his native Netherlands, was already interested in portraying sky phenomena, four years before he began to create his famous starry nights in the south of France,” Olson said.

Read more details about the search at TSU.

The post Astronomer Calculates When van Gogh Painted This appeared first on Universe Today.

Categories: Astronomy

Spooky Earths seen by Hera’s HyperScout

ESO Top News - Thu, 10/31/2024 - 7:35am
Image: Spooky Earths seen by Hera’s HyperScout
Categories: Astronomy

Why Election Polling Has Become Less Reliable

Scientific American.com - Thu, 10/31/2024 - 7:30am

Election polls are increasingly vulnerable to huge mistakes

Categories: Astronomy

Europe says farewell to eclipse-making Proba-3

ESO Top News - Thu, 10/31/2024 - 7:30am

ESA’s solar eclipse-making Proba-3 mission is about to leave Europe, to head to its launch site in India. The mission’s two spacecraft – which will manoeuvre precisely in Earth orbit so that one casts a shadow onto the other – have departed the facilities of Redwire Space in Kruibeke, Belgium. The pair will be flown to the Satish Dhawan Space Centre, near Chennai, for the launch campaign to begin. 

Categories: Astronomy

How to Make Your Own Zoetrope

Scientific American.com - Thu, 10/31/2024 - 7:00am

Put your own spin on a zoetrope with homemade drawings—or carve one into a pumpkin

Categories: Astronomy

Will China return Mars samples to Earth before the US does?

Space.com - Thu, 10/31/2024 - 7:00am
China has moved up its timeline for bringing Mars samples to Earth, aiming to do so as early as 2028 — long before the U.S. is slated to achieve this same ambitious goal.
Categories: Astronomy

Valencia flood disaster

ESO Top News - Thu, 10/31/2024 - 6:40am
Image: Spain is suffering its worst flood in decades after torrential rains struck the eastern province of Valencia. These satellite images vividly illustrate the dramatic transformation of the landscape.
Categories: Astronomy