Feed aggregator
6 reasons not to buy in the Black Friday sales
NASA faces tough decisions on Orion capsule's heat shield for Artemis moon missions
Quantum batteries could give off more energy than they store
Quantum batteries could give off more energy than they store
Quantum batteries could discharge more power than they store
Quantum batteries could discharge more power than they store
A Particular Lenticular Cloud
A Particular Lenticular Cloud
Landsat 8’s Operational Land Imager acquired this image of an elongated lenticular cloud, locally nicknamed the “Taieri Pet,” above New Zealand’s South Island on Sept. 7, 2024. Lenticular clouds form when prevailing winds encounter a topographic barrier, such as a mountain range. Wind that is forced to flow up and over the mountains creates a kind of wave in the atmosphere. Air cools at the crest of the wave, and the water vapor it contains condenses into clouds.
Image credit: NASA/Lauren Dauphin; USGS
The Amazon is teetering on the edge of a climate tipping point
The Amazon is teetering on the edge of a climate tipping point
Titan May Have a Methane Crust 10 Km Thick
Saturn’s moon, Titan, is an anomaly among moons. No other moons have surface liquids, and aside from Earth, it’s the only other Solar System object with liquids on its surface. However, since Titan is so cold, the liquids are hydrocarbons, not water. Titan’s water is all frozen into a surface layer of ice.
New research suggests that under the surface, Titan is hiding another anomaly: a thick crust of methane.
The evidence for the methane comes mostly from craters. Observations have found few confirmed impact craters on the frigid moon, and the ones that have been observed are hundreds of meters shallower than the same-sized craters on other moons. If Titan’s crust was rock, the craters should be much deeper.
The new research, published in The Planetary Science Journal, is titled “Rapid Impact Crater Relaxation Caused by an Insulating Methane Clathrate Crust on Titan.” Lauren Schurmeier, from the Hawai’i Institute of Geophysics and Planetology at the University of Hawai’i at Manoa, is the lead author.
Titan stands apart from other moons for multiple reasons. Unlike any other natural satellites in the Solar System, it has a thick atmosphere. Its atmosphere is about 50% more dense than Earth’s and extends about 600 km into space. A haze made of complex organic molecules called tholins gives the atmosphere its characteristic orange colour. The atmosphere is so thick that it blocks optical light, making Titan’s surface features nearly inscrutable.
The Cassini spacecraft has given us our best looks at Titan. It used radar and infrared instruments to see the moon’s surface. The small Huygens probe that went to Saturn with Cassini was released into Titan in 2005 to study the atmosphere and surface. It’s thanks to Huygens that we have our best images of Titan’s surface.
The new research suggests a link between Titan’s unusual atmosphere, its shallow surface craters, and a layer of methane in the moon’s crust. The methane keeps the underlying layer of ice convective by insulating it and helps impact craters rebound quickly and remain shallow.
There’s no consensus on how many craters Titan has because its surface is veiled behind its thick atmosphere, but there is some data on the craters.
This graph shows crater candidate counts binned by latitude regions and certainty level. Craters of certainty level 1 have more lines of evidence pointing toward an impact crater origin; certainty level 4 is the least certain. Image Credit: Schurmeier et al. 2024.The research centres on the fact that Titan displays few craters and that the ones we do see are shallow. This sets it apart from other moons.
These are Cassini SAR (synthetic aperture radar) images of Titan’s impact craters. Arrows indicate potential forms of crater modification processes, including dunes and sands (purple), channels (blue), and significant crater rim erosion (pink). Afekan crater is one of Titan’s largest impact craters at 115 km. Jupiter’s moon, Ganymede, which is about the same size as Titan, has way more craters, including 20 that are larger than Afekan. Image Credit: NASA/ Cassini“This was very surprising because, based on other moons, we expect to see many more impact craters on the surface and craters that are much deeper than what we observe on Titan,” said lead author Schurmeier. “We realized something unique to Titan must be making them become shallower and disappear relatively quickly.”
A handful of processes have been proposed to explain Titan’s diminishing craters. Liquid hydrocarbon rainfall, aeolian sand infill, and topographic relaxation induced by insulating sand infill have all been discussed. “Here, we propose an additional mechanism: topographic relaxation due to an insulating methane clathrate crustal layer in Titan’s upper ice shell,” the authors write.
This simple schematic of Titan’s interior (not to scale) shows a methane clathrate crust over a convecting ice shell. The methane clathrate can insulate the ice below and keep it convective. That convection could explain why Titan’s craters are so few and so shallow. Image Credit: Schurmeier et al. 2024.There’s very little new information coming from Titan, so researchers have to work with what they have. To try to understand its shallow craters, the researchers built a computer model. They used it to try to understand how Titan’s topography might respond to impacts if a layer of methane clathrate was trapped under the surface. A clathrate is a substance where one type of molecule is trapped within a structure of molecules of another type. In this case, methane is trapped in water ice.
Methane’s insulating properties are key.
“Methane clathrate is stronger and more insulating than regular water ice,” said Schurmeier. “A clathrate crust insulates Titan’s interior, makes the water ice shell very warm and ductile, and implies that Titan’s ice shell is or was slowly connecting.”
With their model, they tested clathrate crusts that were 5, 10, 15, or 20 km thick. They used craters that were 40, 85, 100, and 120 km in diameter, each with two initial depths based on Ganymede’s crater diameters and depths. The result?
“We find that all clathrate crustal thicknesses result in rapid topographic relaxation despite Titan’s cold surface temperature,” the researchers write. “The 5 km thick clathrate crust can reproduce nearly all of the observed shallow depths, many in under 1000 yrs.”
They also found that a 10 km clathrate crust can reproduce Titan’s observed crater depths over geologic timescales. “If relaxation is the primary cause of the shallow craters, then the clathrate thickness is likely 5–10 km thick,” they write.
Across all simulations, most of the crater relaxation occurred in 1,000 years. “This finding suggests that thin clathrate crusts cause crater shallowing in a geological instant, similar to a fast-flowing terrestrial glacier,” the authors explain. It could certainly explain why none of Titan’s craters are deep.
The researchers point out a couple of caveats, though. They assumed that Titan’s initial craters had depths similar to Ganymede’s. They could’ve formed at different depths and shapes. Their model also didn’t include heat generated by the impact itself or account for an impact-triggered discontinuity in the methane clathrate layer. “These thermal and dynamic changes might alter the morphological evolution of the crater,” they write.
Juno captured this image of Ganymede in July 2022. The moon’s impact craters are easily visible, including the crater Tros, which is prominent below the center at left. Image Credit: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. GillThis research adds to Titan’s mystery and our fascination with the unusual moon. It also adds another element to comparisons with Earth. Earth and Titan both have surface liquid and are the only two objects in the Solar System that do. Earth also has methane clathrates in its polar regions.
“Titan is a natural laboratory to study how the greenhouse gas methane warms and cycles through the atmosphere,” said Schurmeier. “Earth’s methane clathrate hydrates, found in the permafrost of Siberia and below the arctic seafloor, are currently destabilizing and releasing methane. So, lessons from Titan can provide important insights into processes happening on Earth.”
In the end, their results are clear: “We conclude that if crater relaxation is the primary cause of Titan’s unexpectedly shallow craters, then the clathrate crust is 5–10 km thick,” the authors write.
The post Titan May Have a Methane Crust 10 Km Thick appeared first on Universe Today.
Station Science Top News: Oct. 25, 2024
Better Monitoring of the Air Astronauts Breathe
Ten weeks of operations showed that a second version of the Spacecraft Atmosphere Monitor is sensitive enough to determine variations in the composition of cabin air inside the International Space Station. Volatile organic compounds and particulates in cabin air could pose a health risk for crew members, and this device increases the speed and accuracy of assessing such risk.
Spacecraft Atmosphere Monitor is a miniaturized gas chromatograph mass spectrometer used to analyze the air inside the space station and ensure that it is safe for the crew and equipment. The device automatically reports results to the ground, eliminating the need to return samples to Earth. This version has several other technological advances, including that it can be relocated, is smaller, and uses less power.
The first Spacecraft Atmosphere Monitor device on the International Space Station. NASA/Chris CassidyDigging Deeper into Microgravity Effects on Muscle
Prolonged exposure to microgravity affects human muscle precursor cells known as satellite cells and causes changes in the expression of specific genes involved in muscle structure and nerves. Exercise regimens on the space station do not adequately prevent or counteract muscle loss in astronauts, which can affect their motor function during missions and after return to Earth. Results could inform design of nutritional and pharmacological countermeasures to muscle changes during spaceflight.
Muscle loss represents a major obstacle to human long-term spaceflight. Myogravity, an investigation developed with the Italian space agency ASI, looked at microgravity-induced changes in adult stem cells involved in the growth, maintenance, and repair of skeletal muscle tissue, known as satellite cells. These cells may play a major role in muscle loss during spaceflight.
European Space Agency astronaut Paolo Nespoli sets up the Myogravity experiment. NASAValidating Next-Generation Earth Measurements
Researchers completed a preliminary evaluation of the station’s Hyperspectral Imager Suite (HISUI) and report that the difference between model-corrected and actual measurements is small. Validation of spaceborne optical sensors like HISUI is important to demonstrate they provide the accuracy needed for scientific research.
The JAXA (Japan Aerospace Exploration Agency) HISUI investigation tests a next-generation spaceborne hyperspectral Earth imaging system for gathering data on reflection of light from Earth’s surface, which reveals characteristics and physical properties of a target area. This technology has potential applications such as monitoring vegetation and identifying natural resources.
The Hyperspectral Imager Suite is visible on the far left in this image outside the space station. NASACarissa Arillo: Testing Spacecraft, Penning the Owner’s Manuals
Flight operations engineer Carissa Arillo helped ensure one of the instruments on NASA’s PACE mission made it successfully through its prelaunch testing. She and her group also documented the work rigorously, to ensure the flight team had a comprehensive manual to keep this Earth-observing satellite in good health for the duration of its mission.
Carissa M. Arillo is a flight operations engineer at NASA’s Goddard Space Flight Center in Greenbelt, Md. Photo courtesy of Carissa ArilloName: Carissa M. Arillo
Formal Job Classification: Flight Operations Engineer
Organization: Environmental Test Engineering and Integration Branch (Code 549)
What do you do and what is most interesting about your role here at Goddard?
I developed pre-launch test procedures for the HARP-2 instrument for the Phytoplankton, Aerosol, Cloud and Ecosystem (PACE) Mission. HARP-2 is a wide angle imaging polarimeter designed to measure aerosol particles and clouds, as well as properties of land and water surfaces.
I also developed the flight operations routine and contingency procedures that governed the spacecraft after launch. It is interesting to think about how to design procedures that can sustain the observatory in space for the life of the mission so that the flight operations team that inherits the mission will have a seamless transition.
What is your educational background?
In 2019, I got a Bachelor of Science in mechanical engineering from the University of Maryland, College Park. I am currently pursuing a master’s in robotics there as well.
Why did you become an engineer?
I like putting things together and understanding how they work. After starting my job at NASA Goddard, I became interested in coding and robotics.
How did you come to Goddard?
After getting my undergraduate degree, I worked at General Electric Aviation doing operations management for manufacturing aircraft engines. When I heard about an opening at Goddard, I applied and got my current position.
What was involved in developing pre-launch test procedures for the HARP-2 instrument?
I talked to the instrument manufacturer, which is a team from the University of Maryland, Baltimore County, and asked them what they wanted to confirm works every time we tested the instrument. We kept in constant communication while developing these test procedures to make sure we covered everything. The end product was code that was part of the comprehensive performance tests, the baseline tests throughout the prelaunch test campaign. Before, during, and after each prelaunch environmental test, we perform such a campaign. These prelaunch environmental tests include vibration, thermal (hot and cold), acoustic and radio frequency compatibility (making sure that different subsystems do not interfere with each other’s).
What goes through your head in developing a flight operations procedure for an instrument?
I think about a safe way of operating the instrument to accomplish the goals of the science team. I also think about not being able to constantly monitor the instrument. Every few hours, we can communicate with the instrument for about five to 10 minutes. We can, however, recover all the telemetry for the off-line time.
When we discover an anomaly, we look at all the history that we have and consult with our contingency procedures, our failure review board and potentially the instrument manufacturer. Together we try to figure out a recovery.
When developing a fight operations procedure, we must think of all possible scenarios. Our end product is a written book of procedures that lives with the mission and is updated as needed.
New cars come with an owner’s manual. We create the same sort of manual for the new instrument.
As a Flight Operations Team member, what else do you do?
The flight operations team runs the Mission Operations Center — the “MOC” — for PACE. That is where we command the spacecraft for the life of the mission. My specialty is the HARP-2 instrument, but I still do many supporting functions for the MOC. For example, I helped develop procedures to automate ground station contacts to PACE. These ground stations are positioned all over the world and enable us to talk with the spacecraft during those five to 10 minutes of communication. This automation includes the standard things we do every time we talk to the spacecraft whether or not someone is in the MOC.
Carissa developed pre-launch test procedures for the HARP-2 instrument for the Phytoplankton, Aerosol, Cloud and Ecosystem (PACE) Mission. HARP-2 is a wide angle imaging polarimeter designed to measure aerosol particles and clouds, as well as properties of land and water surfaces.NASA/Dennis HenryHow does it feel to be working on such an amazing mission so early in your career?
It is awesome, I feel very lucky to be in my position. Everything is new to me. At times it is difficult to understand where the ship is going. I rely on my experienced team members to guide me and my robotics curriculum in school to equip me with skills.
I have learned a lot from both the flight operations team and the integration and test team. The flight operations team has years of experience building MOCs that serve the needs of each unique mission. The integration and test team also has a lot of experience developing observatory functional procedures. I wish to thank both teams for taking me under their wings and educating me on the fly to support the prelaunch, launch and post-launch campaigns. I am very grateful to everyone for giving me this unbelievable opportunity.
Who is your engineering hero?
I don’t have one hero in particular but I love biographical movies that tell stories about influential people’s lives, such as the movie “Hidden Figures” that details the great endeavors and accomplishments of three female African-American mathematicians at NASA.
What do you do for fun?
I love to go to the beach and spend time with family and friends.
Who is your favorite author?
I like Kristen Hannah’s storytelling abilities.
What do you hope to be doing in five years?
I hope to be working on another exciting mission at Goddard that will bring us never-before-seen science.
By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
Explore More 7 min read Meloë Kacenelenbogen Eyes the Future of Air Quality, Climate Research Article 1 week ago 6 min read Christine Knudson Uses Earthly Experience to Study Martian GeologyGeologist Christine Knudson works with the Curiosity rover to explore Mars — from about 250…
Article 2 weeks ago 9 min read Systems Engineer Noosha Haghani Prepped PACE for Space Article 3 weeks ago Share Details Last Updated Oct 29, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related TermsAstronauts could hitch a ride on asteroids to get to Venus or Mars
Astronauts could hitch a ride on asteroids to get to Venus or Mars
NASA Sets Coverage for its SpaceX Crew-9 Dragon Station Relocation
In preparation for the arrival of NASA’s SpaceX 31st commercial resupply services mission, four crew members aboard the International Space Station will relocate the agency’s SpaceX Crew-9 Dragon spacecraft to a different docking port Sunday, Nov. 3.
Live coverage begins at 6:15 a.m. EST on NASA+ and will end shortly after docking. Learn how to watch NASA content through a variety of platforms, including social media.
NASA astronauts Nick Hague, Suni Williams, and Butch Wilmore, as well as Roscosmos cosmonaut Aleksandr Gorbunov, will undock the spacecraft from the forward-facing port of the station’s Harmony module at 6:35 a.m., and redock to the module’s space-facing port at 7:18 a.m.
The relocation, supported by flight controllers at NASA’s Johnson Space Center in Houston and the Mission Control team at SpaceX in Hawthorne, California, will free Harmony’s forward-facing port for a Dragon cargo spacecraft mission scheduled to launch no earlier than Monday, Nov. 4.
This will be the fifth port relocation of a Dragon spacecraft with crew aboard following previous moves during the Crew-1, Crew-2, Crew-6, and Crew-8 missions.
Learn more about space station activities by following @space_station and @ISS_Research on X, as well as the ISS Facebook, ISS Instagram, and the space station blog.
NASA’s SpaceX Crew-9 mission launched Sept. 28 from NASA’s Kennedy Space Center in Florida and docked to the space station Sept. 29. Crew-9, targeted to return February 2025, is the company’s ninth rotational crew mission as a part of the agency’s Commercial Crew Program.
Find NASA’s commercial crew blog and more information about the Crew-9 mission at:
https://www.nasa.gov/commercialcrew
-end-
Jimi Russell / Claire O’Shea
Headquarters, Washington
202-358-1100
james.j.russell@nasa.gov / claire.a.o’shea@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
The surprising truth about the health benefits of snacking
The surprising truth about the health benefits of snacking
'First tree on Mars:' Scientists measure greenhouse effect needed to terraform Red Planet
How NASA’s Lunar Trailblazer Could Decipher the Moon’s Icy Secrets
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) With one of its solar arrays deployed, NASA’s Lunar Trailblazer sits in a clean room at Lockheed Martin Space. The large silver grate attached to the spacecraft is the radiator for HVM³, one of two instruments that the mission will use to better understand the lunar water cycle.Lockheed Martin SpaceThere’s water on the Moon, but scientists only have a general idea of where it is and what form it is in. A trailblazing NASA mission will get some answers.
When NASA’s Lunar Trailblazer begins orbiting the Moon next year, it will help resolve an enduring mystery: Where is the Moon’s water? Scientists have seen signs suggesting it exists even where temperatures soar on the lunar surface, and there’s good reason to believe it can be found as surface ice in permanently shadowed craters, places that have not seen direct sunlight for billions of years. But, so far, there have been few definitive answers, and a full understanding of the nature of the Moon’s water cycle remains stubbornly out of reach.
This is where Lunar Trailblazer comes in. Managed by NASA’s Jet Propulsion Laboratory and led by Caltech in Pasadena, California, the small satellite will map the Moon’s surface water in unprecedented detail to determine the water’s abundance, location, form, and how it changes over time.
“Making high-resolution measurements of the type and amount of lunar water will help us understand the lunar water cycle, and it will provide clues to other questions, like how and when did Earth get its water,” said Bethany Ehlmann, principal investigator for Lunar Trailblazer at Caltech. “But understanding the inventory of lunar water is also important if we are to establish a sustained human and robotic presence on the Moon and beyond.”
Future explorers could process lunar ice to create breathable oxygen or even fuel. And they could also conduct science. Using information from Lunar Trailblazer, future human or robotic scientific investigations could sample the ice for later study to determine where the water came from. For example, the presence of ammonia in ice samples may indicate the water came from comets; sulfur, on the other hand, could show that it was vented to the surface from the lunar interior when the Moon was young and volcanically active.
This artist’s concept depicts NASA’s Lunar Trailblazer in lunar orbit about 60 miles (100 kilometers) from the surface of the Moon. The spacecraft weighs only 440 pounds (200 kilograms) and measures 11.5 feet (3.5 meters) wide when its solar panels are fully deployed.Lockheed Martin Space“In the future, scientists could analyze the ice in the interiors of permanently shadowed craters to learn more about the origins of water on the Moon,” said Rachel Klima, Lunar Trailblazer deputy principal investigator at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. “Like an ice core from a glacier on Earth can reveal the ancient history of our planet’s atmospheric composition, this pristine lunar ice could provide clues as to where that water came from and how and when it got there.”
Understanding whether water molecules move freely across the surface of the Moon or are locked inside rock is also scientifically important. Water molecules could move from frosty “cold traps” to other locations throughout the lunar day. Frost heated by the Sun sublimates (turning from solid ice to a gas without going through a liquid phase), allowing the molecules to move as a gas to other cold locations, where they could form new frost as the Sun moves overhead. Knowing how water moves on the Moon could also lead to new insights into the water cycles on other airless bodies, such as asteroids
Two Instruments, One MissionTwo science instruments aboard the spacecraft will help unlock these secrets: the High-resolution Volatiles and Minerals Moon Mapper (HVM3) infrared spectrometer and the Lunar Thermal Mapper (LTM) infrared multispectral imager.
Developed by JPL, HVM3 will detect and map the spectral fingerprints, or wavelengths of reflected sunlight, of minerals and the different forms of water on the lunar surface. The spectrometer can use faint reflected light from the walls of craters to see the floor of even permanently shadowed craters.
The LTM instrument, which was built by the University of Oxford and funded by the UK Space Agency, will map the minerals and thermal properties of the same lunar landscape. Together they will create a picture of the abundance, location, and form of water while also tracking how its distribution changes over time.
“The LTM instrument precisely maps the surface temperature of the Moon while the HVM3 instrument looks for the spectral signature of water molecules,” said Neil Bowles, instrument scientist for LTM at the University of Oxford. “Both instruments will allow us to understand how surface temperature affects water, improving our knowledge of the presence and distribution of these molecules on the Moon.”
Weighing only 440 pounds (200 kilograms) and measuring 11.5 feet (3.5 meters) wide when its solar panels are fully deployed, Lunar Trailblazer will orbit the Moon about 60 miles (100 kilometers) from the surface. The mission was selected by NASA’s SIMPLEx (Small Innovative Missions for Planetary Exploration) program in 2019 and will hitch a ride on the same launch as the Intuitive Machines-2 delivery to the Moon through NASA’s Commercial Lunar Payload Services initiative. Lunar Trailblazer passed a critical operational readiness review in early October at Caltech after completing environmental testing in August at Lockheed Martin Space in Littleton, Colorado, where it was assembled.
The orbiter and its science instruments are now being put through flight system software tests that simulate key aspects of launch, maneuvers, and the science mission while in orbit around the Moon. At the same time, the operations team led by IPAC at Caltech is conducting tests to simulate commanding, communication with NASA’s Deep Space Network, and navigation.
More About Lunar TrailblazerLunar Trailblazer is managed by JPL, and its science investigation and mission operations are led by Caltech with the mission operations center at IPAC. Managed for NASA by Caltech, JPL also provides system engineering, mission assurance, the HVM3 instrument, as well as mission design and navigation. Lockheed Martin Space provides the spacecraft, integrates the flight system, and supports operations under contract with Caltech.
SIMPLEx mission investigations are managed by the Planetary Missions Program Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, as part of the Discovery Program at NASA Headquarters in Washington. The program conducts space science investigations in the Planetary Science Division of NASA’s Science Mission Directorate at NASA Headquarters.
For more information about Lunar Trailblazer, visit:
https://www.jpl.nasa.gov/missions/lunar-trailblazer
News Media ContactsKaren Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Ian J. O’Neill
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-2649
ian.j.oneill@jpl.nasa.gov
Gordon Squires
IPAC, Pasadena, Calif.
626-395-3121
squires@ipac.caltech.edu
2024-148
Share Details Last Updated Oct 29, 2024 Related Terms Explore More 4 min read New NASA Instrument for Studying Snowpack Completes Airborne TestingSummer heat has significant effects in the mountainous regions of the western United States. Melted…
Article 18 hours ago 3 min read Gateway: Centering ScienceGateway is set to advance science in deep space, bringing groundbreaking research opportunities to lunar…
Article 18 hours ago 6 min read NASA’s Perseverance Rover Looks Back While Climbing Slippery Slope Article 2 days ago Keep Exploring Discover Related TopicsMissions
Humans in Space
Climate Change
Solar System