The universe is like a safe to which there is a combination. But the combination is locked up in the safe.

— Peter De Vries

Feed aggregator

How strange ice could form in the extremely hot interiors of planets

New Scientist Space - Space Headlines - Wed, 08/28/2024 - 6:21pm
In an experiment simulating what happens deep in the interiors of planets, scientists have found that liquid can be compressed into ice crystals – even at extremely high temperatures
Categories: Astronomy

Astronaut John McFall carries Paralympic flag at opening ceremony Aug. 28

Space.com - Wed, 08/28/2024 - 5:41pm
John McFall, a Paralympian medalist in 2008 and a reserve astronaut with the European Space Agency, carried the games' official flag during opening ceremonies Aug. 28.
Categories: Astronomy

Assure 2015

NASA - Breaking News - Wed, 08/28/2024 - 5:21pm
Home

ASSURE 2015 has successfully concluded.

UPDATES

  • 2015-06-24Pippa Moore of the UK Civil Aviation Authority will give an invited keynote talk!
  • 2015-06-24: The ASSURE 2015 Program has been announced. The final program is contingent on registration. If you haven’t already done so, please register for ASSURE 2015 via SAFECOMP 2015.
  • 2015-06-15: ASSURE 2015 will be held on Tuesday, Sep. 22, 2015. The accepted papers and program will be posted here soon.
  • 2015-06-15: Authors of accepted papers have been notified. Final, camera-ready copies and the copyright form are due on June 28, 2015 June 30, 2015.
  • 2015-06-04: Paper submission deadlines have passed. Submission is now closed.
  • 2015-05-28: SAFECOMP 2015 has extended all workshop deadlines, including for ASSURE 2015, by another week to June 3, 2015.
  • 2015-05-19: ASSURE deadlines have been extended by a week to May 29, 2015.
  • 2015-03-13: The ASSURE 2015 call for papers, and the paper submission guidelines are now available.
  • 2015-03-12: The deadline to submit papers to ASSURE 2015 is May 22, 2015.
  • 2015-03-05: The ASSURE 2015 website is live!

Introduction

ASSURE 2015, collocated this year with SAFECOMP 2015, aims to provide an international forum for high-quality contributions on the application of assurance case principles and techniques to assure that the dependability properties of critical, software-intensive systems have been met.

The main goals of the workshop are to:

  • Explore techniques for the creation and assessment of assurance cases for software-intensive systems
  • Examine the role of assurance cases in the engineering lifecycle of critical systems
  • Identify the dimension of effective practice in the development and evaluation of assurance cases
  • Investigate the relationship between dependability techniques and assurance cases
  • Identify critical research challenges and define a roadmap for future development

We invite original, high-quality research, practice, tools and position papers that have not been published/submitted elsewhere. See the full Call for Papers, for more details on topics. Also view the submission deadline, and guidelines.

Program

08:00 – 09:00   Registration

09:00 – 11:00   Session 1. Keynote and Foundations

09:00 – 09:10 Welcome and Introduction, ASSURE 2015 Organizers

09:10-10:00 Keynote Talk: Do We Really Want To Start From Here? Pippa Moore, UK Civil Aviation Authority

10:00-10:30 Informing Assurance Case Review through a Formal Interpretation of GSN Core Logic, Victor Bandur, and John McDermid

10:30 – 11:00 Representing Confidence in Assurance Case Evidence, Lian Duan, Sanjai Rayadurgam, Mats Heimdahl, Oleg Sokolsky, and Insup Lee

11:00 – 11:30 Morning Coffee/Tea Break

11:30-1:00 Session 2. Methodology and Patterns

11:30 – 12:00 Safe and Sec Case Patterns, Kenji Taguchi, Daisuke Souma, and Hideaki Nishihara

12:00 – 12:30 A Comprehensive Safety Lifecycle, John Knight, Jonathan Rowanhill, Anthony Aiello, and Kimberly Wasson

12:30 – 13:00 An Approach to Assure Dependability Through ArchiMate, Shuichiro Yamamoto

13:00 – 14:00 Lunch Break

14:00 – 15:30 Session 3. Tool Support and Tool Demonstrations

14:00 – 14:30 Tool Support for Assurance Case Building Blocks: Providing a Helping Hand with CAE, Kateryna Netkachova, Oleksandr Netkachov, and Robin Bloomfield

14:30 – 15:00 Safety.Lab: Model-based Domain Specific Tooling for Safety Argumentation, Daniel Ratiu, Marc Zeller, and Lennart Kilian

15:00 – 15:30 A Safety Condition Monitoring System, John Knight, Jonathan Rowanhill, and Jian Xiang

15:30 – 16:00 Afternoon Coffee/Tea Break

16:00 – 16:45 Session 4. Applications and Project Overviews

16:00 – 16:30 Fault Type Refinement for Assurance of Families of Platform-Based Systems, Sam Procter, John Hatcliff, Sandy Weininger, and Anura Fernando

16:30 – 16:37 Safety and Security Assurance in Railway Standards, Kenji Taguchi

16:37 – 16:45 Towards Assurance Arguments of Disaster Management Plans, Shuji Kinoshita

16:45 – 18:00 Session 5. Panel and Conclusion

16:45 – 18:00 PANEL: The Role of Argumentation in Certification and Safety Risk Management,

John Birch, JaguarLandRover / AVL;
Robin Bloomfield, Adelard and City University;
Chris Johnson, University of Glasgow;
Yoshiki Kinoshita, Kanagawa University; and
Pippa Moore, UK CAA.

18:00 Conclusion and Wrap-Up, ASSURE 2015 Organizers

Important Dates EventDeadlineWorkshop Papers DueJune 3, 2015 Now ClosedNotification of AcceptanceJune 15, 2015Camera-ready Copies DueJune 28, 2015 June 30, 2015ASSURE 2015 WorkshopSeptember 22, 2015SAFECOMP 2015September 22 – 25, 2015 Call For Papers

Software plays a key role in high-risk systems, e.g., safety-, and security-critical systems. Several certification standards/guidelines now recommend and/or mandate the development of assurance cases for software-intensive systems, e.g., defense (UK MoD DS-0056), aviation (CAP 670. FAA operational approval guidance for unmanned aircraft systems), automotive (ISO 26262), and healthcare (FDA infusion pumps total product lifecycle guidance). As such, there is a need to develop models, techniques and tools that target the development of assurance arguments for software.

The goals of the 2015 Workshop on Assurance Cases for Software-intensive Systems (ASSURE 2015) are to:

  • explore techniques for creating/assessing assurance cases for software-intensive systems;
  • examine the role of assurance cases in the engineering lifecycle of critical systems;
  • identify the dimensions of effective practice in the development and evaluation of assurance cases;
  • investigate the relationship between dependability techniques and assurance cases; and,
  • identify critical research challenges and define a roadmap for future development.

We solicit high-quality contributions: researchpracticetools and position papers on the application of assurance case principles and techniques to assure that the dependability properties of critical software-intensive systems have been met.

Papers should attempt to address the workshop goals in general.

Topics

Topics of interest include, but are not limited to:

  • Standards: Industry guidelines and standards are increasingly requiring the development of assurance cases, e.g., the automotive standard ISO 26262 and the FDA guidance on the total product lifecycle for infusion pumps.
  • Certification and Regulations: The role and usage of assurance cases in the certification of critical systems, as well as to show compliance to regulations.
  • Dependable architectures: How do fault-tolerant architectures and design measures such as diversity and partitioning relate to assurance cases?
  • Dependability analysis: What are the relationships between dependability analysis techniques and the assurance case paradigm?
  • Tools: Using the output from software engineering tools (testing, formal verification, code generators) as evidence in assurance cases / using tools for the modeling, analysis and management of assurance cases.
  • Application of formal techniques to create and analyze arguments.
  • Exploration of relevant techniques for assurance cases for real-time, concurrent, and distributed systems.
  • Assurance issues in emerging computational paradigms, e.g., cloud, mobile, virtual, many-core architectures, and adaptive and autonomous systems.
  • Modeling and Metamodeling: Representation of structured arguments through metamodels, such as OMG’s Structured Assurance Case Metamodel (SACM).
  • Assurance of software quality attributes, e.g., safety, security and maintainability, as well as dependability in general, including tradeoffs, and exploring notions of the quality of assurance cases themselves.
  • Domain-specific assurance issues, in domains such as aerospace, automotive, healthcare, defense and power.
  • Reuse and Modularization: Contracts and patterns for improving the reuse of assurance case structures.
  • Connections between the Goal Structuring Notation for assurance cases, and goal-orientation from the requirements engineering community.
Submit

Paper submission is now closed.

Papers will be peer-reviewed by at least three members of the program committee. Accepted papers will be published in the SAFECOMP 2015 Workshop Proceedings, to be published by Springer, in the Lecture Notes in Computer Science (LNCS) Series. Authors of the best papers may be invited to submit an extended version for publication in a special journal issue (tentative).

  1. All papers must be original work not published, or in submission, elsewhere.
  2. All papers should be submitted only in PDF. Please verify that papers can be reliably printed and/or viewed on screen before submitting.
  3. Papers should conform to the LNCS paper formatting guidelines.
  4. Regular (research, practice, or position) papers can be up to 12 pages long including figures, references, and any appendices.
  5. Tools papers can be up to 10 pages long including figures, references and any appendices.
    • Note: Authors of accepted tools papers will be expected to give a demonstration of the tool(s) at the workshop, i.e., no screenshots.
  6. Submit your paper electronically via EasyChair by May 22, 2015 May 29, 2015 June 3, 2015.
    • Note: After logging into EasyChair, select New Submission .
    • Then, be sure to select the track Assurance Cases for Software-intensive Systems to submit a paper to this workshop.
Committees

Workshop Chairs

  • Ewen Denney, SGT / NASA Ames, USA
  • Ibrahim Habli, University of York, UK
  • Ganesh Pai, SGT / NASA Ames, USA

Program Committee (Login)

  • Robin Bloomfield, City University, UK
  • Jérémie Guiochet, LAAS-CNRS, France
  • Richard Hawkins, University of York, UK
  • David Higham, Delphi Diesel Systems, UK
  • Michael Holloway, NASA Langley Research Center, USA
  • Paul Jones, U.S. Food and Drug Administration, USA
  • Tim Kelly, University of York, UK
  • Yoshiki Kinoshita, Kanagawa University, Japan
  • John Knight, University of Virginia, USA
  • Andrew Rae, Griffith University, Australia
  • Roger Rivett, Jaguar Land Rover, UK
  • Christel Seguin, ONERA, France
  • Mark-Alexander Sujan, University of Warwick, UK
  • Kenji Taguchi, AIST, Japan
  • Alan Wassyng, McMaster University, Canada
  • Sean White, Health and Social Care Information Centre, UK
Past Workshop Contact Us

Contact the Organizers

If you have questions about paper topics, submission and/or about ASSURE 2015 in general, please contact the Workshop Organizers.

Categories: NASA

FAA requires investigation into SpaceX Falcon 9 rocket landing failure

Space.com - Wed, 08/28/2024 - 5:03pm
The FAA is requiring an investigation into the failed touchdown attempt of a SpaceX Falcon 9 rocket's first stage after a successful Starlink satellite launch early Wednesday morning (Aug. 28).
Categories: Astronomy

The Marshall Star for August 28, 2024

NASA - Breaking News - Wed, 08/28/2024 - 4:45pm
27 Min Read The Marshall Star for August 28, 2024 Marshall Leadership Updates Team Members on Culture, Strategy

By Wayne Smith

Leadership from NASA’s Marshall Space Flight Center highlighted a successful summer before looking ahead to the center’s culture and strategy during an all-hands meeting Aug. 27 in Building 4316.

Marshall Director Joseph Pelfrey recapped milestone events of the past few months, including new hardware for the Artemis II test flight. The launch vehicle stage adapter for the SLS (Space Launch System) rocket was rolled out Aug. 21 at Marshall and loaded on to the Pegasus barge. In July, the rocket’s core stage was shipped from NASA’s Michoud Assembly Facility to the agency’s Kennedy Space Center. The summer started with a NASA in the Park event in downtown Huntsville that attracted more than 14,000 people to learn more about Marshall’s work and is winding down with the continued celebration of the 25th anniversary of NASA’s Chandra X-ray Observatory.

NASA Marshall Space Flight Center Director Joseph Pelfrey, left, speaks to team members during the all-hands meeting Aug. 26 in Building 4316. Joining Pelfrey on stage, from left, are Rae Ann Meyer, deputy director; Roger Baird, associate director; and Larry Leopard, associate director, technical. NASA/Krisdon Manecke

Pelfrey also commended Marshall’s Commercial Crew Program team members for their dedicated work and support of NASA’s Boeing Starliner Crew Flight Test to the International Space Station.

“I just really appreciate the teams that worked so hard between NASA and Boeing to evaluate issues, and the ultimate decision was about safety,” Pelfrey said. “Those teams did a lot of tremendous work on analysis and testing to bring data to decision makers. Now we will get to move forward.”

Before discussing Marshall’s culture and strategy, Pelfrey introduced three new members of Marshall’s leadership team: Davey Jones, center strategy lead; Denise Smithers, center executive officer; and Roger Baird, associate director.

Pelfrey said leadership recognizes the vital roles culture and strategy play in the center’s ongoing success as Marshall makes a transformative shift to more strategic partnerships across NASA and with industry. He pointed to activities like NASA 2040 and More to Marshall as the center heads toward its 65th anniversary next summer.

“Embracing a supportive work culture enhances collaboration, improves communication, and builds a sense of belonging and purpose,” Pelfrey said. “The center’s leadership team wants culture to come from all of us, so we continue to create opportunities for you to get involved, hear your feedback, and help shape the culture at Marshall.”

Rae Ann Meyer, the center’s deputy director, provided updates on Marshall’s culture initiatives. She invited team members to participate in a survey on the most important attributes for a thriving center, following up on feedback from last August. Meyer said leadership wants continued input from team members and applauded Marshall’s highest ever participation (85.1%) in the 2024 Federal Employee Viewpoint Survey.

Marshall team members listen as Meyer, on stage at left, talks about the center’s culture initiatives.NASA/Krisdon Manecke

“Regardless of role, each team member plays a vital part in shaping the culture that makes NASA and Marshall an extraordinary place to work and achieve great things,” Meyer said. “Creating a positive culture is a long-term process that requires time and sustained effort – it does not happen overnight.”

In his remarks, Jones also encouraged feedback and participation from team members. He said center culture and strategy “need to be attached at the hip.”

“Part of that success is making sure communication is open between center strategy and culture and to the workforce because it not only encourages collaboration, but also fosters transparency, which is one of the key cultural attributes discussed today,” Jones said.

Leadership took questions from team members to close out the session, before wrapping up with a More to Marshall video.

“This year, you have heard a lot about More to Marshall, and it is more than a slogan; it really symbolizes the initiative we have to prepare our center for the future and take advantage of all the expertise we have at the center and all our capabilities,” Pelfrey said. “It’s an approach that reinforces our center strategy that’s going to enable our future role in space exploration.”

Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.

› Back to Top

NASA Moves Artemis II Rocket Adapter to Pegasus Barge for Shipment

NASA rolled out a key piece of space flight hardware for the SLS (Space Launch System) rocket for the first crewed mission of NASA’s Artemis campaign from Marshall Space Flight Center on Aug. 21 for shipment to the agency’s Kennedy Space Center. The cone-shaped launch vehicle stage adapter connects the rocket’s core stage to the upper stage and helps protect the upper stage’s engine that will help propel the Artemis II test flight around the Moon, slated for 2025.

Crews moved the cone-shaped launch vehicle stage adapter out of Building 4708 at NASA’s Marshall Space Flight Center to the agency’s Pegasus barge on Aug. 21. The barge will ferry the adapter first to NASA’s Michoud Assembly Facility, where it will pick up additional SLS hardware for future Artemis missions, and then travel to the agency’s Kennedy Space Center. In Florida, teams with NASA’s Exploration Ground Systems will prepare the adapter for stacking and launch.NASA/Brandon Hancock

“The launch vehicle stage adapter is the largest SLS component for Artemis II that is made at the center,” said Chris Calfee, SLS Spacecraft Payload Integration and Evolution element manager. “Both the adapters for the SLS rocket that will power the Artemis II and Artemis III missions are fully produced at NASA Marshall. Alabama plays a key role in returning astronauts to the Moon.”

A NASA team member watches as the launch vehicle stage adapter is transported toward the Pegasus bargeNASA/Brandon Hancock

Crews moved the adapter out of Marshall’s Building 4708 to the agency’s Pegasus barge Aug. 21. The barge will ferry the adapter first to NASA’s Michoud Assembly Facility, where crews will pick up additional SLS hardware for future Artemis missions, before traveling to Kennedy. Once in Florida, the adapter will join the recently delivered core stage. There, teams with NASA’s Exploration Ground Systems will prepare the adapter for stacking and launch.

The launch vehicle stage adapter moves to the Pegasus barge on the Tennessee River. The cone-shaped adapter connects the SLS (Space Launch System) rocket’s core stage to the upper stage and helps protect the upper stage’s engine that will help propel the Artemis II test flight around the Moon, slated for 2025.NASA/Michael DeMocker

Engineering teams at Marshall are in the final phase of integration work on the launch vehicle stage adapter for Artemis III. The stage adapter is manufactured by prime contractor Teledyne Brown Engineering and the Jacobs Space Exploration Group’s ESSCA (Engineering Services and Science Capability Augmentation) contract using NASA Marshall’s self-reacting friction-stir robotic and vertical weld tools.

A look at the launch vehicle stage adapter inside the Pegasus barge.NASA/Sam Lott

Through the Artemis campaign, NASA will land the first woman, first person of color, and its first international partner astronaut on the Moon. The rocket is part of NASA’s deep space exploration plans, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, Gateway in orbit around the Moon, and commercial human landing systems. NASA’s SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.

The Pegasus barge moves underneath the Tennessee River bridge in Decatur as it heads for its first stop at NASA’s Michoud Assembly Facility before moving on to the agency’s Kennedy Space Center.NASA/Brandon Hancock The first piece of hardware manufactured at NASA’s Marshall Space Flight Center for NASA’s SLS (Space Launch System) rocket that will launch a crewed Artemis mission was moved for shipment Aug. 21. Crews guided the launch vehicle stage adapter from Building 4708 to the agency’s Pegasus barge. Fully produced at Marshall, the adapter is traveling to NASA’s Michoud Assembly Facility, where Pegasus will pick up additional SLS rocket hardware for future Artemis missions, before traveling to NASA’s Kennedy Space Center. Once in Florida, the adapter will join the recently delivered core stage for Artemis II. The adapter plays a critical role as it connects the Moon rocket’s core stage to the upper stage and helps protect the upper stage’s engine that will help propel the Artemis II test flight and a crew of four astronauts around the Moon, slated for 2025. (NASA)

› Back to Top

Cassiopeia A,Thenthe Cosmos: 25 Years of Chandra X-ray Science

By Rick Smith

On Aug. 26, 1999, NASA’s Chandra X-ray Observatory opened its powerful telescopic eye in orbit and captured its awe-inspiring “first light” images of Cassiopeia A, a supernova remnant roughly 11,000 light-years from Earth. That first observation was far more detailed than anything seen by previous X-ray telescopes, even revealing – for the first time ever – a neutron star left in the wake of the colossal stellar detonation.

NASA’s Chandra X-ray Observatory has observed Cassiopeia A for more than 2 million total seconds since its “first light” images of the supernova remnant on Aug. 26, 1999. Cas A is some 11,000 light-years from Earth. Chandra X-rays are depicted in blue and composited with infrared images from NASA’s James Webb Space Telescope in orange and white.X-ray: NASA/CXC/SAO; Infrared: NASA/ESA/CSA/STScI/D. Milisavljevic (Purdue Univ.), I. De Looze (University of Ghent), T. Temim (Princeton Univ.); Image Processing: NASA/CXC/SAO/J. Schmidt, K. Arcand, and J. Major

Those revelations came as no surprise to Chandra project scientist Martin Weisskopf, who led Chandra’s development at NASA’s Marshall Space Flight Center. “When you build instrumentation that’s 10 times more sensitive than anything that was done before, you’re bound to discover something new and exciting,” he said. “Every step forward was a giant step forward.”

Twenty-five years later, Chandra has repeated that seminal moment of discovery again and again, delivering – to date – nearly 25,000 detailed observations of neutron starsquasarssupernova remnantsblack holesgalaxy clusters, and other highly energetic objects and events, some as far away as 13 billion light-years from Earth.

Chandra has further helped scientists gain tangible evidence of dark matter and dark energy, documented the first electromagnetic events tied to gravitational waves in space, and most recently aided the search for habitable exoplanets – all vital tools for understanding the vast, interrelated mechanisms of the universe we live in.

“Chandra’s first image of Cas A provided stunning demonstration of Chandra’s exquisite X-ray mirrors, but it simultaneously revealed things we had not known about young supernova remnants,” said Pat Slane, director of the CXC (Chandra X-ray Center) housed at the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts. “In a blink, Chandra not only revealed the neutron star in Cas A; it also taught us that young neutron stars can be significantly more modest in their output than what previously had been understood. Throughout its 25 years in space, Chandra has deepened our understanding of fundamental astrophysics, while also greatly broadening our view of the universe.”

To mark Chandra’s silver anniversary, NASA and CXC have shared 25 of its most breathtaking images and debuted a new video, “Eye on the Cosmos.

Chandra often is used in conjunction with other space telescopes that observe the cosmos in different parts of the electromagnetic spectrum, and with other high-energy missions such as ESA’s (European Space Agency’s) XMM-Newton; NASA’s Swift, NuSTAR (Nuclear Spectroscopic Telescope Array), and IXPE (Imaging X-ray Polarization Explorer) imagers, and NASA’s NICER (Neutron Star Interior Composition Explorer) X-ray observatory, which studies high-energy phenomena from its vantage point aboard the International Space Station.

These images were released to commemorate the 25th anniversary of Chandra. They represent the wide range of objects that the telescope has observed over its quarter century of observations. X-rays are an especially penetrating type of light that reveals extremely hot objects and very energetic physical processes. The images range from supernova remnants, like Cassiopeia A, to star-formation regions like the Orion Nebula, to the region at the center of the Milky Way. This montage also contains objects beyond our own Galaxy including other galaxies and galaxy clusters.X-ray: NASA/CXC/UMass/Q.D. Wang; Image processing: NASA/CXC/SAO/N. Wolk

Chandra remains a unique, global science resource, with a robust data archive that will continue to serve the science community for many years.

“NASA’s project science team has always strived to conduct Chandra science as equitably as possible by having the world science community collectively decide how best to use the observatory’s many tremendous capabilities,” said Douglas Swartz, a USRA (Universities Space Research Association) principal research scientist on the Chandra project science team.

“Chandra will continue to serve the astrophysics community long after its mission ends,” said Andrew Schnell, acting Chandra program manager at Marshall. “Perhaps its greatest discovery hasn’t been discovered yet. It’s just sitting there in our data archive, waiting for someone to ask the right question and use the data to answer it. It could be somebody who hasn’t even been born yet.”

That archive is impressive indeed. To date, Chandra has delivered more than 70 trillion bytes of raw data. More than 5,000 unique principal investigators and some 3,500 undergraduate and graduate students around the world have conducted research based on Chandra’s observations. Its findings have helped earn more than 700 PhDs and resulted in more than 11,000 published papers, with half a million total citations.

NASA’s Chandra X-ray Observatory data, seen here in violet and white, is joined with that of NASA’s Hubble Space Telescope (red, green, and blue) and Imaging X-ray Polarimetry Explorer (purple) to show off the eerie beauty of the Crab Nebula. The nebula is the result of a bright supernova explosion first witnessed and documented in 1054 A.D.X-ray: (Chandra) NASA/CXC/SAO, (IXPE) NASA/MSFC; Optical: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/J. Schmidt, K. Arcand, and L. Frattare

Weisskopf is now an emeritus researcher who still keeps office hours every weekday despite having retired from NASA in 2022. He said the work remains as stimulating now as it was 25 years ago, waiting breathlessly for those “first light” images.

“We’re always trying to put ourselves out of business with the next bit of scientific understanding,” he said. “But these amazing discoveries have demonstrated how much NASA’s astrophysics missions still have to teach us.”

The universe keeps turning – and Chandra’s watchful eye endures.

Chandra, managed for NASA by Marshall in partnership with the CXC, is one of NASA’s Great Observatories, along with the Hubble Space Telescope and the now-retired Spitzer Space Telescope and Compton Gamma Ray Observatory. It was first proposed to NASA in 1976 by Riccardo Giacconi, recipient of the 2002 Nobel Prize for Physics based on his contributions to X-ray astronomy, and Harvey Tananbaum, who would later become the first director of the Chandra X-ray Center. Chandra was named in honor of the late Nobel laureate Subrahmanyan Chandrasekhar, who earned the Nobel Prize in Physics in 1983 for his work explaining the structure and evolution of stars.

Smith, an Aeyon/MTS employee, supports the Marshall Office of Communications.

› Back to Top

The Legacy Continues: Space & Rocket Center Event Highlights Chandra’s 25th Anniversary

NASA Marshall Space Flight Center Director Joseph Pelfrey, bottom center, second from left, welcomes Huntsville community members to an event celebrating 25 years of the agency’s Chandra X-ray Observatory at the U.S. Space & Rocket Center’s Intuitive Planetarium on Aug. 23. Pelfrey introduced the evening’s panelists, which included, from left, former NASA astronaut Eileen Collins, Marshall research astrophysicist Jessica Gaskin, and Chandra deputy project scientist Steven Ehlert. Pelfrey also introduced the premier showing of a video marking Chandra’s 25th anniversary. (NASA/Taylor Goodwin)

The program was hosted by David Weigel, bottom right, director of the U.S. Space & Rocket Center’s Intuitive Planetarium. Former NASA astronaut Cady Coleman, top right, joined the panel virtually to share her experience as a mission specialist on STS-93, which deployed the iconic space telescope. Collins joined STS-93 as the first woman to command a space shuttle mission. Together, the two former astronauts gave first-hand accounts of their journey aboard space shuttle Columbia. (NASA/Taylor Goodwin)

Collins shared her enthusiasm for space exploration and the importance of Chandra’s scientific contributions to attendees of all ages throughout the event. (NASA/Taylor Goodwin)

› Back to Top

Take 5 with April Hargrave

By Wayne Smith

April Hargrave’s father was an educator who encouraged her from an early age to believe she could be whatever she wanted to be.

She followed her father’s guidance.

April Hargrave is the manager of Program, Planning, and Control (PP&C) in the Human Exploration Development and Operations (HP/HEDO) Office at NASA’s Marshall Space Flight Center.Photo courtesy of Jenna Hassell

Today, Hargrave is the manager of Program, Planning, and Control (PP&C) in the Human Exploration Development and Operations (HP/HEDO) Office at NASA’s Marshall Space Flight Center. Hargrave credits her parents for inspiring her to seek a career that eventually led to Marshall, where she has been for 15 years.

Hargrave’s father – G.W. Braidfoot – was a high school educator in Lawrence County, Alabama, for 28 years. He taught history and civics, before moving into roles as an administrator and guidance counselor, focusing on guiding his students toward their post-high school goals.

“What has always stood out to me is my parents never placed boundaries on my passions and career choices,” said Hargrave, a North Alabama native who lives in Athens. “Reflecting back, that is something of which I am very appreciative. In the absence of boundaries, it has allowed me to push myself in my pursuits and shaped my career path, which included high school STEM courses and college career choices.

Those college choices were pursuing a bachelor’s degree in chemistry at the University of North Alabama in Florence, and later another degree in chemical engineering at the University of Alabama in Huntsville.

As PP&C manager for HEDO’s diverse and complex portfolio of programs, projects, and other activities, Hargrave provides tools and resources to HP management that enables strategic decision making and workforce planning.

“My background and experiences helped shaped my early career in industry and established a strong foundation and relationships, which led me to Marshall mid-career,” she said. “At Marshall, I’m thankful to have had mentors and encouragers who have led me to my current leadership role – people who believed in me and allowed me an opportunity. For that, I will forever be grateful.”

Question: What excites you most about the future of human space exploration, or your NASA work, and your team’s role it?

Hargrave: What excites me the most are the advancements we are making in human health and exploration. I’ve had close relatives suffer from diseases, such as Alzheimer’s and heart disease. I hope to see in the near future outcomes of human research on the International Space Station and the Moon that leads to medical and technology advancements, resulting in slowing the progression and eventually eliminating these diseases. Our HP PP&C team enables our missions by providing planning, integration, and support across our organization. 

Question: What has been the proudest moment of your career and why?

Hargrave: Being able to mentor others throughout my career and watching them achieve success. Being in a position to recognize potential in others and encourage them to stretch and take risks in their careers, I find it very rewarding, especially after they have moved on that I’m able to still observe the growth and development they’ve experienced and to know I made a contribution.

Question: Who or what drives/motivates you?

Hargrave: My team drives me – I have a wonderful team that motivates me to be the best version of myself I can be. My team is comprised of a diverse group of personnel whose jobs are not always connected. However, we are still able to promote a great teaming environment where we encourage and leverage off each other’s skills and knowledge bases. My team is dedicated to doing the best job possible which motivates me daily in the excellent support they provide across HP. It allows me opportunities to lead by example and recognize their successes. It also allows me to look across the team and how to use them best based on their strengths.

Question: What advice do you have for employees early in their NASA career or those in new leadership roles?

Hargrave: It is important to learn what the NASA mission is and don’t be afraid to ask questions. Learn about the work that you are doing and how it impacts the mission as a whole. As you learn and understand the work within your role, develop a passion for the work. Take opportunities to understand the big picture and learn what others are doing across the center. Don’t be afraid to take lateral opportunities to allow you to gain new experiences and broaden your knowledge base. And if you find yourself in a leadership role, never lose sight that it’s the people behind that work that’s most important. Take the time to build and nurture those relationships because at the end of the day, our workforce is what makes us successful. 

Question: What do you enjoy doing with your time while away from work?

Hargrave: My joy is helping and supporting others. Being part of a large family (raised one of five children and an even larger extended family), there’s naturally always plenty to do and lots of family to help and encourage. Much of my recent years have been spent cheering on my sons, nieces, and nephews. I also enjoy serving in my church and helping organize events to celebrate our family and friends. 

Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.

› Back to Top

Over the Moon: Photographer Captures Supermoon Rising Near Marshall

By Wayne Smith

Once in a Blue Moon wasn’t enough for Michael DeMocker, a photographer for NASA’s Michoud Assembly Facility.

Nearly one year after capturing a spectacular image of a super Blue Moon rising over the Crescent City Connection Bridge in New Orleans, DeMocker found another opportunity to focus his camera on the lunar landscape while visiting the Rocket City. The result was another stunning photograph, this one of the Moon rising Aug. 19 behind the Saturn V rocket at the U.S. Space & Rocket Center in Huntsville, near NASA’s Marshall Space Flight Center

A super Blue Moon rises Aug. 19 over Huntsville, home to NASA’s Marshall Space Flight Center and the U.S. Space and Rocket Center. The full Moon was both a supermoon and a Blue Moon. As the Moon reaches its closest approach to Earth, the Moon looks larger in the night sky with supermoons becoming the biggest and brightest full Moons of the year. While not blue in color, the third full Moon in a season with four full Moons is called a Blue Moon.NASA/Michael DeMocker

And you can say the image DeMocker captured left him, well, over the Moon. He explains how he got the photo.

“NASA photographer Eric Bordelon and I drove up from Michoud to Marshall to provide drone support for the move of the launch vehicle stage adapter of the SLS (Space Launch System) rocket to NASA’s Pegasus barge on Aug. 21,” DeMocker said. “On the trip up, we talked about possibly capturing the super Blue Moon rising that night. Using an app that shows the direction of the moonrise overlayed with a satellite image of the area, we couldn’t find a definitive spot where we thought we could get a clean line of the Moon rising with some kind of iconic Huntsville landmark. So, like good New Orleanians, we put off thinking about it until after eating. As we approached the restaurant, we caught glimpses of the Saturn V rocket at the U.S. Space & Rocket Center. We realized if we got on the roof of a nearby parking garage, we would have a clean view of the Moon rising somewhat behind it.

“The angle wasn’t perfect; I’d have preferred to be more to the right but that would have sent me plummeting off the parking garage. The clouds cooperated, the Moon rose bright and beautiful, and I got images I was happy with while Eric got a very cool time-lapse video of the Moon and the rocket.”

So, of the two Blue Moon images, which is DeMocker’s favorite?

“Yikes, that’s like choosing a child!” DeMocker said. “My favorite pictures are not always the best ones, but the ones that I didn’t think I would be able to pull off. So, while the Moon over the bridge I think is an overall better photo, it was pretty easy to plan and didn’t require much resourcefulness, so I like the rocket one better.”

DeMocker, a past Pulitzer Prize winner for team coverage of Hurricane Katrina, was honored this year with third-place finishes in two categories in NASA’s Photographer of the Year competition. He also was part of a Michoud team that captured a first-place award in the agency’s Videographer of the Year competition.

“But my favorite photos I’ve ever shot in my career have never won awards,” DeMocker said. “I like them because I thought they would be almost impossible to get when I set out after them: a drone shot of an erupting volcano in Iceland, an Iraqi woman voting in Baghdad, or my toddler quietly looking at art in the Louvre.”

Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.

› Back to Top

NASA, Boeing Optimizing Vehicle Assembly Building High Bay for Future SLS Stage Production

NASA is preparing space at the agency’s Kennedy Space Center for upcoming assembly activities of the SLS (Space Launch System) rocket core stage for future Artemis missions, beginning with Artemis III.

Teams are currently outfitting the assembly building’s High Bay 2 for future vertical assembly of the rocket stage that will help power NASA’s Artemis campaign to the Moon. During Apollo, High Bay 2, one of four high bays inside the Vehicle Assembly Building, was used to stack the Saturn V rocket. During the Space Shuttle Program, the high bay was used for external tank checkout and storage and as a contingency storage area for the shuttle.

Technicians are building tooling in High Bay 2 at NASA Kennedy that will allow NASA and Boeing, the SLS core stage lead contractor, to vertically integrate the core stage.NASA

Michigan-based Futuramic is constructing the tooling that will hold the core stage in a vertical position, allowing NASA and Boeing, the SLS core stage lead contractor, to integrate the SLS rocket’s engine section and four RS-25 engines to finish assembly of the rocket stage. Vertical integration will streamline final production efforts, offering technicians 360-degree access to the stage both internally and externally.

“The High Bay 2 area at NASA Kennedy is critical for work as SLS transitions from a developmental to operational model,” said Chad Bryant, deputy manager of the SLS Stages Office. “While teams are stacking and preparing the SLS rocket for launch of one Artemis mission, the SLS core stage for another Artemis mission will be taking shape just across the aisleway.”

Under the new assembly model beginning with Artemis III, all the major structures for the SLS core stage will continue to be fully produced and manufactured at NASA’s Michoud Assembly Facility. Upon completion of manufacturing and thermal protection system application, the engine section will be shipped to NASA Kennedy for final outfitting. Later, the top sections of the core stage – the forward skirt, intertank, liquid oxygen tank, and liquid hydrogen tank – will be outfitted and joined at Michoud and shipped to Kennedy for final assembly.

The fully assembled core stage for Artemis II arrived at Kennedy on July 23. NASA’s Pegasus barge delivered the SLS engine section for Artemis III to Kennedy in December 2022. Teams at Michoud are outfitting the remaining core stage elements and preparing to horizontally join them. The four RS-25 engines for the Artemis III mission are complete at NASA’s Stennis Space Center and will be transported to Kennedy in 2025. Major core stage and exploration upper stage structures are in work at Michoud for Artemis IV and beyond.

NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.

NASA’s Marshall Space Flight Center manages the SLS Program and Michoud.

› Back to Top

How Students Learn to Fly NASA’s IXPE Spacecraft

The large wall monitor displaying a countdown shows 17 seconds when Amelia “Mia” De Herrera-Schnering tells her teammates “We have AOS,” meaning “acquisition of signal.”

“Copy that, thank you,” Alexander Pichler replies. The two are now in contact with NASA’s IXPE (Imaging X-Ray Polarimeter Explorer) spacecraft, transmitting science data from IXPE to a ground station and making sure the download goes smoothly. That data will then go to the science team for further analysis.

Amelia “Mia” De Herrera-Schnering is an undergraduate student at the University of Colorado, Boulder, and command controller for NASA’s IXPE mission at the Laboratory for Atmospheric and Space Physics (LASP). NASA/Elizabeth Landau

At LASP, the Laboratory for Atmospheric and Space Physics, students at the University of Colorado, Boulder, can train to become command controllers, working directly with spacecraft on pointing the satellites, calibrating instruments, and collecting data. De Herrera-Schnering recently completed her sophomore year, while Pichler had trained as a student and now, having graduated, works as a full-time professional at LASP.

“The students are a key part in what we do,” said Stephanie Ruswick, IXPE flight director at LASP. “We professionals monitor the health and safety of the spacecraft, but so do the students, and they do a lot of analysis for us.”

Students also put into motion IXPE’s instrument activity plans, which are provided by the Science Operations Center at NASA’s Marshall Space Flight Center. The LASP student team schedules contacts with ground stations to downlink data, schedules observations of scientific and calibration targets, and generates the files necessary to translate the scientific operations into spacecraft actions. If IXPE experiences an anomaly, the LASP team will implement plans to remediate and resume normal operations as soon as possible.

The students take part in IXPE’s exploration of a wide variety of celestial targets. In October, for example, students monitored the transmission of data from IXPE’s observations of Swift J1727.8-1613, a bright black hole X-ray binary system. This cosmic object had been recently discovered in September 2023, when NASA’s Neil Gehrels Swift Observatory detected a gamma-ray burst. IXPE’s specialized instruments allow scientists to measure the polarization of X-rays, which contains information about the source of the X-rays as well as the organization of surrounding magnetic fields. IXPE’s follow-up of the Swift object exemplifies how multiple space missions often combine their individual strengths to paint a fuller scientific picture of distant phenomena.

Team members also conduct individual projects. For example, students analyzed how IXPE would fare during both the annular eclipse on Oct. 14, 2023, and the total eclipse that moved across North America on April 8, to make sure that the spacecraft would have adequate power while the Moon partially blocked the Sun.

Sam Lippincott, right, a graduate student lead at LASP, trained as a command controller for NASA’s IXPE spacecraft as an undergraduate. In the background are flight controllers Adrienne Pickerill, left, and Alexander Pichler, who also trained as students. NASA/Elizabeth Landau

While most of the students working on IXPE at LASP are engineering majors, some are physics or astrophysics majors. Some didn’t initially start their careers in STEM such as flight controller Kacie Davis, who previously studied art.

Prospective command controllers go through a rigorous 12-week summer training program working 40 hours per week, learning “everything there is to know about mission operations and how to fly a spacecraft,” Ruswick said.

Cole Writer, an aerospace engineering student, remembers this training as “nerve-wracking” because he felt intimidated by the flight controllers. But after practicing procedures on his own laptop, he felt more confident, and completed the program to become a command controller.

“It’s nice to be trained by other students who are in the same boat as you and have gone through the same process,” said Adrienne Pickerill, a flight controller who started with the team as a student and earned a master’s in aerospace engineering at the university in May.

As a teenager Writer’s interests focused on flying planes, and he saved money to train for a pilot’s license, earning it the summer after high school graduation. Surprisingly, he has found many overlaps in skills for both activities – following checklists and preventing mistakes. “Definitely high stakes in both cases,” he said.

While working at LASP, the Laboratory for Atmospheric and Space Physics, students at the University of Colorado, Boulder, train to become command controllers who work and manage spacecraft. From monitoring IXPE’s health and safety to sending commands to the spacecraft to look at cosmic objects at the request of scientists, these students are getting a one-of-a-kind hands-on experience. (NASA)

Sam Lippincott, now a graduate student lead after serving as a command controller as an undergraduate, has been a lifelong sci-fi fan, but took a career in space more seriously his sophomore year of college. “For people that want to go into the aerospace or space operations industry, it’s always important to remember that you’ll never stop learning, and it’s important to remain humble in your abilities, and always be excited to learn more,” he said.

De Herrera-Schnering got hooked on the idea of becoming a scientist the first time she saw the Milky Way. On a camping trip when she was 10 years old, she spotted the galaxy as she went to use the outhouse in the middle of the night. “I woke up my parents, and we just laid outside and we were just stargazing,” she said. “After that I knew I was set on what I wanted to do.”

Rithik Gangopadhyay, who trained as an undergraduate command controller and continued at LASP as a graduate student lead, had been interested in puzzles and problem-solving as a kid and had a book about planets that fascinated him. “There’s so much out there and so much we don’t know, and I think that’s what really pushed me to do aerospace and do this opportunity of being a command controller,” he said.

Coding is key to mission operations, and much of it is done in the Python language. Sometimes the work of flying a spacecraft feels like any other kind of programming — but occasionally, team members step back and consider that they are part of the grand mission of exploring the universe.

“If it’s your job for a couple of years, it starts to be like, ‘oh, let’s go ahead and do that, it’s just another Tuesday.’ But if you step back and think about it on a high-level basis, it’s really something special,” Pichler said. “It’s definitely profound.”

› Back to Top

Categories: NASA

NASA Expands Human Exploration Rover Challenge to Middle Schools

NASA - Breaking News - Wed, 08/28/2024 - 4:11pm

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) The cover of the HERC 2025 handbook, which is now available online.

By Wayne Smith

Following a 2024 competition that garnered international attention, NASA is expanding its Human Exploration Rover Challenge (HERC) to include a remote control division and inviting middle school students to participate.

The 31st annual competition is scheduled for April 11-12, 2025, at the U.S. Space & Rocket Center, near NASA’s Marshall Space Flight Center in Huntsville, Alabama. HERC is managed by NASA’s Southeast Regional Office of STEM Engagement at Marshall. The HERC 2025 Handbook has been released, with guidelines for the new remote control (RC) division – ROVR (Remote-Operated Vehicular Research) – and detailing updates for the human-powered division.

“Our RC division significantly lowers the barrier to entry for schools who don’t have access to manufacturing facilities, have less funding, or who are motivated to compete but don’t have the technical mentorship required to design and manufacture a safe human-powered rover,” said Chris Joren, HERC technical coordinator. “We are also opening up HERC to middle school students for the first time. The RC division is inherently safer and less physically intensive, so we invite middle school teams and organizations to submit a proposal to be a part of HERC 2025.”

Another change for 2025 is the removal of task sites on the course for the human-powered rover division, allowing teams to focus on their rover’s design. Recognized as NASA’s leading international student challenge, the 2025 challenge aims to put competitors in the mindset of the Artemis campaign as they pitch an engineering design for a lunar terrain vehicle – they are astronauts piloting a vehicle, exploring the lunar surface while overcoming various obstacles.

The HERC team wanted to put together a challenge that allows students to gain 21st century skills, workforce readiness skills, and skills that are transferable,” said Vemitra Alexander, HERC activity lead. “The students have opportunities to learn and apply the engineering design process model, gain public speaking skills, participate in community outreach, and learn the art of collaborating with their peers. I am very excited about HERC’s growth and the impact it has on the students we serve nationally and internationally.”

Students interested in designing, developing, building, and testing rovers for Moon and Mars exploration are invited to submit their proposals to NASA through Sept. 19.

More than 1,000 students with 72 teams from around the world participated in the 2024 challenge as HERC celebrated its 30th anniversary as a NASA competition. Participating teams represented 42 colleges and universities and 30 high schools from 24 states, the District of Columbia, Puerto Rico, and 13 other nations from around the world.

“We saw a massive jump in recognition, not only from within the agency as NASA Chief Technologist A.C. Charania attended the event, but with several of our international teams meeting dignitaries and ambassadors from their home countries to cheer them on,” Joren said. “The most impressive thing will always be the dedication and resilience of the students and their mentors. No matter what gets thrown at these students, they still roll up to the start line singing songs and waving flags.”

HERC is one of NASA’s eight Artemis Student Challenges reflecting the goals of the Artemis campaign, which seeks to land the first woman and first person of color on the Moon while establishing a long-term presence for science and exploration. NASA uses such challenges to encourage students to pursue degrees and careers in the STEM fields of science, technology, engineering, and mathematics. 

Since its inception in 1994, more than 15,000 students have participated in HERC – with many former students now working at NASA, or within the aerospace industry.    

To learn more about HERC, please visit: 

https://www.nasa.gov/roverchallenge/home/index.html

Taylor Goodwin
Marshall Space Flight Center, Huntsville, Ala.
256.544.0034
taylor.goodwin@nasa.gov

Share Details Last Updated Aug 28, 2024 Related Terms Explore More 27 min read The Marshall Star for August 28, 2024 Article 19 hours ago 3 min read NASA, Boeing Optimizing Vehicle Assembly Building High Bay for Future SLS Stage Production Article 2 days ago 5 min read Cassiopeia A, Then the Cosmos: 25 Years of Chandra X-ray Science Article 3 days ago Keep Exploring Discover More Topics From NASA

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

Stranded ISS astronauts reveal the US space programme is not in crisis

New Scientist Space - Space Headlines - Wed, 08/28/2024 - 4:00pm
The failure of Boeing's Starliner capsule has left two astronauts stuck in space for months – but also proved how private spaceflight can go right
Categories: Astronomy

Stranded ISS astronauts reveal the US space programme is not in crisis

New Scientist Space - Cosmology - Wed, 08/28/2024 - 4:00pm
The failure of Boeing's Starliner capsule has left two astronauts stuck in space for months – but also proved how private spaceflight can go right
Categories: Astronomy

What to Know about Eastern Equine Encephalitis Virus Spread by Mosquitoes

Scientific American.com - Wed, 08/28/2024 - 4:00pm

An expert explains the transmission and symptoms of eastern equine encephalitis, a rare mosquito-borne illness that has caused one death and two hospitalizations in northeastern states

Categories: Astronomy

A SAFER Way

NASA Image of the Day - Wed, 08/28/2024 - 3:26pm
Backdropped against the blue and white Earth 130 nautical miles below, astronaut Mark C. Lee tests the new Simplified Aid for EVA Rescue (SAFER) system on Sept. 16, 1994.
Categories: Astronomy, NASA

A SAFER Way

NASA - Breaking News - Wed, 08/28/2024 - 3:24pm
NASA

On Sept. 16, 1994, astronaut Mark C. Lee tested out the Simplified Aid for EVA Rescue (SAFER) system, a system designed for use in the event a crew member becomes untethered while conducting a spacewalk. Occurring during the STS-64 mission, this was the first untethered U.S. spacewalk in 10 years.

This SAFER test was the first phase of a larger SAFER program whose objectives were to establish a common set of requirements for both space shuttle and space station program needs, develop a flight demonstration of SAFER, validate system performance and, finally, develop a production version of SAFER for the shuttle and station programs.

Image Credit: NASA

Categories: NASA

What if you Flew Your Warp Drive Spaceship into a Black Hole?

Universe Today - Wed, 08/28/2024 - 3:09pm

Warp drives have a long history of not existing, despite their ubiquitous presence in science fiction. Writer John Campbell first introduced the idea in a science fiction novel called Islands of Space. These days, thanks to Star Trek in particular, the term is very familiar. It’s almost a generic reference for superliminal travel through hyperspace. Whether or not warp drive will ever exist is a physics problem that researchers are still trying to solve, but for now, it’s theoretical.

Recently, two researchers looked at what would happen if a ship with warp drive tried to get into a black hole. The result is an interesting thought experiment. It might not lead to starship-sized warp drives but might allow scientists to create smaller versions someday.

NASA’s Eagleworks attempted to test Alcubierre warp drive concept. Credit: 2012

Remo Garattini and Kirill Zatrimaylov theorized that such a drive could survive inside a so-called Schwarzschild black hole. That’s provided the ship crosses the event horizon at a speed lower than that of light. Theoretically, the black hole’s gravitational field would decrease the amount of negative energy required to keep the drive going. If it did, the ship could pass through and somehow use it to get somewhere else without getting crushed. Furthermore, the mathematics behind this idea points the way toward the possible creation of mini-warp drives in lab settings.

What’s a Warp Drive?

Could scientists build a micro- or mini-warp drive in the lab? Good questions. To understand the team’s work, let’s look at the major players in this research: warp drives and black holes.

The idea is inspired by the fact that nothing can go faster than light speed. Given the distances in space, traveling to the nearest star would take years (if we could go at light speed). Going across a galaxy or to more distant galaxies would take years and many lifetimes. So, if you want to be a space-faring species, you must travel faster than light (FTL).

How would you do that? This is where warp drives come in. Theoretically, they allow you to put your spaceship inside a bubble that could slip through space at FTL speeds. That’s how the starships in Star Trek (and other SF stories) get across huge distances so quickly. The Star Trek ships use an energy source in a “warp core” to power warp field generators. They create the warp bubble in subspace. The ship uses that to go wherever the crew needs to be.

Do Physicists Like Warp Drive?

Such a warp drive is a tantalizing idea with many caveats. For example, generating a warp field requires an insane amount of energy. Some physicists suggest that it would take more energy than we’re capable of generating. Creating that energy would require huge amounts of exotic matter—something like “unobtanium”. So, that’s a problem right there.

Others say that creating such a drive goes against our current understanding of spacetime physics. However, that hasn’t stopped anybody from speculating on ways to make it happen. For example, Mexican physicist Miguel Alcubierre had an idea for such a drive in 1994. He suggested that it could create a bubble that would shift space around an object. He has continued his research about a ship that could get somewhere faster than light. However, he and others still point out various problems with both creating and sustaining a warp drive. That includes the idea that such a drive effectively isolates itself from the rest of the Universe. Among other things, it means the ship can’t control the drive that’s making it go. So, there are a still few bugs to work out.

This artist’s illustration shows a spacecraft using an Alcubierre Warp Drive to warp space and ‘travel’ faster than light. Image Credit: NASA About Black Holes

We are most familiar with black holes in terms of stellar mass and supermassive ones. These also sport accretion disks that convey material into the black hole. For example, the central supermassive black hole named Sagittarius A* in our own Milky Way Galaxy periodically gobbles down material. Then, it emits a belch of radiation. Other, more active galaxies send out jets of material emitted as the central supermassive black hole feeds continuously.

Simulation of a black hole. (Credit: NASA/ESA/Gaia/DPAC)

A black hole is a concentration of mass with gravity so strong that nothing, even light, can escape. In their study about black holes and warp drives, the authors used Schwarzschild black holes. These so-called simple “static” black holes curve spacetime, have no electric charge and are non-rotating. Essentially, they are good approximations for mathematical explorations of the characteristics of slowly rotating objects in space.

When A Ship with Warp Drive Crosses into a Black Hole

The Schwarzchild black hole is the “perfect” black hole to use in this theoretical exploration of a warp drive crossing the event horizon. To figure out the scenario, Garattini and Zatrimalov decided to mathematically combine the equations describing the black hole and the ones describing the warp drive. Among other things, they found that it’s possible to “embed” the warp drive in the outer region of the black hole. The warp bubble itself is much smaller than the black hole and needs to be moving toward it. The black hole’s gravity affects the energy conditions needed to create and sustain the warp drive. That means you can theoretically decrease the amount of negative energy required to sustain the warp bubble. In addition, the researchers suggest that if the warp bubble is moving at less than the speed of light, it effectively erases the black hole horizon.

The research team also described the idea that such an occurrence could evoke the conversion of virtual particles into real ones in an electric field. If so, it could lead to the creation of mini warp drives in the lab.

Changing the Black Hole a Bit

Interestingly, the team also suggests that, if the warp bubble is moving slowly and is much smaller than the black hole horizon, it could increase the entropy of the black hole. However, as they state in their closing arguments, “there are potential problematic issues in other physical situations: namely, when the warp drive is completely absorbed by the black hole, it may decrease its mass, and, therefore, its entropy.

Likewise, when there is a larger warp bubble passing through a black hole, it would produce a ”screening” effect and de facto eliminate the horizon, making it impossible to define the black hole entropy in the Hawking sense. If warp drives are possible in nature, these issues indicate that we still do not understand them from the thermodynamic point of view.”

Warp Drive Technology Remains to be Seen

So, while this research may prove valuable theoretically, and could lead to lab production of mini black holes, many questions remain. Perhaps in the future, when we understand the quantum mechanics behind both of these objects, we might find warp technology a slam-dunk. If so, then, as ships travel through black holes, we could face a weird time. For example, signals from inside a black hole could get carried out by a warp bubble merging from the singularity. That would allow us to send images or recordings of what it’s like inside the event horizon—something nobody knows about today. There’s also a chance that those fearsome black holes could make a warp drive less difficult to achieve since they won’t need so much exotic “negative energy” source material.

For More Information

Black Holes, Warp Drives, and Energy Conditions
The Warp Drive: Hyper-fast Travel Within General Relativity
Schwarzschild Black Hole Simulations

The post What if you Flew Your Warp Drive Spaceship into a Black Hole? appeared first on Universe Today.

Categories: Astronomy

Mock shuttle Pathfinder restored atop its stack at Alabama rocket center (photos)

Space.com - Wed, 08/28/2024 - 3:00pm
An early mockup of NASA's winged orbiters, Pathfinder was returned to its position atop a space shuttle propulsion "stack" at the U.S. Space & Rocket Center in Huntsville, Alabama.
Categories: Astronomy

DART Did More Than Deter Dimorphos; It Sent It Into a Chaotic Tumble

Universe Today - Wed, 08/28/2024 - 2:39pm

In 2022, NASA’s DART (Double Asteroid Redirection Test) spacecraft collided with an object named Dimorphos. The objective was to test redirecting hazardous asteroids by deflecting them with an impact. The test was a success, and Dimorphos was measurably affected.

Follow-up research shows that Dimorphos was more than deflected; it was deformed.

In recent decades, we’ve made progress cataloguing the asteroids in the Solar System. Some of them are close enough to Earth to be dangerous. If an object comes within 1.3 astronomical units of the Sun, it’s called a Near Earth Object (NEO.) If it’s more than 140 meters (460 ft) across and crosses Earth’s orbit, it’s called a Potentially Hazardous Object (PHO.) Over 99% of NEOs and PHOs are asteroids, and the remainder are comets.

Earth has suffered many impacts from these objects in the past. The most famous impactor was Chicxulub. When it struck Earth about 65 million years ago, it was responsible for the end of the dinosaurs.

Now that we know the danger these tumbling space rocks pose, NASA and other agencies are preparing to do something about it. DART was a test mission to see how effective a simple kinetic impactor could be at changing the trajectory of an asteroid.

JWST captured this sequence of the DART collision on Dimorphos. Courtesy NASA, ESA, CSA, and STScI.

Dimorphos doesn’t pose any threat to Earth. It was chosen as the test target because it’s actually one part of a pair of objects. Dimorphos is a tiny moon of an asteroid named 65803 Didymos. Because Dimorphos is in orbit around Didymos, it’s easy to measure changes in the object’s movement after the impact.

An entire team has been following Dimorphos since DART impacted it to track how the object’s orbit has changed. Their observations show that the test was a success. Dimorphos’ orbit around Didymos was shortened by 32 minutes when the objective was to shorten it by only 73 seconds. Interestingly, it wasn’t the impact that affected Dimorphos’ orbit; it was because of the recoil effect from the ejected debris.

New research published in The Planetary Science Journal shows that Dimorphos was more deeply affected by the impact than thought. The paper is titled “The Dynamical State of the Didymos System before and after the DART Impact.” The lead author is Derek Richardson from the Department of Astronomy at the University of Maryland. Richardson is the team leader for one of the DART investigation teams called the Dynamics Working Group.

“For the most part, our original pre-impact predictions about how DART would change the way Didymos and its moon move in space were correct,” said Richardson. “But there are some unexpected findings that help provide a better picture of how asteroids and other small bodies form and evolve over time.”

Pre-impact observations showed that Dimorphos had an oblate shape. But after the impact, it became prolate or elongated. This went against pre-impact observations, which suggested that Dimorphos was initially elongated.

DART had a mass of 610 kilograms (1,340 lb) and struck Dimorphos at a speed of about 21,000 km/h (13,000 mp/h). The impact had a force equivalent to about three tons of TNT exploding and unexpectedly altered Dimorphos’ shape.

“We were expecting Dimorphos to be prolate pre-impact simply because that’s generally how we believed the central body of a moon would gradually accumulate material that’s been shed off a primary body like Didymos. It would naturally tend to form an elongated body that would always point its long axis toward the main body,” Richardson explained.

“But this result contradicts that idea and indicates that something more complex is at work here. Furthermore, the impact-induced change in Dimorphos’ shape likely changed how it interacts with Didymos,” Richardson said.

Didymos and Dimorphos are connected gravitationally, and after the impact, scattered debris from Dimorphos altered their relationship, reducing Dimorphos’ orbit around Didymos. It isn’t certain yet, but Dimorphos may have entered a tumbling state.

Image captured by the Italian Space Agency’s LICIACube a few minutes after the intentional collision of NASA’s Double Asteroid Redirection Test (DART) mission with its target asteroid, Dimorphos, captured on Sept. 26, 2022. Credits: ASI/NASA

“Originally, Dimorphos was probably in a very relaxed state and had one side pointing toward the main body, Didymos, just like how Earth’s moon always has one face pointing toward our planet,” Richardson explained. “Now, it’s knocked out of alignment, which means it may wobble back and forth in its orientation. Dimorphos might also be ‘tumbling,’ meaning that we may have caused it to rotate chaotically and unpredictably.”

If it’s tumbling, Dimorphos could cause problems—not for Earth but for Hera, the follow-up mission.

The ESA’s Hera mission will be launched in a few weeks. Its mission is to perform a detailed post-impact survey of Dimorphos. To do that, it needs to get close. If Dimorphos is tumbling, its orbit is less predictable, and that will make it difficult for Hera to get close. If that’s the case, the data Hera collects will suffer. It’s possible that, over time, secular damping will calm the tumbling, but there’s a lot of uncertainty at this point.

“While secular damping is possible in the near future, it is unlikely to have major effects on the system when Hera arrives. Thus, Hera may encounter a tumbling Dimorphos, complicating proximity operations,” Richardson and his co-authors write in their research.

DART changed the mutual orbit of Didymos and Dimorphos, and it also changed their orbit around the Sun. The initial impact wasn’t entirely responsible for this change. The ejecta also contributed. “The initial impulse delivered to the system’s barycenter was augmented by the momentum carried by the ejecta that escaped the system,” the authors explain.

Many different researchers have calculated the ejecta, and different observations have arrived at different amounts. However, the researchers say that the impact ejected some tens of millions of kg of material.

This figure from the research shows the fate of the material ejected by the impact. Image Credit: Richardson et al. 2024.

The impact could change Didymos’ shape, too. It spins so fast that it’s at greater risk of structural failure when ejecta from Dimorphos strikes it. “Small perturbations, such as ejecta from the impact site on Dimorphos striking Didymos at various speeds, could thus trigger a reshaping process, wherein its equatorial radius increases while its polar radius decreases, resulting in a more oblate shape,” the authors explain.

The impact generated so much ejecta that Dimorphos formed a tail. Some of that debris had to have landed on Didymos, but observations so far show that it hasn’t affected its surface or its dynamics. “This implies Didymos’s surface was strong enough to withstand such impacts,” the authors write. However, in the past, Didymos likely suffered some type of fracturing, possibly due to its fast spin rate, and debris from that event likely formed Dimorphos.

The impact results are uncertain. DART carried a secondary Italian spacecraft named LICIACube (Light Italian CubeSat for Imaging of Asteroids) that separated from DART 15 days prior to impact. It drifted past the asteroid and captured images of the asteroid and the ejecta with its pair of cameras. LICIACube’s observations helped scientists understand what happened, but the small CubeSat executed only a single flyby.

These images show the DART impact as seen by LICIACube. The left panel shows an approach observation 156?seconds after impact, with the ejecta in front of and partially obscuring Dimorphos. The right panel shows the ejecta morphology after close approach, 175?seconds after impact, with Dimorphos silhouetted against the ejecta cone. Image Credit: Cheng et al. 2023. CC BY 4.0

It’s up to the ESA’s Hera spacecraft to answer questions about the impact. It’ll reach Didymos in October 2026, and in December, it will begin about six months of proximity operations. “The primary goal of Hera is to measure the mass of Dimorphos,” the authors write.

The mass is the missing piece that will help us understand how the ejecta contributed to Dimorphos’ altered orbit. Hera also has two CubeSats, Juventas and Milani, and all three will work together to constrain Dimorphos’ mass more precisely. “Once Hera gets closer, its Radio Science Experiment (RSE), involving the main spacecraft and the two CubeSats, Juventas and Milani, should obtain Dimorphos’s mass to higher precision and measure the extended gravity fields and rotational states of both Didymos and Dimorphos,” the paper states.

When you smash an impactor into an asteroid, you can expect some unintended results. But if asteroid redirection is to serve as a tool to protect Earth from dangerous impacts, then we need to know in as much detail as possible what to expect. That’s what DART and Hera are all about. However, they’re also telling us about the relationships between small binary objects.

“The DART mission, together with the Didymos observing campaign, not only represented the first test at a realistic scale of a hazard mitigation technique but also provided unprecedented measurements of dynamical effects in a nonideal small solar system binary for testing theoretical models,” the authors write.

Many of the pre-impact predictions turned out to be true, but other results are surprising, and there are plenty of unanswered questions.

“We look forward to revelations from the Hera mission, which promise to further refine our understanding of small bodies in general and the formation and evolution of binary asteroids in particular,” the researchers conclude.

The post DART Did More Than Deter Dimorphos; It Sent It Into a Chaotic Tumble appeared first on Universe Today.

Categories: Astronomy

First NASA-Supported Researcher to Fly on Suborbital Rocket

NASA - Breaking News - Wed, 08/28/2024 - 2:30pm

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) University of Florida researcher Rob Ferl (seated) and co-principal investigator Anna-Lisa Paul practice the experiment to study the effect of gravity transitions on the plants’ gene expression.University of Florida

For the first time, a NASA-funded researcher will fly with their experiment on a commercial suborbital rocket. The technology is one of two NASA-supported experiments, also known as payloads, funded by the agency’s Flight Opportunities program that will launch aboard Blue Origin’s New Shepard suborbital rocket system on a flight test no earlier than Thursday, Aug. 29.

The researcher-tended payload, from the University of Florida in Gainesville, seeks to understand how changes in gravity during spaceflight affect plant biology. Researcher Rob Ferl will activate small, self-contained tubes pre-loaded with plants and preservative to biochemically freeze the samples at various stages of gravity. During the flight, co-principal investigator Anna-Lisa Paul will conduct four identical experiments as a control. After the flight, Ferl and Paul will examine the preserved plants to study the effect of gravity transitions on the plants’ gene expression. Studying how changes in gravity affect plant growth will support future missions to the Moon and Mars.

The university’s flight test was funded by a grant awarded through the Flight Opportunities program’s TechFlights solicitation with additional support from NASA’s Division of Biological and Physical Sciences. This experiment builds on NASA’s long history of supporting plant research and aims to accelerate the pace and productivity of space-based research.

The other Flight Opportunities supported payload is from HeetShield, a small business in Flagstaff, Arizona. Two new thermal protection system materials will be mounted to the outside of New Shepard’s propulsion module to assess their thermal performance in a relevant environment, since conditions will be similar to planetary entry. After the flight, HeetShield will analyze the structure of the materials to determine how they were affected by the flight.

Flight Opportunities, within NASA’s Space Technology Mission Directorate, facilitates demonstration of technologies for space exploration and the expansion of space commerce through suborbital testing with industry flight providers. Through various mechanisms, the program funds flight tests for internal and external technology payloads.

To learn more, visit: https://www.nasa.gov/space-technology-mission-directorate/

Facebook logo @NASATechnology @NASA_Technology Keep Exploring Discover More Topics From NASA

Space Technology Mission Directorate

STMD Solicitations and Opportunities

Access Flight Tests

STMD Small Spacecraft Technology

Share Details Last Updated Aug 28, 2024 EditorLoura Hall Related Terms
Categories: NASA

We will one day be able to slow, halt and even eradicate Alzheimer's

New Scientist Space - Cosmology - Wed, 08/28/2024 - 2:00pm
Despite the limitations of Alzheimer's drugs like lecanemab, this new class of treatments and a group of experimental vaccines are paving the way to a world without dementia
Categories: Astronomy

We will one day be able to slow, halt and even eradicate Alzheimer's

New Scientist Space - Space Headlines - Wed, 08/28/2024 - 2:00pm
Despite the limitations of Alzheimer's drugs like lecanemab, this new class of treatments and a group of experimental vaccines are paving the way to a world without dementia
Categories: Astronomy

Is my frequent laughter damaging my credibility at work?

New Scientist Space - Cosmology - Wed, 08/28/2024 - 2:00pm
Our advice columnist David Robson looks into the science of how we react to laughter
Categories: Astronomy

Is my frequent laughter damaging my credibility at work?

New Scientist Space - Space Headlines - Wed, 08/28/2024 - 2:00pm
Our advice columnist David Robson looks into the science of how we react to laughter
Categories: Astronomy

This blend of spy caper and climate fiction is top-notch

New Scientist Space - Cosmology - Wed, 08/28/2024 - 2:00pm
For an undercover operative, Sadie Smith takes unnecessary risks as she infiltrates an eco-activist group. Why? And where do the Neanderthals fit into Creation Lake, Rachel Kushner's Booker-longlisted climate fiction novel? Emily H. Wilson loved finding out
Categories: Astronomy