Personally, I don't think there's intelligent life on other planets. Why should other planets be any different from this one?

— Bob Monkhouse

Feed aggregator

This blend of spy caper and climate fiction is top-notch

New Scientist Space - Space Headlines - Wed, 08/28/2024 - 2:00pm
For an undercover operative, Sadie Smith takes unnecessary risks as she infiltrates an eco-activist group. Why? And where do the Neanderthals fit into Creation Lake, Rachel Kushner's Booker-longlisted climate fiction novel? Emily H. Wilson loved finding out
Categories: Astronomy

A selection of elaborate birds' nests from around the world

New Scientist Space - Cosmology - Wed, 08/28/2024 - 2:00pm
These photos showcase some of the intricately created birds' nests found in the Natural History Museum in Tring, UK, home to one of the world's largest ornithological collections
Categories: Astronomy

James Cameron's new ocean-life series is try-hard but effective

New Scientist Space - Cosmology - Wed, 08/28/2024 - 2:00pm
Despite some hype, OceanXplorers, a new ocean-life nature series, delivers on the visuals – and on showcasing the effects of climate change
Categories: Astronomy

A selection of elaborate birds' nests from around the world

New Scientist Space - Space Headlines - Wed, 08/28/2024 - 2:00pm
These photos showcase some of the intricately created birds' nests found in the Natural History Museum in Tring, UK, home to one of the world's largest ornithological collections
Categories: Astronomy

James Cameron's new ocean-life series is try-hard but effective

New Scientist Space - Space Headlines - Wed, 08/28/2024 - 2:00pm
Despite some hype, OceanXplorers, a new ocean-life nature series, delivers on the visuals – and on showcasing the effects of climate change
Categories: Astronomy

Never mind the health benefits, there are green reasons to stop vaping

New Scientist Space - Cosmology - Wed, 08/28/2024 - 2:00pm
I am one of millions of vapers in the UK, but growing evidence of the impact these e-cigarettes have on the environment means it may be time to quit, says Graham Lawton
Categories: Astronomy

Never mind the health benefits, there are green reasons to stop vaping

New Scientist Space - Space Headlines - Wed, 08/28/2024 - 2:00pm
I am one of millions of vapers in the UK, but growing evidence of the impact these e-cigarettes have on the environment means it may be time to quit, says Graham Lawton
Categories: Astronomy

Could this be the way to get your children to eat their greens?

New Scientist Space - Space Headlines - Wed, 08/28/2024 - 2:00pm
Feedback brings news of a study in which scientists explored whether seeing happy broccoli eaters might encourage reluctant children to get on with it already and eat their vegetables
Categories: Astronomy

How a viral video made turtles the face of the ocean plastic crisis

New Scientist Space - Space Headlines - Wed, 08/28/2024 - 2:00pm
A video of a turtle with a straw up its nose changed attitudes to plastic pollution around the world. But we must do more, says marine biologist Vanessa Bézy
Categories: Astronomy

Could this be the way to get your children to eat their greens?

New Scientist Space - Cosmology - Wed, 08/28/2024 - 2:00pm
Feedback brings news of a study in which scientists explored whether seeing happy broccoli eaters might encourage reluctant children to get on with it already and eat their vegetables
Categories: Astronomy

How a viral video made turtles the face of the ocean plastic crisis

New Scientist Space - Cosmology - Wed, 08/28/2024 - 2:00pm
A video of a turtle with a straw up its nose changed attitudes to plastic pollution around the world. But we must do more, says marine biologist Vanessa Bézy
Categories: Astronomy

A gripping account of morality shows how we work out right from wrong

New Scientist Space - Cosmology - Wed, 08/28/2024 - 2:00pm
Where do morals come from? In Animals, Robots, Gods, anthropologist Webb Keane argues imagination and differing senses of the world are key to discerning right from wrong
Categories: Astronomy

A gripping account of morality shows how we work out right from wrong

New Scientist Space - Space Headlines - Wed, 08/28/2024 - 2:00pm
Where do morals come from? In Animals, Robots, Gods, anthropologist Webb Keane argues imagination and differing senses of the world are key to discerning right from wrong
Categories: Astronomy

Japan declares its SLIM moon lander dead at last

Space.com - Wed, 08/28/2024 - 1:55pm
The SLIM moon lander survived a staggering three lunar nights before JAXA officially declared the mission to be over.
Categories: Astronomy

NASA Assigns Astronaut Jonny Kim to First Space Station Mission

NASA - Breaking News - Wed, 08/28/2024 - 1:17pm
Official portrait of NASA astronaut Jonny Kim in an EMU suit.Credit: NASA

During his first mission to the International Space Station, NASA astronaut Jonny Kim will serve as a flight engineer and member of the upcoming Expedition 72/73 crew.

Kim will launch on the Roscosmos Soyuz MS-27 spacecraft in March 2025, accompanied by Roscosmos cosmonauts Sergey Ryzhikov and Alexey Zubritsky. The trio will spend approximately eight months at the space station.

While aboard the orbiting laboratory, Kim will conduct scientific investigations and technology demonstrations to help prepare the crew for future space missions and provide benefits to people on Earth.

NASA selected Kim as an astronaut in 2017. After completing the initial astronaut candidate training, Kim supported mission and crew operations in various roles including the Expedition 65 lead operations officer, T-38 operations liaison, and space station capcom chief engineer.

A native of Los Angeles, Kim is a United States Navy lieutenant commander and dual designated naval aviator and flight surgeon. Kim also served as an enlisted Navy SEAL. He holds a bachelor’s degree in Mathematics from the University of San Diego and a medical degree from Harvard Medical School in Boston, and completed his internship with the Harvard Affiliated Emergency Medicine Residency at Massachusetts General Hospital and Brigham and Women’s Hospital.

For more than two decades, humans have lived and worked continuously aboard the International Space Station, advancing scientific knowledge, and making research breakthroughs not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is able to more fully focus its resources on deep space missions to the Moon and Mars.

Get breaking news, images and features from the space station on the station blogInstagramFacebook, and X.

Learn more about International Space Station research and operations at:

https://www.nasa.gov/station

-end-

Josh Finch / Claire O’Shea
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov

Courtney Beasley
Johnson Space Center, Houston
281-483-5111
courtney.m.beasley@nasa.gov

Share Details Last Updated Aug 28, 2024 LocationNASA Headquarters Related Terms
Categories: NASA

NASA Project in Puerto Rico Trains Students in Marine Biology

NASA - Breaking News - Wed, 08/28/2024 - 12:55pm
7 Min Read NASA Project in Puerto Rico Trains Students in Marine Biology A forested green peninsula of Culebra Island juts into the blue waters of the Caribbean as a rain storm hits in the distance. The teal blue surrounding the island indicates shallow waters, home to the island's famous coral reefs. Credits: NASA Ames/Milan Loiacono

Tainaliz Marie Rodríguez Lugo took a deep breath, adjusted her snorkel mask, and plunged into the ocean, fins first. Three weeks earlier, Rodríguez Lugo couldn’t swim. Now the college student was gathering data on water quality and coral reefs for a NASA-led marine biology project in Puerto Rico, where she lives.  

“There is so much life down there that I never knew about,” Rodríguez Lugo said. “And it’s beautiful.”  

“There is so much life down there that I never knew about, and it’s beautiful.”

Tainaliz Marie Rodríguez Lugo

OCEANOS 2024 Intern

The sea whip and purple sea fans in the photo above are found off the coast of Playa Melones, Culebra, a small island off the east cost of Puerto Rico and a popular destination for snorkelers.

Puerto Rico is home to more than 1,300 square miles of coral reefs, which play a vital role in protecting the island from storms, waves, and hurricanes. Reef-related tourism provides nearly $2 billion in annual income for the island.

But coral reefs in Puerto Rico and around the world are experiencing more frequent and severe bleaching events. High ocean temperatures in regions around the globe have led to coral bleaching, which is when corals expel zooxanthellae – the colorful, symbiotic microscopic algae that live inside coral tissues and provide 80-90% of its nutrients. When stressors persist, the corals eventually starve and turn bone-white.

In April 2024, NOAA (National Oceanic and Atmospheric Administration) announced that the world was experiencing a global bleaching event, the fourth on record. You can see bleached spots in the lobed star coral pictured above, which is also colonized by Ramicrusta, an invasive, burnt orange algae that poses an additional threat to reefs. 

Students Are Given Ocean Research Tools

Beginning in June, the month-long program that Rodriguez and 29 other local students participated in is called the Ocean Community Engagement and Awareness using NASA Earth Observations and Science for Hispanic/Latino Students (OCEANOS).  The goal of OCEANOS is twofold: to teach Puerto Rican students about marine ecology and conservation, and to train students through hands-on fieldwork how to use marine science tools to monitor the health of coral reefs.

The course included classroom instruction, scientific fieldwork, collecting and analyzing ocean data from La Parguera and Culebra Island, and a final presentation. 

In the photo, OCEANOS instructor Samuel Suleiman shows a 3D-printed clump of staghorn coral to a group of students off the coast of Culebra. In areas where coral habitats have been damaged, conservationists use 3D-printed corals to attract and protect fish, algae, and other wildlife. 

To practice coral surveying techniques and evaluate biodiversity,students used compact cameras to snap a photo every half second, recording seven-meter by seven-meter quadrants of the ocean floor. Back on land, the students stitched these images – roughly 600 images per quadrant – into high-resolution mosaics, which they then used to catalog the types and distributions of various coral species.  

Low Light, Poor Water Quality, and Invasive Species Threaten Coral Reefs

Students also built their own low-cost instruments, with sensors on each end to measure temperature and light, to help assess water quality and characteristics.  

The ideal temperature range for coral falls between 77- 82 degrees Fahrenheit (25-28 degrees Celsius). Water above or below this range is considered a potential stressor for coral and can impair growth. It can also increase the risk of disease, bleaching, and reproductive issues.    

Coral relies on light for growth. Less light means less photosynthesis for the zooxanthellae that live inside the coral, which in turn means less food for the coral itself. Cloudy water due to excessive sediment or phytoplankton can dim or block sunlight.

Additional threats to coral include fishing equipment, boat groundings, chemical runoff, and invasive species.  

In the photo above, OCEANOS instructor Juan Torres-Pérez holds two clumps of cyanobacteria, a type of bacteria that has choked a section of reef near Playa Melones. The exact cause of this excessive cyanobacteria growth is unclear, but it is likely due to land-based pollution leaching into nearby waters, he said. In the background, dark brown piles of cyanobacteria littering the ocean floor are visible. 

Students Help Grow and Plant New Coral

Suleiman walked students through the process of planting new coral, which involved tying loose staghorn and elkhorn corals into a square frame. Each frame holds about 100 individual pieces of coral.  Suleiman leads a group called Sociedad Ambiente Marino (SAM), which has been working for more than 20 years to cultivate and plant more than 160,000 corals around Puerto Rico.

Divers anchored these frames to the ocean floor. Under ideal conditions, branching species like elkhorn and staghorn coral grow one centimeter per month, or about 12-13 centimeters per year, making them ideal candidates for coral reef restoration. By comparison, mountainous and boulder coral, also prevalent in the Caribbean Sea, grow an average of just one centimeter per year. 

The frames will remain on the ocean floor for 10 to 14 months, until the corals have quadrupled in size. At any given time, SAM has about 45 of these frames in coral ‘farms’ around Culebra, totaling almost 4,500 corals. 

Once the corals are ready to be planted, they will be added to various reefs to replace damaged or bleached corals, and shore up vulnerable habitats.

In the photo above, Suleiman gathers loose corals to place around an endangered coral species Dendrogyra cylindrus, more commonly referred to as Pillar Coral (front left). This underwater “garden,” as he called it, should attract fish and wildlife such as sea urchins, which will give the endangered coral — and the other species in this small reef — a better chance of survival.

A New Generation of Marine Scientists

From the 2023 OCEANOS class, roughly half of the undergraduate students went on to pursue marine science degrees, and many hope to continue with a post-graduate program. For a scientific field historically lacking diverse voices, this is a promising step.

Among the high school students in the 2023 class, three went on to change their degree plans to oceanography after participating in the OCEANOS program, while others are finding ways to incorporate marine science into their studies.

Francisco Méndez Negrón, a 2023 OCEANOS graduate, is now a computer science student at the University of Puerto Rico at Rio Piedras and wants to apply robotics to marine ecology. “My goal is to integrate computer science and oceanography to make something that can contribute to the problems marine ecosystems are facing, mostly originated by us humans,” Méndez Negrón said. He returned to the OCEANOS program to serve as a mentor for the 2024 class. 

As for Tainaliz Marie Rodriguez Lugo, she managed to overcome her swim anxiety while discovering a love of the ocean. She credited the instructors who were patient, encouraging, and never left her side in the water. 

“I was really scared going into this internship,” Rodríguez Lugo said. “I didn’t know how to swim, and I was starting a program literally called ‘Oceans.’ But now I love it: I could spend all day in the ocean.”

I was really scared going into this internship. I didn’t know how to swim, and I was starting a program literally called ‘Oceans.’ But now I love it: I could spend all day in the ocean.

Tainaliz Marie Rodríguez Lugo

OCEANOS 2024 Intern

When asked how she would describe coral to someone who has never seen one, Rodríguez Lugo just laughed. “I can’t. There are no words for it. I would just take them to the reefs.” 

For more information about OCEANOS, visit:

https://www.nasa.gov/oceanos

The OCEANOS program’s final session will take place next year. Applications for the 2025 OCEANOS program will open in March. To apply, visit:

https://nasa.gov/oceanos-application

Photographs and story by Milan Loiacono, NASA’s Ames Research Center

About the AuthorMilan LoiaconoScience Communication Specialist

Milan Loiacono is a science communication specialist for the Earth Science Division at NASA Ames Research Center.

Share Details Last Updated Aug 28, 2024 Related Terms Keep Exploring Discover More Topics From NASA

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

NASA Pilot Program Continues to Award Small Business Innovators 

NASA - Breaking News - Wed, 08/28/2024 - 12:34pm

Earlier this month, nine small businesses received 2023 NASA Small Business Innovation Research (SBIR) Ignite Phase II awards to further develop technologies that may be used in the agency’s missions and in the commercial space industry. 

The SBIR Ignite Phase II awardees, who will receive up to $850,000 to fund their projects, are developing technology capabilities in the detection of wildfires, support for water management in agriculture, in-space debris detection, mineral mining from lunar regolith, in-space production, and more. These capabilities are vital to supporting deep space exploration, low Earth orbit missions, and preserving life on our home planet for the benefit of all. The businesses initially were selected for Phase I awards in 2023 and provided six months and up to $150,000 to prove their concepts before competing for Phase II. 

“We want to support innovators across the aerospace industry because their technologies have the potential to make a big impact in the commercial market. A rich and diverse marketplace creates more opportunity for us all. These Phase II awards illuminate a clear path for a unique range of technologies that we believe will positively influence the lives of all Americans.”

Jason L. Kessler

NASA SBIR/STTR Program Executive

The SBIR Ignite pilot initiative supports product-driven small businesses, startups, and entrepreneurs that have commercialization at the forefront of their innovation strategies and processes but that are not targeting NASA as a primary customer. The pilot initiative provides funding and other support to mitigate risk in technologies that have strong commercial potential by offering lower barriers to entry, a streamlined review and selection process, and accelerated technology development and awards as compared to the NASA SBIR program’s main solicitation. It also focuses on helping make participating companies more appealing to investors, customers, and partners, while fulfilling SBIR’s mission of increasing commercialization of innovations derived from federal research and development. 

While the agency’s main Small Business Innovation Research and Small Business Technology Transfer solicitations focus on technologies with potential for infusion in both NASA missions and commercialization in the marketplace, the SBIR Ignite opportunity is less prescriptive and focuses on topics that are relevant to emerging commercial markets in aerospace, such as accelerating in-space production applications in low Earth orbit.  

The awarded companies are: 

  • Astral Forge, LLC, Palo Alto, California 
  • Astrobotic Technology Inc., Pittsburgh 
  • Benchmark Space Systems, Burlington, Vermont 
  • Brayton Energy, LLC, Hampton, New Hampshire 
  • Channel-Logistics LLC dba Space-Eyes, Miami 
  • GeoVisual Analytics, Westminster, Colorado 
  • Space Lab Technologies, LLC, Boulder, Colorado 
  • Space Tango, Lexington, Kentucky 
  • VerdeGo Aero, De Leon Springs, Florida 

The third year of NASA Small Business Innovation Research (SBIR) Ignite is underway, as the 2024 SBIR Ignite Phase I solicitation closed on July 30, 2024. Those selections are expected to be announced Fall 2024.

NASA’s Small Business Innovation Research and Small Business Technology Transfer program is part of NASA’s Space Technology Mission Directorate and is managed by NASA’s Ames Research Center in Silicon Valley. 

 

Categories: NASA

SpaceX rocket catches fire, falls over while landing at sea after record-breaking Starlink launch (video)

Space.com - Wed, 08/28/2024 - 12:18pm
A SpaceX Falcon 9 rocket set a reusability record during a Starlink satellite launch early Wednesday morning (Aug. 28) but failed to stick its landing.
Categories: Astronomy

NASA, SpaceX Extend US Media Deadline for Crew-9 Launch to Station

NASA - Breaking News - Wed, 08/28/2024 - 12:18pm
The SpaceX Dragon Endurance crew ship, carrying four Crew-5 members, approaches the International Space Station with the Earth’s horizon in the background. Credit: NASA/Kjell Lindgren

NASA is extending U.S. media accreditation for the launch of the agency’s ninth rotational mission of a SpaceX Falcon 9 rocket and Dragon spacecraft that will carry astronauts to the International Space Station. This mission is part of NASA’s Commercial Crew Program.

The application period for U.S. media and U.S. citizens representing international media organizations is extended until 11:59 p.m. EDT on Tuesday, Sept. 3. Media members who have already applied do not need to reapply. All new accreditation requests must be submitted online at:

https://media.ksc.nasa.gov

Launch of NASA’s SpaceX Crew-9 mission, originally slated with four crew members, is targeted for no earlier than Tuesday, Sept. 24, from Space Launch Complex-40 at Cape Canaveral Space Force Station in Florida.

NASA announced astronauts Butch Wilmore and Suni Williams will remain on station and return home in February 2025 aboard Dragon with two other crew members assigned to the Crew-9 mission, during a news conference on Aug. 24. The agency will share more information about the Crew-9 complement when details are finalized.

NASA and SpaceX currently are working on several items before launch, including reconfiguring seats on the Dragon and adjusting the manifest to carry additional cargo, personal effects, and Dragon-specific spacesuits for Wilmore and Williams.

NASA’s media accreditation policy is available online. For questions about accreditation or special logistical requests, email: ksc-media-accreditat@mail.nasa.gov. Requests for space for satellite trucks, tents, or electrical connections also are due by Sept. 3.

For other questions, please contact NASA Kennedy’s newsroom at: 321-867-2468.

Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: 321-501-8425, o Messod Bendayan: 256-930-1371.

For launch coverage and more information about the mission, visit:

https://www.nasa.gov/commercialcrew

-end-

Joshua Finch / Claire O’Shea
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov

Steve Siceloff / Danielle Sempsrott / Stephanie Plucinsky
Kennedy Space Center, Florida
321-867-2468
steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov

Leah Cheshier
Johnson Space Center, Houston
281-483-5111
leah.d.cheshier@nasa.gov

Categories: NASA

15 Years Ago: STS-128 Delivers Cargo to Enable Six-Person Space Station Crew

NASA - Breaking News - Wed, 08/28/2024 - 12:10pm

On Aug. 28, 2009, space shuttle Discovery began its 37th trip into space. The 17A mission to the International Space Station was the 30th shuttle flight to the orbiting lab. During the 14-day mission, the seven-member STS-128 crew worked with Expedition 20, the first six-person crew aboard the station, during nine days of docked operations. In addition to completing a one-for-one long-duration crew member exchange, they delivered more than seven tons of supplies, including three new payload racks and three systems to maintain a six-person crew aboard the space station. They completed three spacewalks to perform maintenance on the facility, prepare the station for the arrival of the next module, and retrieve two science experiments for return to Earth.


Left: The STS-128 crew patch. Middle: Official photograph of the STS-128 crew of José M. Hernández, left, Kevin A. Ford, John D. “Danny” Olivas, Nicole P. Stott, A. Christer Fuglesang of Sweden representing the European Space Agency, Frederick “Rick” W. Sturckow, and Patrick G. Forrester. Right: The 17A mission patch.

The seven-person STS-128 crew consisted of Commander Frederick “Rick” W. Sturckow, Pilot Kevin A. Ford, and Mission Specialists Patrick G. Forrester, José M. Hernández, John D. “Danny” Olivas, and A. Christer Fuglesang of Sweden representing the European Space Agency (ESA), and Nicole P. Stott. Primary objectives of the mission included the launch to the station of facilities required to maintain a permanent six-person crew and the exchange of Stott for Timothy L. Kopra who had been aboard the space station since July 2009 as a member of Expedition 20. The facilities, launched inside the Leonardo Multi-Purpose Logistics Module (MPLM), included an additional Crew Quarters, the T2 COLBERT treadmill, and an Air Revitalization System rack. Three payload racks – the Materials Science Research Rack, the Fluids Integrated Rack, and the second Minus Eighty-degree Laboratory Freezer for ISS – also rode inside the MPLM for transfer to the station to expand its research capabilities.


Left: The STS-128 crew at the conclusion of the Terminal Countdown Demonstration Test at NASA’s Kennedy Space Center in Florida. Middle: Space shuttle Discovery during the rollout to Launch Pad 39A. Right: The Leonardo Multi-Purpose Logistics Module in Discovery’s payload bay at Launch Pad 39A.

Discovery returned from its previous mission, STS-119, on March 28, 2009, and workers towed it to the Orbiter Processing Facility at NASA’s Kennedy Space Center (KSC). The orbiter rolled over to the Vehicle Assembly Building on July 26, and after mating with its external tank and twin solid rocket boosters, rolled out to Launch Pad 39A on Aug. 4, targeting Aug. 25 for launch. Three days later, the seven-member crew participated in the Terminal Countdown Demonstration Test, essentially a dress rehearsal of the actual countdown for launch, returned to Houston for final training. They arrived at KSC on Aug 19 to prepare for launch.


Left: Liftoff of space shuttle Discovery on STS-128. Right: Discovery streaks into the night sky.

Clouds and lighting in the launch area forced a scrub of the first launch attempt on Aug. 25, while a faulty valve indicator scrubbed the next day’s attempt. On Aug. 28, at 11:59 p.m. EDT, space shuttle Discovery lifted off from Launch Pad 39A to begin its 37th trip into space, carrying its seven-member crew on the 17A space station outfitting and resupply mission. Eight and a half minutes later, Discovery and its crew had reached orbit. This marked Sturckow’s fourth time in space, Forrester’s third, Olivas’ and Fuglesang’s second, while Ford, Hernández, and Stott enjoyed their first taste of weightlessness.


First time space flyers Kevin A. Ford, left, José M. Hernández, and Nicole P. Stott enjoying the first few minutes of weightlessness shortly after reaching orbit.

After reaching orbit, the crew opened the payload bay doors and deployed the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight. The astronauts spent five hours on their second day in space conducting a detailed inspection of Discovery’s nose cap and wing leading edges, with Ford, Forrester, and Hernández taking turns operating the Shuttle Remote Manipulator System (SRMS), or robotic arm, and the Orbiter Boom Sensor System (OBSS).


Left: Frederick “Rick” W. Sturckow, left, and Kevin A. Ford perform maneuvers for the rendezvous with the space station. Middle: Discovery as seen from the space station during the rendezvous. Right: The space station as seen from Discovery during the rendezvous.

On the mission’s third day, Sturckow assisted by his crewmates brought Discovery in for a docking with the space station. The docking occurred on the 25th anniversary of Discovery’s first launch on the STS-41D mission on Aug. 30, 1984. During the rendezvous, Sturckow stopped the approach at 600 feet and completed the Rendezvous Pitch Maneuver so astronauts aboard the station could photograph Discovery’s underside to look for any damage to the tiles. Shortly after docking, the crews opened the hatches between the two spacecraft and the six-person station crew welcomed the seven-member shuttle crew. After exchanging Soyuz spacesuits and seat liners, Stott joined the Expedition 20 crew and Kopra the STS-128 crew.


Left: Transfer of Timothy L. Kopra’s Soyuz seat liner and spacesuit from the space station to the space shuttle makes him an STS-128 crew member for return to Earth. Middle:Kevin A. Ford, left, and Michael R. Barratt operate the station’s robotic arm to transfer the Leonardo Multi-Purpose Logistics Module (MPLM) from the shuttle payload bay to the space station. Right: The MPLM approaches the Node 2 nadir berthing port.


Left: Frank DeWinne, left, and A. Christer Fuglesang, both of the European Space Agency, open the hatch to the Leonardo Multi-Purpose Logistics Module. Middle: José M. Hernández inside the MPLM to monitor transfer operations. Right: DeWinne, left, and Fuglesang begin the transfer of the T2 COLBERT treadmill from the MPLM to the space station.

The day after docking, Ford and Expedition 20 Flight Engineer Michael R. Barrrat used the space station’s robotic arm to grapple the MPLM in the shuttle’s payload bay. They transferred it to the station, berthing it at the Harmony Node 2 module’s nadir port. The crew activated the MPLM and Fuglesang and Expedition 20 Commander Frank L. DeWinne of Belgium representing ESA opened the hatches, enabling the start of cargo transfers.


Left: During the first spacewalk, John D. “Danny” Olivas, left, and Nicole P. Stott remove the EuTEF experiment from the Columbus module. Middle left: Stott rides the station robotic arm carrying the EuTEF experiment, with the removed Ammonia Tank Assembly attached to it. Middle right: An open MISSE container showing the various exposure samples. Right: Stott carrying one of the two closed MISSE containers.

During the mission’s first spacewalk on flight day five, Olivas and Stott first removed a used Ammonia Tank Assembly (ATA) from the P1 truss segment. With Ford and Expedition 20 Flight Engineer Robert B. Thirsk of the Canadian Space Agency operating the space station’s robotic arm, they moved Stott to the end of the Columbus module, where she and Olivas removed the European Technology Exposure Facility (EuTEF) science payload. Ford and Thirsk translated Stott to the shuttle’s payload bay where she and Olivas stowed it for return to Earth. The pair returned to Columbus to close and retrieve the two Materials on International Space Station Experiments (MISSE) and stowed them in the payload bay for return. This first spacewalk lasted 6 hours 35 minutes. Meanwhile, other crew members busied themselves with transferring racks and cargo from the MPLM to the space station.


Left: A. Christer Fugelsang of the European Space Agency shows off his installation of the Air Revitalization System rack in the Kibo module. Middle: Patrick G. Forrester with three bags during cargo transfer operations. Right: During handover operations, outgoing space station crew member Timothy L. Kopra, middle, shows incoming crew member Nicole P. Stott how to give a proper haircut in space.


Left: Frederick “Rick” W. Sturckow, left, and Patrick G. Forrester seen through an overhead window. Middle: During the mission’s second spacewalk, A. Christer Fuglesang carries both the old and the new Ammonia Tank Assemblies (ATA) on the end of the space station robotic arm. Right: Fuglesang stowing the old ATA in the shuttle’s payload bay.

Cargo transfers continued throughout flight day six, including the three payload racks. On flight day seven, Olivas and Fuglesang conducted the mission’s second spacewalk, lasting 6 hours 39 minutes. They completed the swap out of the ATA, with Fuglesang riding the station arm carrying both the old and the new units, before they installed the new unit on the P1 truss, and then returned with the old unit to stow it in the payload bay.


Left: John D. “Danny” Olivas works in the shuttle’s payload bay during the mission’s third spacewalk. Right: Olivas, left, and A. Christer Fuglesang work on the space station truss.

With cargo transfers continuing on flight day eight, the next day Olivas and Fuglesang stepped outside for the mission’s third and final spacewalk. They completed a variety of tasks, including routing cables to accommodate the Tranquility Node 3 module scheduled to arrive on a future space shuttle flight, and installing GPS antennas on the S0 truss. This spacewalk lasted 7 hours 1 minute, bringing the total spacewalking time for STS-128 to 20 hours 15 minutes. The crew enjoyed a well-deserved off-duty day on flight day 10.


Left: Astronauts robotically stow the Leonardo Multi-Purpose Logistics Module (MPLM) back in Discovery’s payload bay. Right: A. Christer Fuglesang, left, and Nicole P. Stott operate the space station’s robotic arm to stow the MPLM in the payload bay.

The astronauts completed the final transfers on Sept. 8, the mission’s 11th flight day, they deactivated the MPLM, and closed its hatch. Operating the space station’s robotic arm, Stott and Fuglesang transferred the MPLM from the station back to the shuttle’s payload bay. On Sept. 10, the next vehicle to occupy that port, the Japanese H-II Transfer Vehicle-1 (HTV-1), launched from the Tanegashima Space Center, arriving at the station one week later.


Left: The 13 members of Expedition 20, blue shirts, and STS-128, red shirts, pose for a final photograph before saying their farewells. Right: Four members of the astronaut class of 2000 in space together.


Left: Kevin A. Ford pilots Discovery for the undocking and flyaround. Right: The space station seen from Discovery during the flyaround.

That same day, they held a brief farewell ceremony, parted company, and closed the hatches between the two spacecraft. The next day, with Ford at the controls, Discovery undocked from the space station, having spent nine days as a single spacecraft. Ford completed a flyaround  of the station, with the astronauts photographing it to document its condition. A final separation burn sent Discovery on its way. Ford, Forrester, and Hernández used the shuttle’s arm to pick up the OBSS and perform a late inspection of Discovery’s thermal protection system. On flight day 13, Sturckow and Ford tested Discovery’s reaction control system thrusters and flight control surfaces in preparation for the next day’s entry and landing. The entire crew busied themselves with stowing all unneeded equipment. Bad weather at KSC delayed the landing by a day, and more bad weather diverted the landing to Edwards Air Force Base in California.


Left: Discovery touches down at Edwards Air Force Base in California. Middle: The Crew Transport Vehicle has approached Discovery to enable the astronauts to exit the vehicle. Right: Discovery atop its Shuttle Carrier Aircraft departs Edwards for NASA’s Kennedy Space Center in Florida.


Left: Six of the STS-128 astronauts pose with Discovery on the runway at Edwards Air Force Base in California. Right: The welcome home ceremony for the STS-128 crew at Ellington Field in Houston.

On Sept. 11, the astronauts closed Discovery’s payload bay doors, donned their launch and entry suits, and strapped themselves into their seats, a special recumbent one for Kopra who had spent the last two months in weightlessness. Sturckow fired Discovery’s two Orbital Maneuvering System engines to bring them out of orbit and head for a landing half an orbit later. He guided Discovery to a smooth touchdown at Edwards, as it turned out the final space shuttle landing at the California facility. The landing capped off a very successful STS-128 mission of 13 days, 20 hours, 54 minutes. They orbited the planet 219 times. Kopra spent 58 days, 2 hours, 50 minutes in space, completing 920 orbits of the Earth. Workers placed Discovery atop a Shuttle Carrier Aircraft, a modified Boeing 747, to ferry it back to KSC where it landed on Sept. 21. Engineers began preparing it for its next flight, STS-131 in April 2010.

Enjoy the crew narrate a video about the STS-128 mission.

Explore More 10 min read 40 Years Ago: President Reagan Announces Teacher in Space Project Article 1 day ago 12 min read 55 Years Ago: Apollo 11 Astronauts End Quarantine, Feted from Coast to Coast Article 1 week ago 7 min read 55 Years Ago: NASA Group 7 Astronaut Selection Article 2 weeks ago
Categories: NASA