"Man will never reach the moon regardless of all future scientific advances."

— Dr. Lee De Forest

NASA

NASA Scientist Finds Predicted Companion Star to Betelgeuse

NASA - Breaking News - Wed, 07/23/2025 - 3:44pm

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) An image of Betelgeuse, the yellow-red star, and the signature of its close companion, the faint blue object.Data: NASA/JPL/NOIRlab. Visualization: NOIRLAB.

A century-old hypothesis that Betelgeuse, the 10th brightest star in our night sky, is orbited by a very close companion star was proved true by a team of astrophysicists led by a scientist at NASA’s Ames Research Center in California’s Silicon Valley.

The research published in The Astrophysical Journal Letters in the paper “Probable Direct Imaging Discovery of the Stellar Companion to Betelgeuse.”

Fluctuations in the brightness and measured velocity of Betelgeuse, the closest red supergiant star to Earth, had long presented clues that it may have a partner, but the bigger star’s intense glow made direct observations of any fainter neighbors nearly impossible.

Two recent studies by other teams of astronomers reignited the companion star hypothesis by using more than 100 years of Betelgeuse observations to provide predictions of the companion’s location and brightness.

If the smaller star did exist, the location predictions suggested that scientists had a window of just a few months to observe the companion star at its widest separation from Betelgeuse, as it orbited near the visible edge of the supergiant. After that, they would have to wait another three years for it to orbit to the other side and again leave the overpowering glow of its larger companion.

Searches for the companion were initially made using space-based telescopes, because observing through Earth’s atmosphere can blur images of astronomical objects. But these efforts did not detect the companion.

Steve Howell, a senior research scientist at Ames, recognized the ground-based Gemini North telescope in Hawai’i, one of the largest in the world, paired with a special, high-resolution camera built by NASA, had the potential to directly observe the close companion to Betelgeuse, despite the atmospheric blurring.

Officially called the ‘Alopeke speckle instrument, the advanced imaging camera let them obtain many thousands of short exposures to measure the atmospheric interference in their data and remove it with detailed image processing, providing an image of Betelgeuse and its companion.

Howell’s team detected the very faint companion star right where it was predicted to be, orbiting very close to the outer edge of Betelgeuse.

“I hope our discovery excites other astrophysicists about the robust power of ground-based telescopes and speckle imagers – a key to opening new observational windows,” said Howell. “This can help unlock the great mysteries in our universe.”

To start, this discovery of a close companion to Betelgeuse may explain why other similar red supergiant stars undergo periodic changes in their brightness on the scale of many years.

Howell plans to continue observations of Betelgeuse’s stellar companion to better understand its nature. The companion star will again return to its greatest separation from Betelgeuse in November 2027, a time when it will be easiest to detect.

Having found the long-anticipated companion star, Howell turned to giving it a name. The traditional star name “Betelgeuse” derives from Arabic, meaning “the hand of al-Jawza’,” a female figure in old Arabian legend. Fittingly, Howell’s team named the orbiting companion “Siwarha,” meaning “her bracelet.”

Photo of the constellation Orion, showing the location of Betelgeuse – and its newfound companion star.NOIRLab/Eckhard Slawik

The NASA–National Science Foundation Exoplanet Observational Research Program (NN-EXPLORE) is a joint initiative to advance U.S. exoplanet science by providing the community with access to cutting-edge, ground-based observational facilities. Managed by NASA’s Exoplanet Exploration Program, NN-EXPLORE supports and enhances the scientific return of space missions such as Kepler, TESS (Transiting Exoplanet Survey Satellite), Hubble Space Telescope, and James Webb Space Telescope by enabling essential follow-up observations from the ground—creating strong synergies between space-based discoveries and ground-based characterization. NASA’s Exoplanet Exploration Program is located at the agency’s Jet Propulsion Laboratory.

To learn more about NN-EXPLORE, visit:

https://exoplanets.nasa.gov/exep/NNExplore/overview

Share Details Last Updated Jul 23, 2025 Related Terms Explore More 5 min read How NASA Is Testing AI to Make Earth-Observing Satellites Smarter Article 5 hours ago 6 min read NASA’s Hubble, Chandra Spot Rare Type of Black Hole Eating a Star

NASA’s Hubble Space Telescope and NASA’s Chandra X-ray Observatory have teamed up to identify a…

Article 6 hours ago
4 min read NASA Tests 5G-Based Aviation Network to Boost Air Taxi Connectivity Article 1 day ago Keep Exploring Discover More Topics From NASA

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

NASA Scientist Finds Predicted Companion Star to Betelgeuse

NASA News - Wed, 07/23/2025 - 3:44pm

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) An image of Betelgeuse, the yellow-red star, and the signature of its close companion, the faint blue object.Data: NASA/JPL/NOIRlab. Visualization: NOIRLAB.

A century-old hypothesis that Betelgeuse, the 10th brightest star in our night sky, is orbited by a very close companion star was proved true by a team of astrophysicists led by a scientist at NASA’s Ames Research Center in California’s Silicon Valley.

The research published in The Astrophysical Journal Letters in the paper “Probable Direct Imaging Discovery of the Stellar Companion to Betelgeuse.”

Fluctuations in the brightness and measured velocity of Betelgeuse, the closest red supergiant star to Earth, had long presented clues that it may have a partner, but the bigger star’s intense glow made direct observations of any fainter neighbors nearly impossible.

Two recent studies by other teams of astronomers reignited the companion star hypothesis by using more than 100 years of Betelgeuse observations to provide predictions of the companion’s location and brightness.

If the smaller star did exist, the location predictions suggested that scientists had a window of just a few months to observe the companion star at its widest separation from Betelgeuse, as it orbited near the visible edge of the supergiant. After that, they would have to wait another three years for it to orbit to the other side and again leave the overpowering glow of its larger companion.

Searches for the companion were initially made using space-based telescopes, because observing through Earth’s atmosphere can blur images of astronomical objects. But these efforts did not detect the companion.

Steve Howell, a senior research scientist at Ames, recognized the ground-based Gemini North telescope in Hawai’i, one of the largest in the world, paired with a special, high-resolution camera built by NASA, had the potential to directly observe the close companion to Betelgeuse, despite the atmospheric blurring.

Officially called the ‘Alopeke speckle instrument, the advanced imaging camera let them obtain many thousands of short exposures to measure the atmospheric interference in their data and remove it with detailed image processing, providing an image of Betelgeuse and its companion.

Howell’s team detected the very faint companion star right where it was predicted to be, orbiting very close to the outer edge of Betelgeuse.

“I hope our discovery excites other astrophysicists about the robust power of ground-based telescopes and speckle imagers – a key to opening new observational windows,” said Howell. “This can help unlock the great mysteries in our universe.”

To start, this discovery of a close companion to Betelgeuse may explain why other similar red supergiant stars undergo periodic changes in their brightness on the scale of many years.

Howell plans to continue observations of Betelgeuse’s stellar companion to better understand its nature. The companion star will again return to its greatest separation from Betelgeuse in November 2027, a time when it will be easiest to detect.

Having found the long-anticipated companion star, Howell turned to giving it a name. The traditional star name “Betelgeuse” derives from Arabic, meaning “the hand of al-Jawza’,” a female figure in old Arabian legend. Fittingly, Howell’s team named the orbiting companion “Siwarha,” meaning “her bracelet.”

Photo of the constellation Orion, showing the location of Betelgeuse – and its newfound companion star.NOIRLab/Eckhard Slawik

The NASA–National Science Foundation Exoplanet Observational Research Program (NN-EXPLORE) is a joint initiative to advance U.S. exoplanet science by providing the community with access to cutting-edge, ground-based observational facilities. Managed by NASA’s Exoplanet Exploration Program, NN-EXPLORE supports and enhances the scientific return of space missions such as Kepler, TESS (Transiting Exoplanet Survey Satellite), Hubble Space Telescope, and James Webb Space Telescope by enabling essential follow-up observations from the ground—creating strong synergies between space-based discoveries and ground-based characterization. NASA’s Exoplanet Exploration Program is located at the agency’s Jet Propulsion Laboratory.

To learn more about NN-EXPLORE, visit:

https://exoplanets.nasa.gov/exep/NNExplore/overview

Share Details Last Updated Jul 23, 2025 Related Terms Explore More 5 min read How NASA Is Testing AI to Make Earth-Observing Satellites Smarter Article 9 hours ago 6 min read NASA’s Hubble, Chandra Spot Rare Type of Black Hole Eating a Star

NASA’s Hubble Space Telescope and NASA’s Chandra X-ray Observatory have teamed up to identify a…

Article 10 hours ago
4 min read NASA Tests 5G-Based Aviation Network to Boost Air Taxi Connectivity Article 1 day ago Keep Exploring Discover More Topics From NASA

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

NASA Tests 5G-Based Aviation Network to Boost Air Taxi Connectivity

NASA - Breaking News - Wed, 07/23/2025 - 2:28pm

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA researcher Darren Nash monitors experimental communications equipment on NASA’s Pilatus PC-12 during a flight test over NASA’s Glenn Research Center in Cleveland on April 17, 2025.NASA/Sara Lowthian-Hanna

NASA engineers are exploring how the technology used in existing cellphone networks could support the next generation of aviation.

In April and May, researchers at NASA’s Glenn Research Center in Cleveland built two specialized radio systems to study how well fifth-generation cellular network technology, known as 5G, can handle the demands of air taxi communications.

“The goal of this research is to understand how wireless cellphone networks could be leveraged by the aviation industry to enable new frontiers of aviation operations,” said Casey Bakula, lead researcher for the project, who is based at Glenn. “The findings of this work could serve as a blueprint for future aviation communication network providers, like satellite navigation providers and telecommunications companies, and help guide the Federal Aviation Administration’s plan for future advanced air mobility network requirements in cities.”

Instead of developing entirely new standards for air taxi communications, NASA is looking to see if the aviation industry could leverage the expertise, experience, and investments made by the cellular industry toward the development of reliable, secure, and scalable aviation networks. If 5G networks could provide an “80% solution” to the challenge, researchers can focus on identifying the remaining 20% that would need to be adapted to meet the needs of the air taxi industry.

NASA researchers Darren Nash, left, and Brian Kachmar review signal data captured from experimental communications equipment onboard NASA’s Pilatus PC-12 on April 17, 2025.NASA/Sara Lowthian-Hanna

5G networks can manage a lot of data at once and have very low signal transmission delay compared to satellite systems, which could make them ideal for providing location data between aircraft in busy city skies. Ground antennas and networks in cities can help air taxis stay connected as they fly over buildings, making urban flights safer.

To conduct their tests, NASA researchers set up a system that meets current 5G standards and would allow for future improvements in performance. They placed one radio in the agency’s Pilatus PC-12 aircraft and set up another radio on the roof of Glenn’s Aerospace Communications Facility building. With an experimental license from the Federal Aviation Administration (FAA) to conduct flights, the team tested signal transmissions using a radio frequency band the Federal Communications Commission dedicated for the safe testing of drones and other uncrewed aircraft systems.

During testing, NASA’s PC-12 flew various flight patterns near Glenn. The team used some of the flight patterns to measure how the signal could weaken as the aircraft moved away from the ground station. Other patterns focused on identifying areas where nearby buildings might block signals, potentially causing interference or dead zones. The team also studied how the aircraft’s angle and position relative to the ground station affected the quality of the connection.

These initial tests provided the NASA team an opportunity to integrate its new C-Band radio testbed onto the aircraft, verify its basic functionality, and the operation of the corresponding ground station, as well as refine the team’s test procedures. The successful completion of these activities allows the team to begin research on how 5G standards and technologies could be utilized in existing aviation bands to provide air-to-ground and aircraft-to-aircraft communications services. 

Experimental communications equipment is secure and ready for flight test evaluation in the back of NASA’s Pilatus PC-12 at NASA’s Glenn Research Center in Cleveland on April 17, 2025. NASA/Sara Lowthian-Hanna

In addition to meeting these initial test objectives, the team also recorded and verified the presence of propeller modulation. This is a form of signal degradation caused by the propeller blades of the aircraft partially blocking radio signals as they rotate. The effect becomes more significant as aircraft fly at the lower altitudes air taxis are expected to operate. The airframe configuration and number of propellers on some of the new air taxi models may cause increased propeller modulation effects, so the team identified this as a topic for future research.   

NASA research will provide baseline performance data that the agency will share with the FAA and the advanced air mobility sector of the aviation industry, which explores new air transportation options. Future research from industry could focus on issues such as maximum data speeds, signal-to-noise ratios, and synchronization between aircraft and ground systems. Researchers will be able to use NASA’s baseline data to measure the potential of new changes or features to communications systems.

Future aircraft will need to carry essential communications systems for command and control, passenger safety, and coordination with other aircraft to avoid collisions. Reliable wireless networks offer the possibility for safe operations of air taxis, particular in cities and other crowded areas.

This work is led by NASAs Air Mobility Pathfinders project under the Airspace Operations and Safety Program in support of NASA’s Advanced Air Mobility mission.

NASA Pilot Mark Russell emerges from NASA’s Pilatus PC-12 after mobile communication tests at NASA’s Glenn Research Center in Cleveland on April 17, 2025. NASA/Sara Lowthian-Hanna Share Details Last Updated Jul 24, 2025 EditorDede DiniusContactLaura Mitchelllaura.a.mitchell@nasa.govLocationArmstrong Flight Research Center Related Terms Explore More 4 min read NASA Scientist Finds Predicted Companion Star to Betelgeuse Article 1 day ago 3 min read NASA Tests Mixed Reality Pilot Simulation in Vertical Motion Simulator Article 1 day ago 4 min read GRUVE Lab

The GRUVE (Glenn Reconfigurable User-Interface and Virtual Reality Exploration) Lab is located within the GVIS…

Article 1 day ago
Keep Exploring Discover More Topics From NASA

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

NASA Tests 5G-Based Aviation Network to Boost Air Taxi Connectivity

NASA News - Wed, 07/23/2025 - 2:28pm

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA researcher Darren Nash monitors experimental communications equipment on NASA’s Pilatus PC-12 during a flight test over NASA’s Glenn Research Center in Cleveland on April 17, 2025.NASA/Sara Lowthian-Hanna

NASA engineers are exploring how the technology used in existing cellphone networks could support the next generation of aviation.

In April and May, researchers at NASA’s Glenn Research Center in Cleveland built two specialized radio systems to study how well fifth-generation cellular network technology, known as 5G, can handle the demands of air taxi communications.

“The goal of this research is to understand how wireless cellphone networks could be leveraged by the aviation industry to enable new frontiers of aviation operations,” said Casey Bakula, lead researcher for the project, who is based at Glenn. “The findings of this work could serve as a blueprint for future aviation communication network providers, like satellite navigation providers and telecommunications companies, and help guide the Federal Aviation Administration’s plan for future advanced air mobility network requirements in cities.”

Instead of developing entirely new standards for air taxi communications, NASA is looking to see if the aviation industry could leverage the expertise, experience, and investments made by the cellular industry toward the development of reliable, secure, and scalable aviation networks. If 5G networks could provide an “80% solution” to the challenge, researchers can focus on identifying the remaining 20% that would need to be adapted to meet the needs of the air taxi industry.

NASA researchers Darren Nash, left, and Brian Kachmar review signal data captured from experimental communications equipment onboard NASA’s Pilatus PC-12 on April 17, 2025.NASA/Sara Lowthian-Hanna

5G networks can manage a lot of data at once and have very low signal transmission delay compared to satellite systems, which could make them ideal for providing location data between aircraft in busy city skies. Ground antennas and networks in cities can help air taxis stay connected as they fly over buildings, making urban flights safer.

To conduct their tests, NASA researchers set up a system that meets current 5G standards and would allow for future improvements in performance. They placed one radio in the agency’s Pilatus PC-12 aircraft and set up another radio on the roof of Glenn’s Aerospace Communications Facility building. With an experimental license from the Federal Aviation Administration (FAA) to conduct flights, the team tested signal transmissions using a radio frequency band the Federal Communications Commission dedicated for the safe testing of drones and other uncrewed aircraft systems.

During testing, NASA’s PC-12 flew various flight patterns near Glenn. The team used some of the flight patterns to measure how the signal could weaken as the aircraft moved away from the ground station. Other patterns focused on identifying areas where nearby buildings might block signals, potentially causing interference or dead zones. The team also studied how the aircraft’s angle and position relative to the ground station affected the quality of the connection.

These initial tests provided the NASA team an opportunity to integrate its new C-Band radio testbed onto the aircraft, verify its basic functionality, and the operation of the corresponding ground station, as well as refine the team’s test procedures. The successful completion of these activities allows the team to begin research on how 5G standards and technologies could be utilized in existing aviation bands to provide air-to-ground and aircraft-to-aircraft communications services. 

Experimental communications equipment is secure and ready for flight test evaluation in the back of NASA’s Pilatus PC-12 at NASA’s Glenn Research Center in Cleveland on April 17, 2025. NASA/Sara Lowthian-Hanna

In addition to meeting these initial test objectives, the team also recorded and verified the presence of propeller modulation. This is a form of signal degradation caused by the propeller blades of the aircraft partially blocking radio signals as they rotate. The effect becomes more significant as aircraft fly at the lower altitudes air taxis are expected to operate. The airframe configuration and number of propellers on some of the new air taxi models may cause increased propeller modulation effects, so the team identified this as a topic for future research.   

NASA research will provide baseline performance data that the agency will share with the FAA and the advanced air mobility sector of the aviation industry, which explores new air transportation options. Future research from industry could focus on issues such as maximum data speeds, signal-to-noise ratios, and synchronization between aircraft and ground systems. Researchers will be able to use NASA’s baseline data to measure the potential of new changes or features to communications systems.

Future aircraft will need to carry essential communications systems for command and control, passenger safety, and coordination with other aircraft to avoid collisions. Reliable wireless networks offer the possibility for safe operations of air taxis, particular in cities and other crowded areas.

This work is led by NASAs Air Mobility Pathfinders project under the Airspace Operations and Safety Program in support of NASA’s Advanced Air Mobility mission.

NASA Pilot Mark Russell emerges from NASA’s Pilatus PC-12 after mobile communication tests at NASA’s Glenn Research Center in Cleveland on April 17, 2025. NASA/Sara Lowthian-Hanna Share Details Last Updated Jul 24, 2025 EditorDede DiniusContactLaura Mitchelllaura.a.mitchell@nasa.govLocationArmstrong Flight Research Center Related Terms Explore More 4 min read NASA Scientist Finds Predicted Companion Star to Betelgeuse Article 1 day ago 3 min read NASA Tests Mixed Reality Pilot Simulation in Vertical Motion Simulator Article 1 day ago 4 min read GRUVE Lab

The GRUVE (Glenn Reconfigurable User-Interface and Virtual Reality Exploration) Lab is located within the GVIS…

Article 1 day ago
Keep Exploring Discover More Topics From NASA

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

NASA Tests Mixed Reality Pilot Simulation in Vertical Motion Simulator

NASA - Breaking News - Wed, 07/23/2025 - 12:39pm
Damian Hischier of the National Test Pilot School in Mojave, California, takes part in testing of a virtual reality-infused pilot simulation in the Vertical Motion Simulator (VMS) at NASA’s Ames Research Center in California’s Silicon Valley on May 30, 2025. NASA/Brandon Torres-Navarrete

Commercial companies and government agencies are increasingly pursuing a more immersive and affordable alternative to conventional displays currently used in flight simulators. A NASA research project is working on ways to make this technology available for use faster. 

Mixed reality systems where users interact with physical simulators while wearing virtual reality headsets offer a promising path forward for pilot training. But currently, only limited standards exist for allowing their use, as regulators have little to no data on how these systems perform. To address this, NASA’s Ames Research Center in California’s Silicon Valley invited a dozen pilots to participate in a study to test how a mixed-reality flight simulation would perform in the world’s largest flight simulator. 

“For the first time, we’re collecting real data on how this type of mixed reality simulation performs in the highest-fidelity vertical motion simulator,” said Peter Zaal, a principal systems architect at Ames.  “The more we understand about how these systems affect pilot performance, the closer we are to providing a safer, cost-effective training tool to the aviation community that could benefit everyone from commercial airlines to future air taxi operators.” 

A National Test Pilot student observes the mixed-reality pilot simulation in the VMS at Ames on May 30, 2025.NASA/Brandon Torres-Navarrete

Mixed reality blends physical and digital worlds, allowing users to see physical items while viewing a desired simulated environment. Flight simulators employing this technology through headset or a similar setup could offer pilots training for operating next-generation aircraft at a reduced cost and within a smaller footprint compared to more traditional flight simulators. This is because pilots could rely more heavily on the visuals provided through the headset instead of large embedded visual displays in a physical motion simulator. 

During the testing – which ran May 23-30 – pilots donned a headset through which they could see the physical displays and control sticks inside the Vertical Motion Simulator (VMS) cab along with a virtual cockpit overlay of an electric vertical take-off and landing vehicle through the head-mounted display. When the pilots looked toward their windscreens, they saw a virtual view of San Francisco and the surrounding area. 

Pilots performed three typical flight maneuvers under four sets of motion conditions. Afterward, they were asked to provide feedback on their level of motion sickness while using the head-mounted display and how well the simulator replicated the same movements the aircraft would make during a real flight. 

An initial analysis of the study shows pilots reported lower ratings of motion sickness than NASA researchers expected. Many shared that the mixed-reality setup inside the VMS felt more realistic and fluid than previous simulator setups they had tested.  

As part of the test, Ames hosted members of the Federal Aviation Administration Civil Aerospace Medical Institute, which studies factors that influence human performance in aerospace. Pilots from the National Test Pilot School attended a portion of the testing and, independent from the study, evaluated the head-mounted display’s “usable cue environment,” or representation of the visual cues pilots rely on to control an aircraft.  

Peter Zaal (right), observes as Samuel Ortho (middle) speaks with a National Test Pilot student during the mixed reality pilot simulation in the Vertical Motion Simulator at Ames on May 30, 2025.

NASA will make the test results available to the public and the aviation community early next year. This first-of-its-kind testing – funded by an Ames Innovation Fair Grant and managed by the center’s Aviation Systems Division – paves the way for potential use of this technology in the VMS for future aviation and space missions. 

Categories: NASA

NASA Tests Mixed Reality Pilot Simulation in Vertical Motion Simulator

NASA News - Wed, 07/23/2025 - 12:39pm
Damian Hischier of the National Test Pilot School in Mojave, California, takes part in testing of a virtual reality-infused pilot simulation in the Vertical Motion Simulator (VMS) at NASA’s Ames Research Center in California’s Silicon Valley on May 30, 2025. NASA/Brandon Torres-Navarrete

Commercial companies and government agencies are increasingly pursuing a more immersive and affordable alternative to conventional displays currently used in flight simulators. A NASA research project is working on ways to make this technology available for use faster. 

Mixed reality systems where users interact with physical simulators while wearing virtual reality headsets offer a promising path forward for pilot training. But currently, only limited standards exist for allowing their use, as regulators have little to no data on how these systems perform. To address this, NASA’s Ames Research Center in California’s Silicon Valley invited a dozen pilots to participate in a study to test how a mixed-reality flight simulation would perform in the world’s largest flight simulator. 

“For the first time, we’re collecting real data on how this type of mixed reality simulation performs in the highest-fidelity vertical motion simulator,” said Peter Zaal, a principal systems architect at Ames.  “The more we understand about how these systems affect pilot performance, the closer we are to providing a safer, cost-effective training tool to the aviation community that could benefit everyone from commercial airlines to future air taxi operators.” 

A National Test Pilot student observes the mixed-reality pilot simulation in the VMS at Ames on May 30, 2025.NASA/Brandon Torres-Navarrete

Mixed reality blends physical and digital worlds, allowing users to see physical items while viewing a desired simulated environment. Flight simulators employing this technology through headset or a similar setup could offer pilots training for operating next-generation aircraft at a reduced cost and within a smaller footprint compared to more traditional flight simulators. This is because pilots could rely more heavily on the visuals provided through the headset instead of large embedded visual displays in a physical motion simulator. 

During the testing – which ran May 23-30 – pilots donned a headset through which they could see the physical displays and control sticks inside the Vertical Motion Simulator (VMS) cab along with a virtual cockpit overlay of an electric vertical take-off and landing vehicle through the head-mounted display. When the pilots looked toward their windscreens, they saw a virtual view of San Francisco and the surrounding area. 

Pilots performed three typical flight maneuvers under four sets of motion conditions. Afterward, they were asked to provide feedback on their level of motion sickness while using the head-mounted display and how well the simulator replicated the same movements the aircraft would make during a real flight. 

An initial analysis of the study shows pilots reported lower ratings of motion sickness than NASA researchers expected. Many shared that the mixed-reality setup inside the VMS felt more realistic and fluid than previous simulator setups they had tested.  

As part of the test, Ames hosted members of the Federal Aviation Administration Civil Aerospace Medical Institute, which studies factors that influence human performance in aerospace. Pilots from the National Test Pilot School attended a portion of the testing and, independent from the study, evaluated the head-mounted display’s “usable cue environment,” or representation of the visual cues pilots rely on to control an aircraft.  

Peter Zaal (right), observes as Samuel Ortho (middle) speaks with a National Test Pilot student during the mixed reality pilot simulation in the Vertical Motion Simulator at Ames on May 30, 2025.

NASA will make the test results available to the public and the aviation community early next year. This first-of-its-kind testing – funded by an Ames Innovation Fair Grant and managed by the center’s Aviation Systems Division – paves the way for potential use of this technology in the VMS for future aviation and space missions. 

Categories: NASA

NASA Astronaut Jonny Kim, Axiom Mission 4 Commander Peggy Whitson Conduct Research in Space

NASA Image of the Day - Wed, 07/23/2025 - 12:04pm
Expedition 73 Flight Engineer Jonny Kim from NASA and Axiom Mission 4 Commander Peggy Whitson work together inside the International Space Station's Destiny laboratory module setting up research hardware to culture patient-derived cancer cells, model their growth in microgravity, and test a state-of-the-art fluorescence microscope.
Categories: Astronomy, NASA

NASA Astronaut Jonny Kim, Axiom Mission 4 Commander Peggy Whitson Conduct Research in Space

NASA - Breaking News - Wed, 07/23/2025 - 12:03pm
JAXA (Japan Aerospace Exploration Agency)/Takuya Onishi

In this photo from June 28, 2025, Expedition 73 flight engineer Jonny Kim and former NASA astronaut and director of human spaceflight at Axiom Space Peggy Whitson work together inside the International Space Station’s Destiny laboratory module setting up hardware for cancer research.

The hardware is used to culture patient-derived cancer cells, model their growth in microgravity, and test a state-of-the-art fluorescence microscope. Results of this study may lead to earlier cancer detection methods, development of advanced cancer treatments, and promote future stem cell research in space.

Whitson returned to Earth on July 15, 2025, with fellow Axiom Mission 4 crew members ISRO (Indian Space Research Organisation) astronaut Shubhanshu Shukla, ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland, and Hungarian to Orbit (HUNOR) astronaut Tibor Kapu of Hungary. They completed about two and a half weeks in space.

Image credit: JAXA (Japan Aerospace Exploration Agency)/Takuya Onishi

Categories: NASA

NASA Astronaut Jonny Kim, Axiom Mission 4 Commander Peggy Whitson Conduct Research in Space

NASA News - Wed, 07/23/2025 - 12:03pm
JAXA (Japan Aerospace Exploration Agency)/Takuya Onishi

In this photo from June 28, 2025, Expedition 73 flight engineer Jonny Kim and former NASA astronaut and director of human spaceflight at Axiom Space Peggy Whitson work together inside the International Space Station’s Destiny laboratory module setting up hardware for cancer research.

The hardware is used to culture patient-derived cancer cells, model their growth in microgravity, and test a state-of-the-art fluorescence microscope. Results of this study may lead to earlier cancer detection methods, development of advanced cancer treatments, and promote future stem cell research in space.

Whitson returned to Earth on July 15, 2025, with fellow Axiom Mission 4 crew members ISRO (Indian Space Research Organisation) astronaut Shubhanshu Shukla, ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland, and Hungarian to Orbit (HUNOR) astronaut Tibor Kapu of Hungary. They completed about two and a half weeks in space.

Image credit: JAXA (Japan Aerospace Exploration Agency)/Takuya Onishi

Categories: NASA

Radio JOVE Volunteers Tune In to the Sun’s Low Notes

NASA - Breaking News - Wed, 07/23/2025 - 11:03am

As the Sun approaches the most active part of its eleven-year magnetic cycle this summer, NASA volunteers have been watching it closely. Now they’ve spotted a new trend in solar behavior that will have you reaching for your suntan lotion. It’s all about something called a “Type II” solar radio burst:

“Type II solar radio bursts are not commonly detected in the frequency range between 15 to 30 megahertz,” said Prof. Chuck Higgins, Co-founder of Radio JOVE. “Recently, we’re seeing many of them in that range.”

Let’s unpack that. Our Sun often sprays powerful blasts of radio waves into space. Heliophysicists classify these radio bursts into five different types depending on how the frequency of the radio waves drifts over time. “Type II” solar radio bursts seem to come from solar flares and enormous squirts of hot plasma called coronal mass ejections.

Now, Thomas Freeman, an undergraduate student at Middle Tennessee State University, and other volunteers working on NASA’s Radio JOVE project have observed something interesting about these Type II bursts: they are now showing up at lower frequencies—somewhere in between FM and AM radio. 

What does it mean? It means our star is full of surprises! These Radio JOVE observations of the Sun’s radio emissions during solar maximum can be used to extend our knowledge of solar emissions to lower frequencies and, therefore, to distances farther from the Sun. 

Radio JOVE is a NASA partner citizen science project in which participants assemble and operate radio astronomy telescopes to gather and contribute data to support scientific studies.  Radio JOVE collaborated with SunRISE Ground Radio Lab,  organized teams of high school students to observe the Sun, and recently published a paper on these Type II solar radio bursts. Learn more and get involved!  

A Type II solar radio burst on April 23rd, 2024, seen as the gently sloping yellow band drifting from 17:49 to 18:02 UTC in the 15-30 MHz radio frequency-time spectrogram. Credit: Tom Ashcraft, Lamy, NM Share

Details

Last Updated

Jul 23, 2025

Related Terms Explore More

2 min read Bring NASA Science into Your Library!

Article


2 days ago

4 min read NASA to Launch SNIFS, Sun’s Next Trailblazing Spectator

July will see the launch of the groundbreaking Solar EruptioN Integral Field Spectrograph mission, or…



Article


6 days ago

6 min read NASA’s TRACERS Studies Explosive Process in Earth’s Magnetic Shield

Article


7 days ago

Categories: NASA

Radio JOVE Volunteers Tune In to the Sun’s Low Notes

NASA News - Wed, 07/23/2025 - 11:03am

As the Sun approaches the most active part of its eleven-year magnetic cycle this summer, NASA volunteers have been watching it closely. Now they’ve spotted a new trend in solar behavior that will have you reaching for your suntan lotion. It’s all about something called a “Type II” solar radio burst:

“Type II solar radio bursts are not commonly detected in the frequency range between 15 to 30 megahertz,” said Prof. Chuck Higgins, Co-founder of Radio JOVE. “Recently, we’re seeing many of them in that range.”

Let’s unpack that. Our Sun often sprays powerful blasts of radio waves into space. Heliophysicists classify these radio bursts into five different types depending on how the frequency of the radio waves drifts over time. “Type II” solar radio bursts seem to come from solar flares and enormous squirts of hot plasma called coronal mass ejections.

Now, Thomas Freeman, an undergraduate student at Middle Tennessee State University, and other volunteers working on NASA’s Radio JOVE project have observed something interesting about these Type II bursts: they are now showing up at lower frequencies—somewhere in between FM and AM radio. 

What does it mean? It means our star is full of surprises! These Radio JOVE observations of the Sun’s radio emissions during solar maximum can be used to extend our knowledge of solar emissions to lower frequencies and, therefore, to distances farther from the Sun. 

Radio JOVE is a NASA partner citizen science project in which participants assemble and operate radio astronomy telescopes to gather and contribute data to support scientific studies.  Radio JOVE collaborated with SunRISE Ground Radio Lab,  organized teams of high school students to observe the Sun, and recently published a paper on these Type II solar radio bursts. Learn more and get involved!  

A Type II solar radio burst on April 23rd, 2024, seen as the gently sloping yellow band drifting from 17:49 to 18:02 UTC in the 15-30 MHz radio frequency-time spectrogram. Credit: Tom Ashcraft, Lamy, NM Share

Details

Last Updated

Jul 23, 2025

Related Terms Explore More

2 min read Bring NASA Science into Your Library!

Article


2 days ago

4 min read NASA to Launch SNIFS, Sun’s Next Trailblazing Spectator

July will see the launch of the groundbreaking Solar EruptioN Integral Field Spectrograph mission, or…



Article


6 days ago

6 min read NASA’s TRACERS Studies Explosive Process in Earth’s Magnetic Shield

Article


7 days ago

Categories: NASA

NASA Seeks Industry Concepts on Moon, Mars Communications

NASA - Breaking News - Wed, 07/23/2025 - 9:49am
The Moon photographed from the International Space Station, pictured in between exterior International Space Station hardware (Credit: NASA).

NASA is seeking proposals from U.S. companies about innovative Moon and Mars proximity relay communication and navigation capabilities as the agency aims to use private industry satellite communications services for emerging missions.

On July 7, NASA issued a Request for Proposals, soliciting advanced industry concepts to establish high-bandwidth, high-reliability communications infrastructure between the lunar surface and an Earth-based operations control center, along with concepts that establish a critical communications relay on the Martian surface and transfer data between Mars and the Earth.

“These partnerships foster important advancements in communications and navigation,” said Greg Heckler, deputy program manager for capability development within NASA’s SCaN (Space Communications and Navigation) Program. “It allows our astronauts, our rovers, our spacecraft – all NASA missions – to expand humanity’s exploration of the Moon, Mars, and beyond.”

NASA’s request directly supports the agency’s long-term vision of an interoperable space communication and navigation infrastructure that enables science, exploration, and economic development in space. NASA, as one of many customers, will establish a marketplace that supports cost-effective commercial services involving communication needs on and around the Moon and Mars.

Responses are due by 5 p.m. EDT, Wednesday, Aug. 13.

NASA’s SCaN Program serves as the management office for the agency’s space communications and navigation. More than 100 NASA and non-NASA missions rely on SCaN’s two networks, the Near Space Network and the Deep Space Network, to support astronauts aboard the International Space Station and future Artemis missions, monitor Earth’s weather, support lunar exploration, and uncover the solar system and beyond.

Learn more about NASA’s SCaN Program at:

https://www.nasa.gov/scan

News Media Contact:
Claire O’Shea
Headquarters, Washington
202-358-1100
claire.a.o’shea@nasa.gov

Categories: NASA

NASA Seeks Industry Concepts on Moon, Mars Communications

NASA News - Wed, 07/23/2025 - 9:49am
The Moon photographed from the International Space Station, pictured in between exterior International Space Station hardware (Credit: NASA).

NASA is seeking proposals from U.S. companies about innovative Moon and Mars proximity relay communication and navigation capabilities as the agency aims to use private industry satellite communications services for emerging missions.

On July 7, NASA issued a Request for Proposals, soliciting advanced industry concepts to establish high-bandwidth, high-reliability communications infrastructure between the lunar surface and an Earth-based operations control center, along with concepts that establish a critical communications relay on the Martian surface and transfer data between Mars and the Earth.

“These partnerships foster important advancements in communications and navigation,” said Greg Heckler, deputy program manager for capability development within NASA’s SCaN (Space Communications and Navigation) Program. “It allows our astronauts, our rovers, our spacecraft – all NASA missions – to expand humanity’s exploration of the Moon, Mars, and beyond.”

NASA’s request directly supports the agency’s long-term vision of an interoperable space communication and navigation infrastructure that enables science, exploration, and economic development in space. NASA, as one of many customers, will establish a marketplace that supports cost-effective commercial services involving communication needs on and around the Moon and Mars.

Responses are due by 5 p.m. EDT, Wednesday, Aug. 13.

NASA’s SCaN Program serves as the management office for the agency’s space communications and navigation. More than 100 NASA and non-NASA missions rely on SCaN’s two networks, the Near Space Network and the Deep Space Network, to support astronauts aboard the International Space Station and future Artemis missions, monitor Earth’s weather, support lunar exploration, and uncover the solar system and beyond.

Learn more about NASA’s SCaN Program at:

https://www.nasa.gov/scan

News Media Contact:
Claire O’Shea
Headquarters, Washington
202-358-1100
claire.a.o’shea@nasa.gov

Categories: NASA

GRUVE Lab

NASA - Breaking News - Wed, 07/23/2025 - 9:47am
4 Min Read GRUVE Lab The CAVE in the GRUVE Lab is capable of running highly immersive VR experiences through powerful projectors, mirrors, an infrared motion tracking system, and active-shutter glasses. Credits: NASA About

The GRUVE (Glenn Reconfigurable User-Interface and Virtual Reality Exploration) Lab is located within the GVIS Lab. It is home to the CAVE, which is predominantly used for mission scenarios and to tour virtual environments of NASA facilities.

GRUVE Lab VisualizationUsers virtually explore a facility at NASA’s Glenn Research Center in Cleveland.NASA GRUVE Lab DemonstrationA user analyzes a visualization of a prototype structure.NASA GRUVE Lab VisualizationA user analyzes a visualization of a prototype structure that will be used for a fire experiment on the Moon.NASA GRUVE Lab VisualizationA Graphics and Visualization Lab (GVIS) intern in the Cave Automatic Virtual Environment (CAVE).NASA GRUVE Lab TourA user takes a virtual tour of a facility at NASA’s Glenn Research Center in Cleveland.NASA How GRUVE Works

GRUVE allows multiple people to view a visualization in 3D together. These visualizations include 3D models of NASA facilities and intricate images created from collected data. 

Powerful projectors and mirrors, in combination with an infrared motion tracking system and active-shutter glasses, allow viewers to view 3D models and data in perfect perspective. 3D models effectively pop off the screen and remain proportional no matter where the user with the pair of tracking glasses moves in the environment. 

The CAVE can be driven by either a Windows or Linux computer system, enabling the team to use the best environment for a given problem and software tool. 

The CAVE setup immerses the user in 3D visualizations through walls on all sides, projectors from above, tracking cameras, and mirrors hidden behind the facade.Visbox, Inc. Benefits of GRUVE

The CAVE’s technology provides a unique advantage for researchers, scientists, engineers, and others. Seeing and analyzing forces and data that would otherwise not be viewable to the human eye allows the observer to understand their subject matter in more detail. 

Benefits of GRUVE to research include: 

  • Providing an immersive environment: with large screens to fill peripheral vision and stereoscopic projection for a real sense of three-dimensional space, more parts of the brain are engaged, and the user is better able to understand problems and solve them faster 
  • More effective collaboration: the ability to see each other in the virtual reality environment makes GRUVE better for collaboration than traditional VR technology 
  • Seeing complex data and flows in 3D: this makes it easier for both experts and non-experts to understand the data 
  • Providing greater resolution and larger display size: this allows details to be displayed without losing their context 
  • Delivering faster and more accurate manipulation and viewing of models, including CAD data, with fewer errors: this results in a faster time to market and less re-work 

All members of NASA Glenn may use GRUVE for their projects.

Applications of Immersive 3D Environments
  • Fluid dynamics analysis (CFD) 
  • Point cloud data, e.g., LiDAR 
  • Virtual design reviews 
  • Virtual manufacturing testing 
  • Computer Aided Design (CAD) 
  • 3D imaging data 
  • Training and education 
  • Virtual procedures 
  • Biomedical research 
  • Molecular dynamics 
  • Virtual building walkthroughs 
  • Showroom “theater” 
  • Education and outreach 
  • Building Information Management (BIM) 
  • Big data and data mining 
  • Cybersecurity data analysis 
  • Safety systems analysis 
  • Microfocus CT scan data 
  • Electron microscopy 
  • 3D photos and videos 
Data Types Supported
  • Point cloud data 
  • Volume data 
  • Computational fluid dynamics (CFD) 
  • Computer Aided Design (CAD) 
  • Molecular dynamics 
GRUVE Hardware 
  • Linux CAVE node 
  • Windows 10 CAVE node 
  • CAVE wall 
  • Stereo glasses 
  • Audio system 
  • Tracking system 
  • Wand 
Software Available in the GRUVE Lab 
  • The Windows node attached to the GRUVE Lab runs middleware software, which enables Unity-developed applications to run in the CAVE. This greatly expands the number of VR applications that can be run. 
  • Vrui VR Toolkit-based applications such as LiDAR viewer and 3D visualizer 
  • VMD – Visual Molecular Dynamics 
  • ParaView 
  • COVISE– Collaborative Visualization and Simulation Environment
Other Visualization Devices

The GVIS Lab maintains a large collection of computing, visualization, and user interaction devices including: 

  • Virtual reality display devices 
  • Head-mounted displays 
  • Room-scale CAVE 
  • Augmented reality head-mounted displays 
  • 3D displays 
  • Psuedo-3D displays 
  • Pepper’s Ghost display 
  • Persistence of Vision (POV) LED display 
  • Light field technology- based displays 
  • Projection devices for projected AR 
  • Natural user interface devices 
  • Hand gesture recognition devices 
  • Motion capture devices 
  • Cameras for mixed reality 
  • Computing hardware 
  • High-end laptops 
  • High-end desktops 
  • High-end tablets and smartphones 
  • Cameras 
  • Stereo 3D camera 
  • 180/360 camera 
  • Flight simulators 
  • 3D printers 

All these devices are available for employees to try and test for possible application to their work. 

A Graphics and Visualization Lab (GVIS) intern in the Cave Automatic Virtual Environment (CAVE).NASA Contact Us 

Need to reach us? You can send an email directly to the GVIS Team (GRC-DL-GVIS@mail.nasa.gov) or to the team leader, Herb Schilling (hschilling@nasa.gov). 

Share Details Last Updated Jul 23, 2025 LocationGlenn Research Center Related Terms Explore More 5 min read NASA Advances Pressure Sensitive Paint Research Capability Article 3 weeks ago 1 min read Gateway Space Station in 3D Article 11 months ago 5 min read Augmented Reality Speeds Spacecraft Construction at NASA Goddard Article 1 year ago Keep Exploring Discover More Topics From NASA

Want to Go on a Simulated Mission to the Moon?

Aeronautics STEM

Glenn University Student Design Challenges

NASA at Home: Virtual Tours and Apps

Categories: NASA

GRUVE Lab

NASA News - Wed, 07/23/2025 - 9:47am
4 Min Read GRUVE Lab The CAVE in the GRUVE Lab is capable of running highly immersive VR experiences through powerful projectors, mirrors, an infrared motion tracking system, and active-shutter glasses. Credits: NASA About

The GRUVE (Glenn Reconfigurable User-Interface and Virtual Reality Exploration) Lab is located within the GVIS Lab. It is home to the CAVE, which is predominantly used for mission scenarios and to tour virtual environments of NASA facilities.

GRUVE Lab VisualizationUsers virtually explore a facility at NASA’s Glenn Research Center in Cleveland.NASA GRUVE Lab DemonstrationA user analyzes a visualization of a prototype structure.NASA GRUVE Lab VisualizationA user analyzes a visualization of a prototype structure that will be used for a fire experiment on the Moon.NASA GRUVE Lab VisualizationA Graphics and Visualization Lab (GVIS) intern in the Cave Automatic Virtual Environment (CAVE).NASA GRUVE Lab TourA user takes a virtual tour of a facility at NASA’s Glenn Research Center in Cleveland.NASA How GRUVE Works

GRUVE allows multiple people to view a visualization in 3D together. These visualizations include 3D models of NASA facilities and intricate images created from collected data. 

Powerful projectors and mirrors, in combination with an infrared motion tracking system and active-shutter glasses, allow viewers to view 3D models and data in perfect perspective. 3D models effectively pop off the screen and remain proportional no matter where the user with the pair of tracking glasses moves in the environment. 

The CAVE can be driven by either a Windows or Linux computer system, enabling the team to use the best environment for a given problem and software tool. 

The CAVE setup immerses the user in 3D visualizations through walls on all sides, projectors from above, tracking cameras, and mirrors hidden behind the facade.Visbox, Inc. Benefits of GRUVE

The CAVE’s technology provides a unique advantage for researchers, scientists, engineers, and others. Seeing and analyzing forces and data that would otherwise not be viewable to the human eye allows the observer to understand their subject matter in more detail. 

Benefits of GRUVE to research include: 

  • Providing an immersive environment: with large screens to fill peripheral vision and stereoscopic projection for a real sense of three-dimensional space, more parts of the brain are engaged, and the user is better able to understand problems and solve them faster 
  • More effective collaboration: the ability to see each other in the virtual reality environment makes GRUVE better for collaboration than traditional VR technology 
  • Seeing complex data and flows in 3D: this makes it easier for both experts and non-experts to understand the data 
  • Providing greater resolution and larger display size: this allows details to be displayed without losing their context 
  • Delivering faster and more accurate manipulation and viewing of models, including CAD data, with fewer errors: this results in a faster time to market and less re-work 

All members of NASA Glenn may use GRUVE for their projects.

Applications of Immersive 3D Environments
  • Fluid dynamics analysis (CFD) 
  • Point cloud data, e.g., LiDAR 
  • Virtual design reviews 
  • Virtual manufacturing testing 
  • Computer Aided Design (CAD) 
  • 3D imaging data 
  • Training and education 
  • Virtual procedures 
  • Biomedical research 
  • Molecular dynamics 
  • Virtual building walkthroughs 
  • Showroom “theater” 
  • Education and outreach 
  • Building Information Management (BIM) 
  • Big data and data mining 
  • Cybersecurity data analysis 
  • Safety systems analysis 
  • Microfocus CT scan data 
  • Electron microscopy 
  • 3D photos and videos 
Data Types Supported
  • Point cloud data 
  • Volume data 
  • Computational fluid dynamics (CFD) 
  • Computer Aided Design (CAD) 
  • Molecular dynamics 
GRUVE Hardware 
  • Linux CAVE node 
  • Windows 10 CAVE node 
  • CAVE wall 
  • Stereo glasses 
  • Audio system 
  • Tracking system 
  • Wand 
Software Available in the GRUVE Lab 
  • The Windows node attached to the GRUVE Lab runs middleware software, which enables Unity-developed applications to run in the CAVE. This greatly expands the number of VR applications that can be run. 
  • Vrui VR Toolkit-based applications such as LiDAR viewer and 3D visualizer 
  • VMD – Visual Molecular Dynamics 
  • ParaView 
  • COVISE– Collaborative Visualization and Simulation Environment
Other Visualization Devices

The GVIS Lab maintains a large collection of computing, visualization, and user interaction devices including: 

  • Virtual reality display devices 
  • Head-mounted displays 
  • Room-scale CAVE 
  • Augmented reality head-mounted displays 
  • 3D displays 
  • Psuedo-3D displays 
  • Pepper’s Ghost display 
  • Persistence of Vision (POV) LED display 
  • Light field technology- based displays 
  • Projection devices for projected AR 
  • Natural user interface devices 
  • Hand gesture recognition devices 
  • Motion capture devices 
  • Cameras for mixed reality 
  • Computing hardware 
  • High-end laptops 
  • High-end desktops 
  • High-end tablets and smartphones 
  • Cameras 
  • Stereo 3D camera 
  • 180/360 camera 
  • Flight simulators 
  • 3D printers 

All these devices are available for employees to try and test for possible application to their work. 

A Graphics and Visualization Lab (GVIS) intern in the Cave Automatic Virtual Environment (CAVE).NASA Contact Us 

Need to reach us? You can send an email directly to the GVIS Team (GRC-DL-GVIS@mail.nasa.gov) or to the team leader, Herb Schilling (hschilling@nasa.gov). 

Share Details Last Updated Jul 23, 2025 LocationGlenn Research Center Related Terms Explore More 5 min read NASA Advances Pressure Sensitive Paint Research Capability Article 3 weeks ago 1 min read Gateway Space Station in 3D Article 11 months ago 5 min read Augmented Reality Speeds Spacecraft Construction at NASA Goddard Article 1 year ago Keep Exploring Discover More Topics From NASA

Want to Go on a Simulated Mission to the Moon?

Aeronautics STEM

Glenn University Student Design Challenges

NASA at Home: Virtual Tours and Apps

Categories: NASA

GVIS History

NASA - Breaking News - Wed, 07/23/2025 - 9:44am
4 Min Read GVIS History As part of NASA Glenn’s Scientific Computing and Visualization Team, the GVIS Lab has a storied visual and technological history.  Credits: NASA GVIS: the ICARE Era

In 1982, a $20 million supercomputer was brought to NASA Glenn. Scientists at NASA Glenn were becoming increasingly reliant on computer simulations to test their experiments. Advancements in computer technology allowed a different type of testing environment — one that revolved around virtual models and data over physical observation. The benefits of this method included a decrease in costs, a decrease in associated risk, faster turnaround, and more data.

High Definition Video System (HDVS)A High Definition Video System (HDVS) in the early Graphics and Visualization Lab (GVIS). NASA High Definition Video System (HDVS) in the LabNASA employee in early Graphics and Visualization Lab (GVIS) setup, containing High Definition Video Systems (HDVS). NASA Early Graphics and Visualization Lab (GVIS)Early Graphics and Visualization Lab (GVIS) setup, which housed original analog processing hardware. NASA Cray 1-S/2200 SupercomputerThe original Cray 1-S/2200 Supercomputer in the Research and Analysis Center in 1982.NASA

But this method of experimentation created a problem: With data-point counts somewhere in the millions, it was a challenge for scientists to even begin to look at their own collected data. In short, there was simply too much data to be analyzed. To solve this problem, NASA Glenn built the Interactive Computer Aided Research Engineering system (ICARE) in the center’s Research Analysis Center.  

Taking up several rooms, consisting of 22 total workstations, and costing a grand total of $20 million, the ICARE system was a way for scientists to examine their data through the aid of supercomputer visualizations. Using both graphical and modular methods, ICARE’s visualizations revealed and shared information in ways that traditional methods could not match. 

The construction and implementation of the ICARE system was revolutionary to both the center and NASA as a whole. Before 1982, NASA already had an established interest in powerful computers; however, the ICARE system took NASA into the era of supercomputing. ICARE also brought increased attention to the value and power of scientific visualization. 

Original Processing HardwareOriginal analog Graphics and Visualization Lab (GVIS) processing hardware.NASA ICARE RoomAn ICARE room in the Research and Analysis Center. NASA 1980s VisualizationA typical 1980s visualization at NASA’s Glenn Research Center in Cleveland.NASA GRAPH3DGRAPH3D was an innovative technology in the 1980s that supported shaded surfaces and had a rich set of user-friendly commands.NASA The Creation of GVIS

In 1989, it was time for an upgrade. NASA Glenn wanted the latest scientific visualization technology and techniques for its scientists, so the center expanded the Research Analysis Center to make room for the new Graphics and Visualization Lab (GVIS). The GVIS Lab acquired cutting-edge graphics technology, including studio-quality TV animation and recording equipment, stereographic displays, and image processing systems. Later, the High-Performance Computing Act of 1991 provided funding and opportunities to add high-speed computing, virtual reality, and collaborative visualization to its fleet of tools.

The secure supercomputing space that would eventually become the Graphics and Visualization Lab (GVIS), shown in 1989.NASA

During this period, the GVIS Lab was responsible for assisting NASA Glenn scientists who needed help visualizing their data. The lab was also tasked with inventing new visualization techniques and promoting NASA Glenn’s activities though tours, videos, and other outreach programs. Some of the techniques the lab developed included particle tracking, iso-surface contours, and volume visualization. Tour guests included school children, corporate VIPs, local and national politicians, TV news media, and researchers from other national labs. Using state-of-the-art recording and editing hardware, the GVIS Lab regularly shared work both inside and outside of NASA.   

As other labs and researchers began to gain access to their own scientific visualization tools, the GVIS Lab shifted its focus to experimenting with virtual reality- and augmented reality-based visualizations.

Jay HorowitzJay Horowitz saw the Graphics and Visualization Lab (GVIS) through its creation and early years at NASA’s Glenn Research Center in Cleveland. NASA Cray X-MP-2 SupercomputerThe Cray X-MP-2 Supercomputer that replaced the 1-S. NASA Early Research and Analysis CenterThe Research and Analysis Center pre-expansion. NASA Research and Analysis CenterThe Research and Analysis Center after the expansion. The Graphics and Visualization Lab (GVIS) is in the upper left corner. NASA Lewis Advanced Cluster Environment (LACE)The Advanced Computational Concepts Lab’s (ACCL) Lewis Advanced Cluster Environment (LACE) in 1993. NASA Mobile Aeronautics Education Laboratory (MAEL) VR Flight SimulatorSetup showing location of the various equipment used in the Mobile Aeronautics Education Laboratory (MAEL) VR Flight Simulator.NASA Mobile Aeronautics Education Laboratory (MAEL) VR Flight SimulatorMAEL (Mobile Aeronautics Education Laboratory) trailer’s flight simulator supported multi-screen panoramic views or head-tracked Head Mounted Displays (HMDs). NASA WrightSimApollo 13 flight director Gene Kranz watches Jim Lovell pilot WrightSim. NASA 100 Years of Flight Gala CelebrationJohn Glenn talks to a Graphics and Visualization Lab (GVIS) programmer during the 2003 “100 Years of Flight Gala Celebration” event at NASA’s Glenn Research Center in Cleveland. NASA VR TreadmillThe concept of the VR treadmill was used to test if duplicating a visual-motor linkage was feasible for long-duration spaceflight. NASA 2000s VisualizationTurn-of-the-century Graphics and Visualization Lab (GVIS) model. NASA 2000s VisualizationTurn-of-the-century Graphics and Visualization Lab (GVIS) model. NASA 2000s Visualization Turn-of-the-century Graphics and Visualization Lab (GVIS) model. NASA Aeroshark ClusterThe Advanced Computational Concepts Lab’s (ACCL) Aeroshark Cluster in 2001. NASA Early 2000s Graphics and Visualization Lab (GVIS)The turn-of-the-century Graphics and Visualization Lab (GVIS), shown in 2004. NASA Advanced Communications Environment (ACE) ClusterThe Advanced Computational Concepts Lab’s (ACCL) Advanced Communications Environment (ACE) Cluster in 2005. NASA Early Computer Automatic Virtual Environment (CAVE)A Graphics and Visualization Lab (GVIS) team member demonstrating the old Computer Automatic Virtual Environment (CAVE). NASA Current Computer Automatic Virtual Environment (CAVE)A Graphics and Visualization Lab (GVIS) intern in the Computer Automatic Virtual Environment (CAVE). NASA GVIS Now

Today, the GVIS Lab has the same mission that it had in 1989: to apply the latest visualization and human interaction technologies to advance NASA’s missions. The team takes pride in pushing the limits of scientific visualization and computer science, helping fellow researchers make sense of their data, and inspiring the next generation through demonstrations and presentations. Computational technology has come a long way since the days of ICARE, but GVIS has continued to explore current and cutting-edge technologies. 

In addition to scientific visualization and experimental computational technologies, the GVIS Lab now also specializes in virtual design, interactive 3D simulations, natural user interface development, applications of computer science, and mission scenario visualizations. The team uses the latest edition of 3D programs and VR devices to experiment with how these systems can be used to visualize data, pushing their input and output capabilities. 

With all this technology, GVIS also supports the visualization of a wide variety of 3D data and models such as CAD, point clouds, and volume data. Additionally, the lab is capable of high-impact data visualization, web-based visualization, time-accurate data representation, and designing and testing CAD models in virtual reality.

The Graphics and Visualization Lab (GVIS) team attends a STEM outreach event at the Cleveland Museum of Natural History.NASA Public Engagement

Outside of the lab, GVIS has a longstanding history of taking its technology demonstrations across the city, throughout the country, and around the world. The team has extensive experience organizing, presenting, and facilitating STEM-based educational outreach for a variety of different events and venues. Inside the lab, GVIS supports the education and career exploration of its high school and college interns through mentorship, community engagement opportunities, and access to cutting-edge technology.

STEM Engagement EventVisitors interact with the Graphics and Visualization Lab (GVIS) team while attending Score with STEM, an event organized by the Cleveland Cavaliers. NASA/GRC/Jef Janis STEM Engagement EventA visitor interacts with a Graphics and Visualization Lab (GVIS) team member while attending Dino Days at the Cleveland Museum of Natural History. NASA STEM Engagement EventA Graphics and Visualization Lab (GVIS) Intern interacts with visitors at a STEM outreach event. NASA STEM Engagement EventGraphics and Visualization Lab (GVIS) team members attend Women in Aviation Day organized by Women in Aviation International (WAI). NASA GRUVE Lab ToursThe Graphics and Visualization Lab (GVIS) team provides tours of NASA labs and facilities. NASA GVIS Lab ToursA Graphics and Visualization Lab (GVIS) team member demonstrates VR visualizations. NASA GRUVE Lab ToursVisitors interact with a visualization through the CAVE environment at the Graphics and Visualization Lab (GVIS).   NASA Contact Us 

Need to reach us? You can send an email directly to the GVIS Team (GRC-DL-GVIS@mail.nasa.gov) or to the team leader, Herb Schilling (hschilling@nasa.gov).

Share Details Last Updated Jul 23, 2025 Related Terms Explore More 3 min read 1942: Engine Roars to Life in First Test at Future NASA Glenn Article 1 year ago 2 min read NASA Glenn History Includes Contributions of Women in Aerospace Research Article 3 years ago 3 min read NASA Uses Cleveland Landmark for Microgravity Research in the 1960s Article 3 years ago Keep Exploring Discover More Topics From NASA

Explore NASA’s History

Glenn Historic Facilities

This collection of webpages was created to document some of the historic facilities formerly located at NASA's Glenn Research Center…

Glenn Historic Preservation

NASA History Series

Categories: NASA

GVIS History

NASA News - Wed, 07/23/2025 - 9:44am
4 Min Read GVIS History As part of NASA Glenn’s Scientific Computing and Visualization Team, the GVIS Lab has a storied visual and technological history.  Credits: NASA GVIS: the ICARE Era

In 1982, a $20 million supercomputer was brought to NASA Glenn. Scientists at NASA Glenn were becoming increasingly reliant on computer simulations to test their experiments. Advancements in computer technology allowed a different type of testing environment — one that revolved around virtual models and data over physical observation. The benefits of this method included a decrease in costs, a decrease in associated risk, faster turnaround, and more data.

High Definition Video System (HDVS)A High Definition Video System (HDVS) in the early Graphics and Visualization Lab (GVIS). NASA High Definition Video System (HDVS) in the LabNASA employee in early Graphics and Visualization Lab (GVIS) setup, containing High Definition Video Systems (HDVS). NASA Early Graphics and Visualization Lab (GVIS)Early Graphics and Visualization Lab (GVIS) setup, which housed original analog processing hardware. NASA Cray 1-S/2200 SupercomputerThe original Cray 1-S/2200 Supercomputer in the Research and Analysis Center in 1982.NASA

But this method of experimentation created a problem: With data-point counts somewhere in the millions, it was a challenge for scientists to even begin to look at their own collected data. In short, there was simply too much data to be analyzed. To solve this problem, NASA Glenn built the Interactive Computer Aided Research Engineering system (ICARE) in the center’s Research Analysis Center.  

Taking up several rooms, consisting of 22 total workstations, and costing a grand total of $20 million, the ICARE system was a way for scientists to examine their data through the aid of supercomputer visualizations. Using both graphical and modular methods, ICARE’s visualizations revealed and shared information in ways that traditional methods could not match. 

The construction and implementation of the ICARE system was revolutionary to both the center and NASA as a whole. Before 1982, NASA already had an established interest in powerful computers; however, the ICARE system took NASA into the era of supercomputing. ICARE also brought increased attention to the value and power of scientific visualization. 

Original Processing HardwareOriginal analog Graphics and Visualization Lab (GVIS) processing hardware.NASA ICARE RoomAn ICARE room in the Research and Analysis Center. NASA 1980s VisualizationA typical 1980s visualization at NASA’s Glenn Research Center in Cleveland.NASA GRAPH3DGRAPH3D was an innovative technology in the 1980s that supported shaded surfaces and had a rich set of user-friendly commands.NASA The Creation of GVIS

In 1989, it was time for an upgrade. NASA Glenn wanted the latest scientific visualization technology and techniques for its scientists, so the center expanded the Research Analysis Center to make room for the new Graphics and Visualization Lab (GVIS). The GVIS Lab acquired cutting-edge graphics technology, including studio-quality TV animation and recording equipment, stereographic displays, and image processing systems. Later, the High-Performance Computing Act of 1991 provided funding and opportunities to add high-speed computing, virtual reality, and collaborative visualization to its fleet of tools.

The secure supercomputing space that would eventually become the Graphics and Visualization Lab (GVIS), shown in 1989.NASA

During this period, the GVIS Lab was responsible for assisting NASA Glenn scientists who needed help visualizing their data. The lab was also tasked with inventing new visualization techniques and promoting NASA Glenn’s activities though tours, videos, and other outreach programs. Some of the techniques the lab developed included particle tracking, iso-surface contours, and volume visualization. Tour guests included school children, corporate VIPs, local and national politicians, TV news media, and researchers from other national labs. Using state-of-the-art recording and editing hardware, the GVIS Lab regularly shared work both inside and outside of NASA.   

As other labs and researchers began to gain access to their own scientific visualization tools, the GVIS Lab shifted its focus to experimenting with virtual reality- and augmented reality-based visualizations.

Jay HorowitzJay Horowitz saw the Graphics and Visualization Lab (GVIS) through its creation and early years at NASA’s Glenn Research Center in Cleveland. NASA Cray X-MP-2 SupercomputerThe Cray X-MP-2 Supercomputer that replaced the 1-S. NASA Early Research and Analysis CenterThe Research and Analysis Center pre-expansion. NASA Research and Analysis CenterThe Research and Analysis Center after the expansion. The Graphics and Visualization Lab (GVIS) is in the upper left corner. NASA Lewis Advanced Cluster Environment (LACE)The Advanced Computational Concepts Lab’s (ACCL) Lewis Advanced Cluster Environment (LACE) in 1993. NASA Mobile Aeronautics Education Laboratory (MAEL) VR Flight SimulatorSetup showing location of the various equipment used in the Mobile Aeronautics Education Laboratory (MAEL) VR Flight Simulator.NASA Mobile Aeronautics Education Laboratory (MAEL) VR Flight SimulatorMAEL (Mobile Aeronautics Education Laboratory) trailer’s flight simulator supported multi-screen panoramic views or head-tracked Head Mounted Displays (HMDs). NASA WrightSimApollo 13 flight director Gene Kranz watches Jim Lovell pilot WrightSim. NASA 100 Years of Flight Gala CelebrationJohn Glenn talks to a Graphics and Visualization Lab (GVIS) programmer during the 2003 “100 Years of Flight Gala Celebration” event at NASA’s Glenn Research Center in Cleveland. NASA VR TreadmillThe concept of the VR treadmill was used to test if duplicating a visual-motor linkage was feasible for long-duration spaceflight. NASA 2000s VisualizationTurn-of-the-century Graphics and Visualization Lab (GVIS) model. NASA 2000s VisualizationTurn-of-the-century Graphics and Visualization Lab (GVIS) model. NASA 2000s Visualization Turn-of-the-century Graphics and Visualization Lab (GVIS) model. NASA Aeroshark ClusterThe Advanced Computational Concepts Lab’s (ACCL) Aeroshark Cluster in 2001. NASA Early 2000s Graphics and Visualization Lab (GVIS)The turn-of-the-century Graphics and Visualization Lab (GVIS), shown in 2004. NASA Advanced Communications Environment (ACE) ClusterThe Advanced Computational Concepts Lab’s (ACCL) Advanced Communications Environment (ACE) Cluster in 2005. NASA Early Computer Automatic Virtual Environment (CAVE)A Graphics and Visualization Lab (GVIS) team member demonstrating the old Computer Automatic Virtual Environment (CAVE). NASA Current Computer Automatic Virtual Environment (CAVE)A Graphics and Visualization Lab (GVIS) intern in the Computer Automatic Virtual Environment (CAVE). NASA GVIS Now

Today, the GVIS Lab has the same mission that it had in 1989: to apply the latest visualization and human interaction technologies to advance NASA’s missions. The team takes pride in pushing the limits of scientific visualization and computer science, helping fellow researchers make sense of their data, and inspiring the next generation through demonstrations and presentations. Computational technology has come a long way since the days of ICARE, but GVIS has continued to explore current and cutting-edge technologies. 

In addition to scientific visualization and experimental computational technologies, the GVIS Lab now also specializes in virtual design, interactive 3D simulations, natural user interface development, applications of computer science, and mission scenario visualizations. The team uses the latest edition of 3D programs and VR devices to experiment with how these systems can be used to visualize data, pushing their input and output capabilities. 

With all this technology, GVIS also supports the visualization of a wide variety of 3D data and models such as CAD, point clouds, and volume data. Additionally, the lab is capable of high-impact data visualization, web-based visualization, time-accurate data representation, and designing and testing CAD models in virtual reality.

The Graphics and Visualization Lab (GVIS) team attends a STEM outreach event at the Cleveland Museum of Natural History.NASA Public Engagement

Outside of the lab, GVIS has a longstanding history of taking its technology demonstrations across the city, throughout the country, and around the world. The team has extensive experience organizing, presenting, and facilitating STEM-based educational outreach for a variety of different events and venues. Inside the lab, GVIS supports the education and career exploration of its high school and college interns through mentorship, community engagement opportunities, and access to cutting-edge technology.

STEM Engagement EventVisitors interact with the Graphics and Visualization Lab (GVIS) team while attending Score with STEM, an event organized by the Cleveland Cavaliers. NASA/GRC/Jef Janis STEM Engagement EventA visitor interacts with a Graphics and Visualization Lab (GVIS) team member while attending Dino Days at the Cleveland Museum of Natural History. NASA STEM Engagement EventA Graphics and Visualization Lab (GVIS) Intern interacts with visitors at a STEM outreach event. NASA STEM Engagement EventGraphics and Visualization Lab (GVIS) team members attend Women in Aviation Day organized by Women in Aviation International (WAI). NASA GRUVE Lab ToursThe Graphics and Visualization Lab (GVIS) team provides tours of NASA labs and facilities. NASA GVIS Lab ToursA Graphics and Visualization Lab (GVIS) team member demonstrates VR visualizations. NASA GRUVE Lab ToursVisitors interact with a visualization through the CAVE environment at the Graphics and Visualization Lab (GVIS).   NASA Contact Us 

Need to reach us? You can send an email directly to the GVIS Team (GRC-DL-GVIS@mail.nasa.gov) or to the team leader, Herb Schilling (hschilling@nasa.gov).

Share Details Last Updated Jul 23, 2025 Related Terms Explore More 3 min read 1942: Engine Roars to Life in First Test at Future NASA Glenn Article 1 year ago 2 min read NASA Glenn History Includes Contributions of Women in Aerospace Research Article 3 years ago 3 min read NASA Uses Cleveland Landmark for Microgravity Research in the 1960s Article 3 years ago Keep Exploring Discover More Topics From NASA

Explore NASA’s History

Glenn Historic Facilities

This collection of webpages was created to document some of the historic facilities formerly located at NASA's Glenn Research Center…

Glenn Historic Preservation

NASA History Series

Categories: NASA

USBR Seal Team Fix Challenge

NASA News - Wed, 07/23/2025 - 9:39am

When a reservoir conduit cannot be closed, thousands of cubic feet of water can roar through uncontrolled, threatening public safety, irreplaceable reservoir storage, and power generation. Seal Team Fix invites engineers, fabricators, and creative problem-solvers to stop that torrent in its tracks. Your mission: design a rapid-deploying, temporary seal that can be deployed to a submerged 3- to 25-ft diameter conduit opening, accommodate differential pressure, and achieve a 95–98 % flow reduction – without leaning on trash racks or other non-structural surfaces. The competition unfolds in three phases: a short-format concept white paper, a funded prototype build, and a lab-scale hydraulic demonstration.

Award: $575,000 in total prizes

Open Date: July 22, 2025

Close Date: October 14, 2025

For more information, visit: https://www.herox.com/SealTeamFix

Categories: NASA

NASA, JAXA XRISM Satellite X-rays Milky Way’s Sulfur

NASA News - Wed, 07/23/2025 - 9:23am

4 min read

NASA, JAXA XRISM Satellite X-rays Milky Way’s Sulfur

An international team of scientists have provided an unprecedented tally of elemental sulfur spread between the stars using data from the Japan-led XRISM (X-ray Imaging and Spectroscopy Mission) spacecraft.

Astronomers used X-rays from two binary star systems to detect sulfur in the interstellar medium, the gas and dust found in the space between stars. It’s the first direct measurement of both sulfur’s gas and solid phases, a unique capability of X-ray spectroscopy, XRISM’s (pronounced “crism”) primary method of studying the cosmos. 

“Sulfur is important for how cells function in our bodies here on Earth, but we still have a lot of questions about where it’s found out in the universe,” said Lía Corrales, an assistant professor of astronomy at the University of Michigan in Ann Arbor. “Sulfur can easily change from a gas to a solid and back again. The XRISM spacecraft provides the resolution and sensitivity we need to find it in both forms and learn more about where it might be hiding.”

A paper about these results, led by Corrales, published June 27 in the Publications of the Astronomical Society of Japan. 

Watch to learn how the XRISM (X-ray Imaging and Spectroscopy Mission) satellite took an unprecedented look at our galaxy’s sulfur. XRISM is led by JAXA (Japan Aerospace Exploration Agency) in collaboration with NASA, along with contributions from ESA (European Space Agency).
NASA’s Goddard Space Flight Center

Using ultraviolet light, researchers have found gaseous sulfur in the space between stars. In denser parts of the interstellar medium, such as the molecular clouds where stars and planets are born, this form of sulfur quickly disappears. 

Scientists assume the sulfur condenses into a solid, either by combining with ice or mixing with other elements. 

When a doctor performs an X-ray here on Earth, they place the patient between an X-ray source and a detector. Bone and tissue absorb different amounts of the light as it travels through the patient’s body, creating contrast in the detector.

To study sulfur, Corrales and her team did something similar. 

They picked a portion of the interstellar medium with the right density — not so thin that all the X-rays would pass through unchanged, but also not so dense that they would all be absorbed.

Then the team selected a bright X-ray source behind that section of the medium, a binary star system called GX 340+0 located over 35,000 light-years away in the southern constellation Scorpius. 

This composite shows a section of the interstellar medium scientists X-rayed for sulfur using the Japan-led XRISM (X-ray Imaging and Spectroscopy Mission). X-ray binary GX 340+0 is the blue dot in the center. The composite contains a blend of imagery in X-rays (represented in deep blue), infrared, and optical light.DSS/DECaPS/eRosita/NASA’s Goddard Space Flight Center This composite shows a section of the interstellar medium scientists X-rayed for sulfur using the Japan-led XRISM (X-ray Imaging and Spectroscopy Mission). The X-ray binary 4U 1630–472 is highlighted at the center. The composite contains a blend of imagery in X-rays (represented in deep blue), infrared, and optical light.DSS/DECaPS/eRosita/NASA’s Goddard Space Flight Center

Using the Resolve instrument on XRISM, the scientists were able to measure the energy of GX 340+0’s X-rays and determined that sulfur was present not only as a gas, but also as a solid, possibly mixed with iron.

“Chemistry in environments like the interstellar medium is very different from anything we can do on Earth, but we modeled sulfur combined with iron, and it seems to match what we’re seeing with XRISM,” said co-author Elisa Costantini, a senior astronomer at the Space Research Organization Netherlands and the University of Amsterdam. “Our lab has created models for different elements to compare with astronomical data for years. The campaign is ongoing, and soon we’ll have new sulfur measurements to compare with the XRISM data to learn even more.”

Iron-sulfur compounds are often found in meteorites, so scientists have long thought they might be one way sulfur solidifies out of molecular clouds to travel through the universe. 

In their paper, Corrales and her team propose a few compounds that would match XRISM’s observations — pyrrhotite, troilite, and pyrite, which is sometimes called fool’s gold. 

The researchers were also able to use measurements from a second X-ray binary called 4U 1630-472 that helped confirm their findings. 

“NASA’s Chandra X-ray Observatory has previously studied sulfur, but XRISM’s measurements are the most detailed yet,” said Brian Williams, the XRISM project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Since GX 340+0 is on the other side of the galaxy from us, XRISM’s X-ray observations are a unique probe of sulfur in a large section of the Milky Way. There’s still so much to learn about the galaxy we call home.”

XRISM is led by JAXA (Japan Aerospace Exploration Agency) in collaboration with NASA, along with contributions from ESA (European Space Agency). NASA and JAXA developed Resolve, the mission’s microcalorimeter spectrometer.

Download images and videos through NASA’s Scientific Visualization Studio.

By Jeanette Kazmierczak
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media Contact:
Alise Fisher
202-358-2546
alise.m.fisher@nasa.gov
NASA Headquarters, Washington

Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share Details Last Updated Jul 23, 2025 EditorJeanette Kazmierczak Related Terms
Categories: NASA

Feeling the Heat: Perseverance Looks for Evidence of Contact Metamorphism 

NASA - Breaking News - Tue, 07/22/2025 - 10:14pm
Explore This Section

2 min read

Feeling the Heat: Perseverance Looks for Evidence of Contact Metamorphism  NASA’s Mars Perseverance rover acquired this image of the boulders along the contact at Westport, using its Mastcam-Z Left Camera, one of a pair of cameras located high on the rover’s mast. The rover acquired the image on July 10, 2025 — Sol 1560, or Martian day 1,560 of the Mars 2020 mission — at the local mean solar time of 11:23:38. NASA/JPL-Caltech/ASU

Written by Melissa Rice, Professor of Planetary Science at Western Washington University

Following a short break for the July 4th holiday, Perseverance drove westward to a site called “Westport,” where the clay-bearing “Krokodillen” unit meets an olivine-bearing rock formation. It is possible that the olivine-rich rocks are an intrusive igneous unit, meaning they could have formed when molten magma from deep within Mars got pushed upwards and cooled under the surface. If that’s the case, Westport could preserve a dramatic moment in Mars’ history when hot, molten material intruded into existing rock formations.  

Those intrusive processes are common on Earth, and the heat of the intruding magma can fundamentally alter the surrounding geology through a process called “contact metamorphism.” The heat from the intrusion will “bake” nearby rocks, creating new minerals and potentially new environments for microbial life. Conversely, the intrusive rocks get rapidly “chilled” where they meet preexisting solid rock formations. 

At Westport, Perseverance is looking for evidence that the Krokodillen rocks at the contact were baked, and that the olivine-bearing rocks at the contact were chilled. Images from the Mastcam-Z instrument reveal that the contact is littered with intriguing dark, rubbly rocks alongside lighter-toned, smooth boulders. Both rock types are proving challenging to study. 

The dark fragments are too small and rough for Perseverance’s standard abrasion techniques, but the rover cleared off the surface of a rock called “Holyrood Bay” with its gas Dust Removal Tool (gDRT). Perseverance also tried to abrade a nearby boulder named “Drake’s Point,” but the rock shifted to the side, causing the abrasion to stop short. The science questions here are compelling enough, however, that Perseverance will keep trying to look within the rocks at this important boundary. 

Share

Details

Last Updated

Jul 22, 2025

Related Terms Explore More

3 min read Curiosity Blog, Sols 4607-4608: Deep Dip

Article


1 hour ago

3 min read Curiosity Blog, Sols 4604-4606: Taking a Deep Breath of Martian Air

Article


10 hours ago

2 min read Curiosity Blog, Sols 4602-4603: On Top of the Ridge

Article


4 days ago

Keep Exploring Discover More Topics From NASA

Mars

Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


All Mars Resources

Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


Rover Basics

Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


Mars Exploration: Science Goals

The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

Categories: NASA