"Professor Goddard does not know the relation between action and reaction and the need to have something better than a vacuum against which to react. He seems to lack the basic knowledge ladled out daily in high schools."
--1921 New York Times editorial about Robert Goddard's revolutionary rocket work.

"Correction: It is now definitely established that a rocket can function in a vacuum. The 'Times' regrets the error."
NY Times, July 1969.

— New York Times

Feed aggregator

ESA selects four new Earth Explorer mission ideas

ESO Top News - Wed, 04/17/2024 - 8:00am

As humans exert greater pressure on natural processes, understanding the intricate workings of our Earth system is increasingly vital for effective action on mitigation and adaption strategies. ESA’s Earth Explorer missions yield a wealth of astonishing findings, serving as the bedrock of scientific research in this field. Now, four new concepts have been selected to undergo assessment study, one of which is destined to be the twelfth in this family of world-leading satellite missions.

Categories: Astronomy

SETI chief says US has no evidence for alien technology. 'And we never have'

Space.com - Wed, 04/17/2024 - 7:59am
For the chief leader of the SETI Institute, established to search for and understand life beyond Earth, there's a need to step back and cuddle up to a cup of cosmic reality.
Categories: Astronomy

AI Can Transform the Classroom Just Like the Calculator

Scientific American.com - Wed, 04/17/2024 - 7:00am

AI can better education, not threaten it, if we learn some lessons from the adoption of the calculator into the classroom

Categories: Astronomy

The Evolution of a Big, Ugly Cry

Scientific American.com - Wed, 04/17/2024 - 7:00am

Uncontrollable sobbing is uniquely human, and it may be our emotions running out of our faces, a way to connect us with other people

Categories: Astronomy

Neither Plants nor Animals, These Ocean Organisms Protect Their Ecosystems against Heat Waves

Scientific American.com - Wed, 04/17/2024 - 6:45am

Mixotrophs, which have characteristics of both animals and plants, could help blunt the effects of marine heat waves on ocean ecosystems

Categories: Astronomy

SpaceX launches 23 Starlink satellites from Florida (photo, video)

Space.com - Wed, 04/17/2024 - 6:00am
SpaceX launched another batch of its Starlink internet satellites from Florida's Space Coast this evening (April 17), and landed its rocket on a ship at sea.
Categories: Astronomy

How a New AI Model Helps Volcanic History Rise from the Ashes

Scientific American.com - Wed, 04/17/2024 - 6:00am

Volcano detectives use artificial intelligence to sleuth out ancient secrets in Alaska. 

Categories: Astronomy

Overconfidence Can Blindside Science and Society Alike. Here's How Not to Get Fooled

Scientific American.com - Wed, 04/17/2024 - 5:00am

The tale of how the "backfire effect" ultimately, itself, backfired, and what scientists can learn from being wrong

Categories: Astronomy

Organic Chemistry: Why study it? What can it teach us about finding life beyond Earth?

Universe Today - Wed, 04/17/2024 - 2:28am

Universe Today has recently had the privilege of investigating a myriad of scientific disciplines, including impact cratersplanetary surfacesexoplanetsastrobiologysolar physicscometsplanetary atmospheresplanetary geophysicscosmochemistrymeteorites, radio astronomy, and extremophiles, and how these multidisciplinary fields can help both scientists and space fans better understand how they relate to potentially finding life beyond Earth, along with other exciting facets. Here, we will examine the incredible field of organic chemistry with Dr. Andro Rios, who is an Assistant Professor in Organic Chemistry at San José State University, regarding why scientists study organic chemistry, the benefits and challenges, finding life beyond Earth, and potential paths for upcoming students. So, why is it so important to study organic chemistry?

“Organic chemistry is a fascinating and powerful discipline that is directly connected to nearly everything we interact with on a daily basis,” Dr. Rios tells Universe Today. “This can range from what gives our favorite foods the flavors we love, to the medicines we take to help alleviate our pain. Organic chemistry is also the basis of describing the known chemistry that makes up the biology on this planet (called biochemistry) and can possibly provide the clues to what extraterrestrial life might be based on as well, should we find evidence of it in the upcoming years.”

While its name implies a scientific field of complicated science, the field of organic chemistry essentially involves the study of organic compounds, also known as carbon-based life, which comprises all known lifeforms on the Earth. This involves studying the various properties, classifications, and reactions that comprise carbon-based life, which helps scientists understand their structural formulas and behaviors. This, in turn, enables overlap with other disciplines, including the aforementioned biochemistry, but also includes materials science, polymer chemistry, and medicinal chemistry, as well. Therefore, given its broad range of scientific potential, what are some of the benefits and challenges of studying organic chemistry?

“Organic chemistry has played a vital role in transforming the human experience on this planet by improving our health and longevity,” Dr. Rios tells Universe Today. “All of us, or nearly all of us, have known either family members, friends or even ourselves who have fallen severely ill or battled some chronic disease. The development of new medicines, both directly and indirectly through the tools of organic chemistry to fight these ailments has been one of the most beneficial contributions of this field to society.”

Dr. Rios continues, “Learning organic chemistry in the classroom often presents a challenge because it seems so different from the general chemistry courses that most students have learned to that point. The reason for this is because organic chemistry introduces new terminology, and its focus is heavily tied to the 3-dimensional structure and composition of molecules that is not considered in general chemistry courses. The good news is that organic chemistry provides the perfect bridge from general chemistry to biochemistry/molecular biology which also often focuses on the structures and shapes of molecules (biomolecules).”

The field of organic chemistry was unofficially born in 1807 by the Swedish chemist, Jöns Jacob Berzelius, after he coined the term when describing the origins of living, biological compounds discovered throughout nature. However, this theory was disproven in 1828 by the German scientist, Friedrich Wöhler, who discovered that organic matter could be created within a laboratory setting. It took another 33 years until the German chemist, Friedrich August Kekulé von Stradonitz, officially defined organic chemistry in 1861 as a subfield of chemistry involving carbon compounds. Fast forward more than 160 years later to the present day, and the applications of organic chemistry has expanded beyond the realm of the living and can be found in almost every scientific, industrial, commercial, and medical field throughout the world, including genetics, pharmaceuticals, food, and transportation.

As noted, the very basis of organic chemistry involves the study of carbon-based life, which is the primary characteristic of life on our small, blue world. The reason is because the structure of carbon can form millions of compounds due to their valence electrons that allow it to bond with other elements, specifically hydrogen and oxygen, but can also bond with phosphorus, nitrogen, and sulfur (commonly referred to as CHNOPS).

While carbon-based life is the most common form of life on Earth, the potential for silicon-based life has grabbed the attention of scientists throughout the world due to their similar bonding characteristics as carbon. However, certain attributes, including how it shares electrons (known as electropositivity), prevent it from being able to form lifelike attributes. Therefore, if carbon-based life is currently the primary characteristic of all life on Earth, what can organic chemistry teach us about finding life beyond Earth?

“Life on Earth is highly selective in its utility of organic compounds, both big and small, which is an outcome of biological evolution on this planet,” Dr. Rios tells Universe Today. “But over the years detailed studies on the properties (reactivity, function, preservation, etc) of these molecules and polymers have revealed to us that there is nothing inherently ‘special’ about those biochemicals compared to those that aren’t associated with life (called abiotic chemistry).”

Dr. Rios continues, “What we have learned, however, is that there are trends, or patterns in the selectivity of molecules used by life that might be helpful in informing us not only how life emerged on this planet, but in the search for life elsewhere. This suggests that when we go looking for life in other worlds, we shouldn’t necessarily expect to find the same biochemical make-up we see in our terrestrial biology. Rather, we should be keeping a lookout for any patterns or trends in the chemical make-up of alien environments that are distinct from what we might consider typical abiotic chemistry.”

As noted, the science of organic chemistry is responsible for myriad of applications throughout the world, which are accomplished through the creation of new compounds. One of the most well-known applications for organic chemistry is the pharmaceutical industry and the development of new drugs and treatments, including aspirin which is one of the most well-known drugs throughout the world. Additionally, organic chemistry is responsible for everyday products, including biofuels, biodegradable plastics, agriculture, and environmental purposes. Therefore, with the wide range of applications for organic chemistry, including the potential to find life beyond Earth, what is the most exciting aspect of organic chemistry that Dr. Rios has studied during his career?

“For me, it was when I was in graduate school when I made the realization that I could apply the knowledge and tools of organic chemistry that I was studying in the lab, to questions that were relevant to astrobiology,” Dr. Rios tells Universe Today. “I am particularly interested in questions surrounding prebiotic chemistry, chemical evolution and the origin of life. The primary area that captivates my interest within the origin of life field is metabolic chemistry —exploring the origins of metabolism. This field, known as protometabolic chemistry, has been gaining momentum in recent years. Our community has been uncovering that small prebiotic molecules have the ability, under a wide range of conditions, to initiate simple reaction networks that can lead to more complex molecules over time. These results are exciting because they are potentially helping us understand the origin of one of biology’s most complex processes.”

The individuals who study organic chemistry are aptly called organic chemists who spend time designing and creating new organic compounds for a variety of purposes. This frequently involves examining the myriad of structural drawings of organic compounds and learning how each one functions individually and adding or subtracting new elements to create new compounds. Like most scientific disciplines that Universe Today has examined throughout this series, organic chemistry is successful through the constant collaboration with other fields with the goal of gaining greater insight into life and the world around us, including beyond Earth. Therefore, what advice would Dr. Rios give to upcoming students who wish to pursue studying organic chemistry?

Dr. Rios tells Universe Today, “Organic chemistry is a discipline that fundamentally interacts with so many other fields of STEM; biology, medicine, synthetic biology, bioengineering, chemical engineering, ecology, etc. Taking the time to devote a portion of your education in learning the language of this discipline will be one of the most important intellectual investments you will make in your STEM related career.”

How will organic chemistry help us better understand our place in the cosmos in the coming years and decades? Only time will tell, and this is why we science!

As always, keep doing science & keep looking up!

The post Organic Chemistry: Why study it? What can it teach us about finding life beyond Earth? appeared first on Universe Today.

Categories: Astronomy

Colonies of single-celled creatures could explain how embryos evolved

New Scientist Space - Cosmology - Wed, 04/17/2024 - 2:00am
We know little about how embryonic development in animals evolved from single-celled ancestors, but simple organisms with a multicellular life stage offer intriguing clues
Categories: Astronomy

Colonies of single-celled creatures could explain how embryos evolved

New Scientist Space - Space Headlines - Wed, 04/17/2024 - 2:00am
We know little about how embryonic development in animals evolved from single-celled ancestors, but simple organisms with a multicellular life stage offer intriguing clues
Categories: Astronomy

Jupiter Meets Uranus in Twilight; Supernova Erupts in Nearby Spiral Galaxy

Sky & Telescope Magazine - Wed, 04/17/2024 - 1:08am

Jupiter aligns with distant Uranus before it exits the evening sky as a bright supernova flares in the southern galaxy NGC 3621.

The post Jupiter Meets Uranus in Twilight; Supernova Erupts in Nearby Spiral Galaxy appeared first on Sky & Telescope.

Categories: Astronomy

Eclipse in Seven

APOD - Wed, 04/17/2024 - 12:00am

Start at the upper left above and you can follow the progress of


Categories: Astronomy, NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Wed, 04/17/2024 - 12:00am

What wonders appear when the Moon blocks the Sun?


Categories: Astronomy, NASA

NASA’s Ingenuity Mars Helicopter Team Says Goodbye … for Now

NASA - Breaking News - Tue, 04/16/2024 - 8:54pm
NASA’s Ingenuity Mars Helicopter, right, stands near the apex of a sand ripple in an image taken by Perseverance on Feb. 24, about five weeks after the rotorcraft’s final flight. Part of one of Ingenuity’s rotor blades lies on the surface about 49 feet (15 meters) west of helicopter (left of center in the image).NASA/JPL-Caltech/LANL/CNES/CNRS

The final downlink shift by the Ingenuity team was a time to reflect on a highly successful mission — and to prepare the first aircraft on another world for its new role.

Engineers working on NASA’s Ingenuity Mars Helicopter assembled for one last time in a control room at the agency’s Jet Propulsion Laboratory in Southern California on Tuesday, April 16, to monitor a transmission from the history-making helicopter. While the mission ended Jan. 25, the rotorcraft has remained in communication with the agency’s Perseverance Mars rover, which serves as a base station for Ingenuity. This transmission, received through the antennas of NASA’s Deep Space Network, marked the final time the mission team would be working together on Ingenuity operations.

Now the helicopter is ready for its final act: to serve as a stationary testbed, collecting data that could benefit future explorers of the Red Planet.

Throughout its mission on the Red Planet, NASA’s Ingenuity Mars Helicopter received thousands of electronic postcards filled with well wishes from all over the world via the mission’s website. In this video, members of the helicopter team read some of those messages. Credit: NASA/JPL-Caltech 

“With apologies to Dylan Thomas, Ingenuity will not be going gently into that good Martian night,” said Josh Anderson, Ingenuity team lead at JPL. “It is almost unbelievable that after over 1,000 Martian days on the surface, 72 flights, and one rough landing, she still has something to give. And thanks to the dedication of this amazing team, not only did Ingenuity overachieve beyond our wildest dreams, but also it may teach us new lessons in the years to come.”

Originally designed as a short-lived technology demonstration mission that would perform up to five experimental test flights over 30 days, the first aircraft on another world operated from the Martian surface for almost three years, flew more than 14 times farther than the distance expected, and logged more than two hours of total flight time.

Ingenuity’s mission ended after the helicopter experienced a hard landing on its last flight, significantly damaging its rotor blades. Unable to fly, the rotorcraft will remain at “Valinor Hills” while the Perseverance rover drives out of communications range as it continues to explore the western limb of Jezero Crater.

Bytes and Cake

The team enjoyed some “Final Comms” chocolate cake while reviewing the latest data from over 189 million miles (304 million kilometers) away. The telemetry confirmed that a software update previously beamed up to Ingenuity was operating as expected. The new software contains commands that direct the helicopter to continue collecting data well after communications with the rover have ceased.

Engineers working on NASA’s Ingenuity together monitored a transmission from the history-making helicopter in a JPL control room on April 16. They confirmed the operation of a software patch that will allow the helicopter to act as a stationary testbed and collect data that could benefit future Mars explorers.NASA/JPL-Caltech

With the software patch in place, Ingenuity will now wake up daily, activate its flight computers, and test the performance of its solar panel, batteries, and electronic equipment. In addition, the helicopter will take a picture of the surface with its color camera and collect temperature data from sensors placed throughout the rotorcraft. Ingenuity’s engineers and Mars scientists believe such long-term data collection could not only benefit future designers of aircraft and other vehicles for the Red Planet, but also provide a long-term perspective on Martian weather patterns and dust movement.

During this final gathering, the team received a farewell message from Ingenuity featuring the names of people who worked on the mission. Mission controllers at JPL sent the message to Perseverance the day before, which handed it off to Ingenuity so that it could transmit the farewell back to Earth.

Decades of Room

If a critical electrical component on Ingenuity were to fail in the future, causing data collection to stop, or if the helicopter eventually loses power because of dust accumulation on its solar panel, whatever information Ingenuity has collected will remain stored on board. The team has calculated Ingenuity’s memory could potentially hold about 20 years’ worth of daily data.

“Whenever humanity revisits Valinor Hills — either with a rover, a new aircraft, or future astronauts — Ingenuity will be waiting with her last gift of data, a final testament to the reason we dare mighty things,” said Ingenuity’s project manager, Teddy Tzanetos of JPL. “Thank you, Ingenuity, for inspiring a small group of people to overcome seemingly insurmountable odds at the frontiers of space.”

Tzanetos and other Ingenuity alumni are currently researching how future Mars helicopters — including the Mars Science Helicopter concept — could benefit explorations of the Red Planet and beyond.

More About the Mission

The Ingenuity Mars Helicopter was built by JPL, which also manages the project for NASA Headquarters. It is supported by NASA’s Science Mission Directorate. NASA’s Ames Research Center in California’s Silicon Valley and NASA’s Langley Research Center in Hampton, Virginia, provided significant flight performance analysis and technical assistance during Ingenuity’s development. AeroVironment Inc., Qualcomm, and SolAero also provided design assistance and major vehicle components. Lockheed Space designed and manufactured the Mars Helicopter Delivery System. At NASA Headquarters, Dave Lavery is the program executive for the Ingenuity Mars helicopter.

For more information about Ingenuity:

https://mars.nasa.gov/technology/helicopter

News Media Contacts

DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov

Karen Fox / Alana Johnson
NASA Headquarters, Washington
301-286-6284 / 202-358-1501
karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov

2024-044

Share Details Last Updated Apr 16, 2024 Related Terms Explore More 3 min read Comet Geyser: Perseverance’s 24th Rock Core

After investigating the high-standing bedrock at the Bunsen Peak workspace deep within the Margin Unit,…

Article 10 hours ago
3 min read NASA’s Dragonfly Rotorcraft Mission to Saturn’s Moon Titan Confirmed

NASA has confirmed its Dragonfly rotorcraft mission to Saturn’s organic-rich moon Titan. The decision allows…

Article 10 hours ago
4 min read NASA Observations Find What Helps Heat Roots of ‘Moss’ on Sun

Did you know the Sun has moss? Due to its resemblance to the earthly plants,…

Article 11 hours ago
Categories: NASA

Sleeping bumblebees can survive underwater for a week

New Scientist Space - Cosmology - Tue, 04/16/2024 - 8:01pm
A serendipitous lab accident revealed that hibernating bumblebee queens can make it through days of flooding, revealing that they are less vulnerable to extreme weather than previously thought
Categories: Astronomy

Sleeping bumblebees can survive underwater for a week

New Scientist Space - Space Headlines - Tue, 04/16/2024 - 8:01pm
A serendipitous lab accident revealed that hibernating bumblebee queens can make it through days of flooding, revealing that they are less vulnerable to extreme weather than previously thought
Categories: Astronomy

A Clinical Decision Support System for Earth-independent Medical Operations

NASA - Breaking News - Tue, 04/16/2024 - 6:53pm

Deep space exploration requires a paradigm shift in astronaut medical support toward Earth-independent medical operations. Currently, astronauts rely on real-time communication with ground-based medical providers. However, as the distance from Earth increases, so do communication delays and disruptions. Deep space exploration crews will need to autonomously detect, diagnose, treat, and prevent medical conditions. One potential solution is to augment the long duration exploration crew’s knowledge, skills, and abilities with a digital clinical decision support system, or CDSS. The Exploration Medical Capability (ExMC) element of NASA’s Human Research Program is investigating the feasibility and value of advanced capabilities to promote and enhance EIMO.

Main findings: The ExMC research team has produced a CDSS concept in which medical data would be continuously gathered, through both passive and active monitoring, and delivers real-time guidanance. This helps improve patient outcomes and reduce the workload of health maintenance.

Impact: The assistive technology of ExMC’s envisioned CDSS stands to significantly enhance a crew’s medical capability. Private applications for this approach are currently being considered by commercial space flight programs, a timely example of how ARC Space Biosciences research benefits the entire space sector.

Reference: Russell, B., Burian, B., …, Beard, B., Martin, K., Pletcher, D., … The value of a spaceflight clinical decision support system for earth-independent medical operations. Nature: NPJ Microgravity 9, 46 (2023).

Keep Exploring Discover More Topics From NASA NASA Biological & Physical Sciences

BPS administers NASA’s: BPS partners with the research community and a wide range of organizations to accomplish its mission. Grants…

International Space Station

Humans In Space

Ames Research Center

Categories: NASA

BioNutrients Flight Experiments

NASA - Breaking News - Tue, 04/16/2024 - 6:39pm
iss068e036727 (Jan. 3, 2023) — NASA astronaut and Expedition 68 Flight Engineer Nicole Mann works in the International Space Station’s Harmony module on the BioNutrients-2 investigation that uses genetically engineered microbes to provide nutrients, and potentially other compounds and pharmaceuticals, on demand in space.NASA On-demand nutrient production system for long-duration missions

When astronauts embark on long space missions, they’ll need to grow their own food because pre-packaged meals from Earth lose their nutritional value over time. The BioNutrients project at Ames Research Center’s Space Biosciences Division has solved this problem by using genetic engineering to create microbially-based food that can produce nutrients and compounds, such as medicines, with minimal resources. The process involves storing dried microbes and food-grade media in small bioreactors, which can be rehydrated and grown years later. The project has already produced carotenoids for antioxidants, follistatin for muscle loss, and yogurt and kefir for a healthy gut biome.

Astronaut mixing the yeast cultures in the Gen-0 bioreactors from the Bionutrients-1 ISS experiment. After a successful first mission, a more compact container was designed as the flat-pack Gen-1 bioreactors.

Main Findings: Two different engineered baker’s yeasts were cultured in the BioNutrients-1 (BN-1) Gen-0 bioreactors, producing beta-carotene and zeaxanthin, and their ambient shelf life on the International Space Station (ISS) has now been demonstrated out to 3.9 years. Four additional organism types and products were flown on BioNutrients-2 (BN-2), demonstrating the production of carotenoids, follistatin, yogurt, and kefir products in the Gen-1 bioreactors which have a 91% reduced mass and a flat pack design. The shelf life of yeast-based products is expected to meet 5 years at ambient storage conditions. Analysis of yogurt and kefir is underway.

Impact: BN-1 and BN-2 successes pave the way for further biomanufacturing processes that will ensure the safe consumption of essential nutrients and compounds for long-duration space missions.

Co-Investigators: John Hogan and Frances Donovan

Team: Ball, N., Sharif, S., Downing, S., Gresser, A., Hami, R., Oscar, R., Hindupur, A., Hiromi, K., Kostakis, A., Levri, J., Murikami, M., Settles, A.M., Sims, K., Villanueva, A., Vu, S.

Categories: NASA