Feed aggregator
New Evidence That An Ancient Martian Ocean Covered Half The Planet
Mars Was Half Covered by an Ocean susannakohler33808 Mon, 01/12/2026 - 12:00 Mars Was Half Covered by an Ocean https://mediarelations.unibe.ch/media_releases/2026/media_releases_2026/mars_was_half_covered_by_an_ocean/index_eng.html
The hunt for where the last Neanderthals lived
The Pacific Islanders fighting to save their homes from catastrophe
The Pacific Islanders fighting to save their homes from catastrophe
Can Philanthropy Fast-Track a Flagship Telescope?
New Space is a term now commonly used around the rocketry and satellite industries to indicate a new, speed focused model of development that takes its cue from the Silicon Valley mindset of “move fast and (hopefully don’t) break things.” Given that several of the founders of rocketry and satellite companies have a Silicon Valley background, that probably shouldn’t be a surprise, but the mindset has resulted in an exponential growth in the number of satellites in orbit, and also an exponential decrease in the cost of getting them to orbit. A new paper, recently published in pre-print form in arXiv from researchers at Schmidt Space and a variety of research institutes, lays out plans for the Lazuli Space Observatory, which hopes to apply that same mindset to flagship-level space observatory missions.
Greenland sharks survive for centuries with diseased hearts
Greenland sharks survive for centuries with diseased hearts
Betelgeuse’s Elusive Companion Might Be Making Waves
In new observations, astronomers detect a moving wake of gas in the outer layers of the red supergiant Betelgeuse, offering fresh evidence for a long-suspected secondary star.
The post Betelgeuse’s Elusive Companion Might Be Making Waves appeared first on Sky & Telescope.
70 Percent of Cancer Patients Now Survive at Least Five Years, Study Finds
Cancer survival rates climbed significantly in recent decades. But federal funding cuts could threaten that progress, physicians warn
When Martian Winds Become Sandblasters
Mars Express has captured stunning images of wind sculpted terrain near the planet’s equator, revealing how Martian winds act as a sandblaster across geological timescales. The spacecraft’s high resolution camera spotted amazing ridges called yardangs, features carved by sand carrying winds that extend tens of kilometres across the surface. These dramatic erosional features share the landscape with impact craters and ancient lava flows, creating a fusion of three different geological forces that together tell the story of Mars’s violent and dynamic past.
Vertical Solar Panels—Wind-Resistant Trackers for High Latitudes
Traditional solar fails in the windswept north. Two Swedish inventors are betting on aerodynamic resilience to solve the latitude gap
The Hidden Lives of the Universe’s Ultramassive Galaxies
Astronomers have revealed a surprising diversity in the evolutionary paths of the universe’s most massive galaxies. Using multi-wavelength observations combining Keck Observatory spectroscopy with far infrared and radio data, researchers found that less than two billion years after the Big Bang, some ultramassive galaxies had already shut down star formation and shed their dust, while others continued building stars behind thick dusty veils.
The Galaxy’s Most Common Planets Have a Strange Childhood
Astronomers have discovered a crucial missing link in understanding how the Galaxy’s most common planets form. By studying four young, extraordinarily puffy planets orbiting a 20 million year old star, researchers have captured a rare snapshot of worlds actively transforming into super Earths and sub Neptunes. This discovery reveals that the universe’s most successful planets start as bloated giants before shrinking dramatically over billions of years, fundamentally changing our understanding of how planetary systems evolve.
NASA’s Webb Delivers Unprecedented Look Into Heart of Circinus Galaxy
- Webb
- News
- Overview
- Science
- Observatory
- Multimedia
- Team
- More
Artwork: NASA, ESA, CSA, Ralf Crawford (STScI)
The Circinus Galaxy, a galaxy about 13 million light-years away, contains an active supermassive black hole that continues to influence its evolution. The largest source of infrared light from the region closest to the black hole itself was thought to be outflows, or streams of superheated matter that fire outward.
Image: Circinus Galaxy (Hubble and Webb) This image from NASA’s Hubble Space Telescope shows the Circinus galaxy. A close-up of its core from NASA’s James Webb Space Telescope shows the inner face of the hole of the donut-shaped disk of gas disk glowing in infrared light. The outer ring appears as dark spots. Image: NASA, ESA, CSA, Enrique Lopez-Rodriguez (University of South Carolina), Deepashri Thatte (STScI); Image Processing: Alyssa Pagan (STScI); Acknowledgment: NSF’s NOIRLab, CTIONow, new observations by NASA’s James Webb Space Telescope, seen here with a new image from NASA’s Hubble Space Telescope, provide evidence that reverses this thinking, suggesting that most of the hot, dusty material is actually feeding the central black hole. The technique used to gather this data also has the potential to analyze the outflow and accretion components for other nearby black holes.
The research, which includes the sharpest image of a black hole’s surroundings ever taken by Webb, published Tuesday in Nature.
Outflow questionSupermassive black holes like those in Circinus remain active by consuming surrounding matter. Infalling gas and dust accumulates into a donut-shaped ring around the black hole, known as a torus. As supermassive black holes gather matter from the torus’ inner walls, they form an accretion disk, similar to a whirlpool of water swirling around a drain. This disk grows hotter through friction, eventually becoming hot enough to emit light.
This glowing matter can become so bright that resolving details within the galaxy’s center with ground-based telescopes is difficult. It’s made even harder due to the bright, concealing starlight within Circinus. Further, since the torus is incredibly dense, the inner region of the infalling material, heated by the black hole, is obscured from our point of view. For decades, astronomers contended with these difficulties, designing and improving models of Circinus with as much data as they could gather.
Image: Circinus Galaxy Center (Artist’s Concept) This artist’s concept depicts the central engine of the Circinus galaxy, visualizing the supermassive black hole fed by a thick, dusty torus that glows in infrared light. Artwork: NASA, ESA, CSA, Ralf Crawford (STScI)“In order to study the supermassive black hole, despite being unable to resolve it, they had to obtain the total intensity of the inner region of the galaxy over a large wavelength range and then feed that data into models,” said lead author Enrique Lopez-Rodriguez of the University of South Carolina.
Early models would fit the spectra from specific regions, such as the emissions from the torus, those of the accretion disk closest to the black hole, or those from the outflows, each detected at certain wavelengths of light. However, since the region could not be resolved in its entirety, these models left questions at several wavelengths. For example, some telescopes could detect an excess of infrared light, but lacked the resolution to determine where exactly it was coming from.
“Since the ‘90s, it has not been possible to explain excess infrared emissions that come from hot dust at the cores of active galaxies, meaning the models only take into account either the torus or the outflows, but cannot explain that excess,” said Lopez-Rodriguez.
Such models found that most of the emission (and, therefore, mass) close to the center came from outflows. To test this theory, then, astronomers needed two things: the ability to filter the starlight that previously prevented a deeper analysis, and the ability to distinguish the infrared emissions of the torus from those of the outflows. Webb, sensitive and technologically sophisticated enough to meet both challenges, was necessary to advance our understanding.
Webb’s innovative techniqueTo look into the center of Circinus, Webb needed the Aperture Masking Interferometer tool on its NIRISS (Near-Infrared Imager and Slitless Spectrograph) instrument.
On Earth, interferometers usually take the form of telescope arrays: mirrors or antennae that work together as if they were a single telescope. An interferometer does this by gathering and combining the light from whichever source it is pointed toward, causing the electromagnetic waves that make up light to “interfere” with each other (hence, “interfere-ometer”) and creating interference patterns. These patterns can be analyzed by astronomers to reconstruct the size, shape, and features of distant objects with much greater detail than non-interferometric techniques.
The Aperture Masking Interferometer allows Webb to become an array of smaller telescopes working together as an interferometer, creating these interference patterns by itself. It does this by utilizing a special aperture made of seven small, hexagonal holes, which, like in photography, controls the amount and direction of light that enters the telescope’s detectors.
“These holes in the mask are transformed into small collectors of light that guide the light toward the detector of the camera and create an interference pattern,” said Joel Sanchez-Bermudez, co-author based at the National University of Mexico.
With new data in hand, the research team was able to construct an image from the central region’s interference patterns. To do so, they referenced data from previous observations to ensure their data from Webb was free of any artifacts. This resulted in the first extragalactic observation from an infrared interferometer in space.
“By using an advanced imaging mode of the camera, we can effectively double its resolution over a smaller area of the sky,” Sanchez-Bermudez said. “This allows us to see images twice as sharp. Instead of Webb’s 6.5-meter diameter, it’s like we are observing this region with a 13-meter space telescope.”
The data showed that contrary to the models predicting that the infrared excess comes from the outflows, around 87% of the infrared emissions from hot dust in Circinus come from the areas closest to the black hole, while less than 1% of emissions come from hot dusty outflows. The remaining 12% comes from distances farther away that could not previously be told apart.
“It is the first time a high-contrast mode of Webb has been used to look at an extragalactic source,” said Julien Girard, paper co-author and senior research scientist at the Space Telescope Science Institute. “We hope our work inspires other astronomers to use the Aperture Masking Interferometer mode to study faint, but relatively small, dusty structures in the vicinity of any bright object.”
Video: Circinus Galaxy ZoomTo view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video
While the mystery of Circinus’ excess emissions has been solved, there are billions of black holes in our universe. Those of different luminosities, the team notes, may have an influence on whether most of the emissions come from a black hole’s torus or their outflows.
“The intrinsic brightness of Circinus’ accretion disk is very moderate,” Lopez-Rodriguez said. “So it makes sense that the emissions are dominated by the torus. But maybe, for brighter black holes, the emissions are dominated by the outflow.”
With this research, astronomers now have a tested technique to investigate whichever black holes they want, so long as they are bright enough for the Aperture Masking Interferometer to be useful. Studying additional targets will be essential to building a catalog of emission data to figure out if Circinus’ results were unique or characteristic of a pattern.
“We need a statistical sample of black holes, perhaps a dozen or two dozen, to understand how mass in their accretion disks and their outflows relate to their power,” Lopez-Rodriguez said.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
To learn more about Webb, visit:
Downloads & Related InformationThe following sections contain links to download this article’s images and videos in all available resolutions followed by related information links, media contacts, and if available, research paper and spanish translation links.
Related Images & Videos Circinus Galaxy Center (Artist’s Concept)This artist’s concept depicts the central engine of the Circinus galaxy, visualizing the supermassive black hole fed by a thick, dusty torus that glows in infrared light.
Circinus Galaxy (Hubble and Webb)
This image from NASA’s Hubble Space Telescope shows the Circinus galaxy. A close-up of its core from NASA’s James Webb Space Telescope shows the inner face of the hole of the donut-shaped disk of gas disk glowing in infrared light. The outer ring appears as dark spots.
Circinus Galaxy (Hubble and Webb Compass Image)
This image shows two views of the Circinus galaxy, one captured by the Hubble Space Telescope and the other by the James Webb Space Telescope’s NIRISS (Near-Infrared Imager and Slitless Spectrograph. It shows compass arrows, scale bar, and color key for reference.
Circinus Galaxy Zoom
This zoom-in video shows the location of the Circinus galaxy on the sky. It begins with a ground-based photo of the constellation Circinus by the late astrophotographer Akira Fujii. The video closes in on the Circinus galaxy, using views from the Digitized Sky Survey and the Dark…
Related Links
Read more: The Modes of Webb’s NIRISS
Explore more: Black Hole Resources from NASA’s Universe of Learning
Read more: Webb’s Scientific Instruments
Video: NASA Animation Sizes Up the Universe’s Biggest Black Holes
Laura Betz
NASA’s Goddard Space Flight Center
Greenbelt, Maryland
laura.e.betz@nasa.gov
Matthew Brown
Space Telescope Science Institute
Baltimore, Maryland
Hannah Braun
Space Telescope Science Institute
Baltimore, Maryland
Science Paper: “JWST interferometric imaging reveals the dusty disk obscuring the supermassive black hole of the Circinus galaxy” by E. Lopez Rodriguez et al.
Keep Exploring Discover More Topics From Webb James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Science Overview
Webb Observatory
Webb Image Galleries
A Plume of Bright Blue in Melissa’s Wake
- Earth
- Earth Observatory
- Image of the Day
- EO Explorer
- Topics
- More Content
- About
A Plume of Bright Blue in Melissa’s Wake
- Earth
- Earth Observatory
- Image of the Day
- EO Explorer
- Topics
- More Content
- About