Feed aggregator
Why Is the Trump Administration Villainizing Mental Health Meds for Kids?
A federal commission to examine U.S. chronic disease could undercut real treatment for kids with depression, ADHD and other mental health challenges
Asteroid 2024 YR4 will now almost certainly miss Earth in 2032
Asteroid 2024 YR4 will now almost certainly miss Earth in 2032
What’s on the Milky Way’s Far Side?
With radio and infrared telescopes, astronomers can pierce the dusty veil of our galaxy and map its farthest reaches
Biological Anthropology Points to Possible Reasons for Hair and Skin Tone Diversity
Humans have a surprising lack of hair for mammals. Biological anthropology may provide insights into why the hair we have sometimes comes out curly.
'It's extremely worrisome.' NASA's James Webb Space Telescope faces potential 20% budget cut just 4 years after launch
AI can decode digital data stored in DNA in minutes instead of days
AI can decode digital data stored in DNA in minutes instead of days
How do black holes 'leak' energy? Scientists have a new spin on the answer
ESA and Red Cross partnership brings space technology to disaster management
The European Space Agency (ESA) and the International Committee of the Red Cross (ICRC) have signed a Memorandum of Intent (MoI) to harness space technology for humanitarian assistance worldwide. The partnership will combine ESA's space expertise with ICRC's humanitarian reach to develop space-enabled solutions that can help protect and assist communities affected by disasters and conflicts across Europe and beyond.
Earth from Space: Tokyo, Japan
Sols 4458-4460: Winter Schminter
- Curiosity Home
- Science
- News and Features
- Multimedia
- Mars Missions
2 min read
Sols 4458-4460: Winter Schminter NASA’s Mars rover Curiosity captured this image of the Texoli butte, a Martian landmark about 525 feet (160 meters) tall, with many layers that scientists are studying to learn more about the formation of this region of the Red Planet. The butte is on the 3-mile-high Mount Sharp, inside Gale Crater, where Curiosity landed and has been exploring since 2012. The rover acquired this image using its Left Navigation Camera on sol 4456, or Martian day 4,456 of the Mars Science Laboratory mission, on Feb. 17, 2025, at 17:51:56 UTC. NASA/JPL-CaltechEarth planning date: Tuesday, Feb. 18, 2025
During today’s unusual-for-MSL Tuesday planning day (because of the U.S. holiday on Monday), we planned activities under new winter heating constraints. Operating Curiosity on Mars requires attention to a number of factors — power, data volume, terrain roughness, temperature — that affect rover operability and safety. Winter means more heating to warm up the gears and mechanisms within the rover and the instruments, but energy that goes to heating means less energy for science observations. Nevertheless, we (and Curiosity) were up to the task of balancing heating and science, and planned enough observations to warm the science team’s hearts.
We fit in DRT, APXS, and MAHLI on two different bedrock targets, “Chumash Trail” and “Wheeler Gorge,” which have different fracturing and layering features. In the workspace, ChemCam targeted a clean vertical exposure of layered bedrock at “Sierra Madre” and a lumpy-looking patch of resistant nodules at “Chiquito Basin.”
The topography of the local terrain and our end-of-drive position after the weekend fortuitously lined up to give us a view of an exposure of the Marker Band, which we first explored on the other side of Gediz Vallis Ridge. Having a view of another exposure of this distinctive horizon helps give us further insight into its origin, so we included both RMI and Mastcam mosaics of the exposure.
Documenting a feature that, unlike the Marker Band, has been and will be in our sights for a long time — “Texoli” butte (pictured above) — was the goal of additional Mastcam and ChemCam imaging. Observations of potential sedimentary structures on the flank of Texoli motivated acquisition of an RMI mosaic, and a chance to capture structures along its southeast face inspired a Mastcam mosaic. Good exposures of additional nearby bedrock structures at “Mount Lukens” and “Chantry Flat” drew the eye of Mastcam, while another small mosaic focused on the kind of linear troughs in the sand we often see bordering bedrock slabs. Environmental observations included Navcam cloud and dust-devil movies, Mastcam observations of dust in the atmosphere, and REMS and RAD measurements spread across the three sols of the plan.
Written by Michelle Minitti, Planetary Geologist at Framework
Share Details Last Updated Feb 20, 2025 Related Terms Explore More 3 min read Cookies, Cream, and Crumbling CoresArticle
3 days ago
2 min read Sols 4454-4457: Getting Ready to Fill the Long Weekend with Science
Article
4 days ago
2 min read Sols 4452-4453: Keeping Warm and Keeping Busy
Article
7 days ago
Keep Exploring Discover More Topics From NASA Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
The Artemis II Boosters are Stacked
NASA engineers are pressing ahead with preparations for the Artemis II mission unless someone tells them otherwise. The ambitious flight will send four astronauts on a trajectory similar to Apollo 8’s historic lunar journey, with the crew traveling around the Moon in an Orion Capsule before returning to Earth. A crucial milestone in the mission preparations was reached as technicians completed the assembly of the Space Launch System’s twin solid rocket boosters inside the Vehicle Assembly Building. The stacking process began in late November 2024 and concluded on February 19th.
In a significant step forward for our return to the Moon, NASA engineers at Kennedy Space Center have finished assembling the massive solid rocket boosters that will power the Artemis II mission. The stacking operation, completed on 19 February 2025, marks a key milestone in preparation for the first crewed lunar mission since Apollo. As someone who never saw the Apollo Moon landings, I’m excited.
Aldrin on the Moon. Astronaut Buzz Aldrin walks on the surface of the moon near the leg of the lunar module Eagle during the Apollo 11 mission. Mission commander Neil Armstrong took this photograph with a 70mm lunar surface camera. While astronauts Armstrong and Aldrin explored the Sea of Tranquility region of the moon, astronaut Michael Collins remained with the command and service modules in lunar orbit. Image Credit: NASAThe assembly process began on 20 November 2024, inside Kennedy’s amazing Vehicle Assembly Building (VAB), where generations of Moon rockets have been built. Using techniques that have been refined over decades of spaceflight experience, technicians employed one of the facility’s overhead cranes to carefully position each segment of the twin boosters.
These solid rocket boosters represent modern engineering at its best, being assembled on Mobile Launcher 1, a huge structure standing 380 feet tall – roughly the height of a 38-story building. This launch platform serves a number of different functions, acting as both the assembly base for the Space Launch System (SLS) rocket and Orion spacecraft, and the launch platform from which the mission will eventually depart for the Moon.
NASA’s Space Launch System (SLS) rocket with the Orion spacecraft aboard is seen at sunset atop the mobile launcher at Launch Pad 39B as preparations for launch continue, Wednesday, Aug. 31, 2022, at NASA’s Kennedy Space Center in Florida. Credit: (NASA/Joel Kowsky)The completed boosters will form part of the most powerful rocket ever built by NASA, more powerful even than Saturn V that took Apollo astronauts to the Moon. When ignited, these twin rockets will generate millions of pounds of thrust, working in together with the SLS core stage to lift the Orion spacecraft and its four-person crew toward the Moon.
Apollo 11 launch using the Saturn V rocketArtemis II represents a historic moment in space exploration as the first time humans will venture beyond low Earth orbit since 1972. The mission profile calls for a crew of four astronauts to journey around the Moon in the Orion spacecraft, testing critical systems and procedures before future missions attempt lunar landings.
The successful completion of booster stacking demonstrates the expertise of NASA’s engineering teams. Each segment had to be perfectly aligned and secured, with no room for error in a process that demands accuracy. The boosters will eventually help propel the spacecraft to speeds exceeding 17,000 miles per hour – fast enough to break free of Earth’s gravity and get to the Moon.
With this milestone achieved, NASA continues toward launch, carefully checking and testing each system to ensure the safety of the crew and the success of this ambitious mission to return humans to deep space.
Moon, here we come, once again.
Source : Artemis II Rocket Booster Stacking Complete
The post The Artemis II Boosters are Stacked appeared first on Universe Today.
Antarctica’s Deception Island is the Perfect Place to Practice Exploring Mars
It’s not uncommon for space missions to be tested here on planet Earth. With the plethora of missions that have been sent to Mars it is becoming increasingly likely that the red planet was once warmer, wetter and more habitable than it is today. To find evidence of this, a new paper proposes that Deception Island in Antarctica is one of the best places on Earth to simulate the Martian environment. The paper identifies 30 sites on the island that correspond well to places on Mars.
The exploration of Mars has been a focus of space agencies worldwide, driven by the desire to understand the its geology, climate, possibility of past life, and excitingly the potential for future human colonisation. Early missions, such as NASA’s Mariner 4 in 1965, provided the first close-up images of Mars, while the Viking landers of the 1970s conducted the first successful surface experiments. In the 1990s and 2000s, orbiters like Mars Global Surveyor and rovers like Spirit and Opportunity helped us to understand more about the Martian terrain and atmospheric conditions. As we explore the red planet, and with more projects on the horizon, Mars remains a key target for exploration.
Three Generations of Mars Rovers in the ‘Mars Yard’ at the Jet Propulsion Laboratory. The Mars Pathfinder Project (front) landed the first Mars rover – Sojourner – in 1997. The Mars Exploration Rover Project (left) landed Spirit and Opportunity on Mars in 2004. The Mars Science Laboratory Curiosity rover landed on Mars in August 2012. Credit: NASA/JPL-Caltech.The world that has been revealed following the multitude of missions is of a surface that is cold, dry, and exposed to high radiation. Evidence exists that liquid water once flowed on Mars, bringing the tantalising possibility that microbial life may have existed in the past. Today, underground water reserves and seasonal methane emissions hint at the possibility of present-day life BUT and it is a strong BUT, no evidence has been found yet. Further exploration is required and it is at times like this that researchers turn to planetary analogues to explore further.
Image taken by the Viking 1 orbiter in June 1976, showing Mars thin atmosphere and dusty, red surface. Credits: NASA/Viking 1A planetary analogue is a location on Earth that is similar or identical to places found on alien worlds. In the case of Mars, a new paper has been published that suggests that Deception Island in Antarctica is a great ‘analogue’ for parts of Mars. Exploring life that is found in these locations enables us to better understand the locations on Mars and helps inform future exploration.
The paper, that was authored by a team led by María Angélica Leal Leal identifies 30 locations on the island that are an excellent match for locations on Mars. The locations have been divided into four categories; geologically similar to areas of Mars, environmental conditions are similar to Mars, biological interest due to the existence of extremophiles on Earth and various engineering applications enabling hardware testing in Mars-like environment.
It concludes that Deception Island in Antarctica serves as a valuable Mars analogue site due to the combination of extreme environmental conditions and geological features that mirror those found on Mars. It’s a volcanic island too offering a natural (and significantly closer) laboratory where it might reveal how life adapts to harsh conditions including low temperatures and high radiation.
The island’s particularly unique features include the presence of perchlorate (chemical compounds that contain salts made up of chlorine and oxygen atoms,) glaciovolcanic processes, permafrost, and microbial mats (layers of complex microorganisms) that survive in extreme conditions. This all makes for an excellent terrestrial alternative for studying potential past or present life on Mars. However, the researchers note that further detailed studies of the island’s geochemistry, extremophile organisms, and mission simulations are needed to fully confirm its validity as a Mars analogue for specific Martian regions and time periods.
The post Antarctica’s Deception Island is the Perfect Place to Practice Exploring Mars appeared first on Universe Today.
Trump Administration’s Attacks on Science in First 30 Days
The Trump administration has acted fast to attack science with a range of funding and policy tactics
'Jupiter Ascending' came out 10 years ago, and we're still not sure how The Matrix creators' space opera went so wrong
Some baby stars in ancient stellar nurseries were born in 'fluffy' cosmic blankets
Guiding Orion: Jorge Chong’s Mission to Advance Deep Space Exploration
Jorge Chong is helping shape the future of human spaceflight, one calculation at a time. As a project manager for TRON (Tracking and Ranging via Optical Navigation) and a guidance, navigation, and control (GNC) test engineer in the Aeroscience and Flight Mechanics Division, he is leading efforts to ensure the Orion spacecraft can navigate deep space autonomously.
Jorge Chong in front of the Mission Control Center at NASA’s Johnson Space Center in Houston when he helped with optical navigation operations during Artemis I.Image courtesy of Jorge Chong“GNC is like the brain of a spacecraft. It involves a suite of sensors that keep track of where the vehicle is in orbit so it can return home safely,” he said. “Getting to test the components of a GNC system makes you very familiar with how it all works together, and then to see it fly and help it operate successfully is immensely rewarding.”
His work is critical to the Artemis campaign, which aims to return humans to the Moon and pave the way for Mars. From developing optical navigation technology that allows Orion to determine its position using images of Earth and the Moon to testing docking cameras and Light Detection and Ranging systems that enable autonomous spacecraft rendezvous, Chong is pushing the limits of exploration. He also runs high-fidelity flight simulations at Lockheed Martin’s Orion Test Hardware facility in Houston, ensuring Orion’s software is ready for the demands of spaceflight.
Chong’s NASA career spans seven years as a full-time engineer, plus three years as a co-op student at NASA’s Johnson Space Center in Houston. In 2024, he began leading Project TRON, an optical navigation initiative funded by a $2 million Early Career Initiative award. The project aims to advance autonomous space navigation—an essential capability for missions beyond Earth’s orbit.
Jorge Chong and his colleagues with the Artemis II docking camera in the Electro-Optics Lab at Johnson. From left to right: Paul McKee, Jorge Chong, and Kevin Kobylka. Bottom right: Steve Lockhart and Ronney Lovelace.Thanks to Chong’s work, the Artemis Generation is one step closer to exploring the Moon, Mars, and beyond. He supported optical navigation operations during Artemis I, is writing software that will fly on Artemis II, and leads optical testing for Orion’s docking cameras. But his path to NASA wasn’t always written in the stars.
“I found math difficult as a kid,” Chong admits. “I didn’t enjoy it at first, but my parents encouraged me patiently, and eventually it started to click and then became a strength and something I enjoyed. Now, it’s a core part of my career.” He emphasizes that perseverance is key, especially for students who may feel discouraged by challenging subjects.
Most of what Chong has learned, he says, came from working collaboratively on the job. “No matter how difficult something may seem, anything can be learned,” he said. “I could not have envisioned being involved in projects like these or working alongside such great teams before coming to Johnson.”
Jorge Chong (left) and his siblings Ashley and Bronsen at a Texas A&M University game. Image courtesy of Jorge ChongHis career has also reinforced the importance of teamwork, especially when working with contractors, vendors, universities, and other NASA centers. “Coordinating across these dynamic teams and keeping the deliverables on track can be challenging, but it has helped to be able to lean on teammates for assistance and keep communication flowing,” said Chong.
And soon, those systems will help Artemis astronauts explore places no human has gone before. Whether guiding Orion to the Moon or beyond, Chong’s work is helping NASA write the next chapter of space exploration.
“I thank God for the doors He has opened for me and the incredible mentors and coworkers who have helped me along the way,” he said.
60 Years Ago: Ranger 8 Moon Photos Aid in Apollo Site Selection
Before Apollo astronauts set foot upon the Moon, much remained unknown about the lunar surface. While most scientists believed the Moon had a solid surface that would support astronauts and their landing craft, a few believed a deep layer of dust covered it that would swallow any visitors. Until 1964, no closeup photographs of the lunar surface existed, only those obtained by Earth-based telescopes.
NASA’s Jet Propulsion Laboratory in Pasadena, California, managed the Ranger program, a series of spacecraft designed to return closeup images before impacting on the Moon’s surface. Ranger 7 first accomplished that goal in July 1964. On Feb. 17, 1965, its successor Ranger 8 launched toward the Moon, and three days later returned images of the Moon. The mission’s success helped the country meet President John F. Kennedy’s goal of a human Moon landing before the end of the decade.
Schematic diagram of the Ranger 8 spacecraft, showing its major components. NASA/JPL The television system aboard Ranger 8 showing its six cameras.NASA/JPL. Launch of Ranger 8. NASA.Ranger 8 lifted off from Cape Kennedy, now Cape Canaveral, Florida, on Feb. 17, 1965. The Atlas-Agena rocket first placed the spacecraft into Earth orbit before sending it on a lunar trajectory. The next day, the spacecraft carried out a mid-course correction, and on Feb. 20, Ranger 8 reached the Moon. The spacecraft’s six cameras turned on as planned, about eight minutes earlier than its predecessor to obtain images comparable in resolution to ground-based photographs for calibration purposes. Ranger 8 took its first photograph at an altitude of 1,560 miles, and during its final 23 minutes of flight, the spacecraft sent back 7,137 images of the lunar surface. The last image, taken at an altitude of 1,600 feet and 0.28 seconds before Ranger 8 impacted at 1.67 miles per second, had a resolution of about five feet. The spacecraft impacted 16 miles from its intended target in the Sea of Tranquility, ending a flight of 248,900 miles. Scientists had an interest in this area of the Moon as a possible landing zone for a future human landing, and indeed Apollo 11 landed 44 miles southeast of the Ranger 8 impact site in July 1969.
Ranger 8’s first image from an altitude of 1,560 miles.NASA/JPL. Ranger 8 image from an altitude of 198 miles, showing craters Ritter and Sabine.NASA/JPL. Ranger 8’s final images, taken at an altitude as low as 1,600 feet. NASA/JPL.One more Ranger mission followed, Ranger 9, in March 1965. Television networks broadcast Ranger 9’s images of the Alphonsus crater and the surrounding area “live” as the spacecraft approached its impact site in the crater – letting millions of Americans see the Moon up-close as it happened. Based on the photographs returned by the last three Rangers, scientists felt confident to move on to the next phase of robotic lunar exploration, the Surveyor series of soft landers. The Ranger photographs provided confidence that the lunar surface could support a soft-landing and that the Sea of Tranquility presented a good site for the first human landing. A little more than four years after the final Ranger images, Apollo 11 landed the first humans on the Moon.
Impact sites of Rangers 7, 8, and 9. NASA/JPL. The Ranger 8 impact crater, marked by the blue circle, photographed by Lunar Orbiter 2 in 1966.NASA/JPL. Lunar Reconnaissance Orbiter image of the Ranger 8 impact crater, taken in 2012 at a low sun angle.NASA/Goddard Space Flight Center/Arizona State University.The impacts of the Ranger probes left visible craters on the lunar surface, later photographed by orbiting spacecraft. Lunar Orbiter 2 and Apollo 16 both imaged the Ranger 8 impact site at relatively low resolution in 1966 and 1972, respectively. The Lunar Reconnaissance Orbiter imaged the crash site in greater detail in 2012.
Watch a brief video about the Ranger 8 impact on the Moon.
Explore More 5 min read 60 Years Ago: Ranger 7 Photographs the Moon Article 7 months ago 8 min read 55 Years Ago: Apollo 11’s One Small Step, One Giant Leap Article 7 months ago 4 min read NASA’s Artemis II Crew Uses Iceland Terrain for Lunar TrainingAt first glance, it seems like a scene from an excursion on the Moon’s surface…except…
Article 5 months ago