Any sufficiently advanced technology is indistinguishable from magic.

— Arthur C. Clarke's Third Law

Feed aggregator

<p><a href="https://apod.nasa.gov/apod

APOD - Mon, 04/29/2024 - 8:00pm

How did a star form this beautiful nebula?


Categories: Astronomy, NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Mon, 04/29/2024 - 8:00pm

What created this giant X in the clouds?


Categories: Astronomy, NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Mon, 04/29/2024 - 8:00pm

Three bright objects satisfied seasoned stargazers of the western sky just after sunset earlier this month.


Categories: Astronomy, NASA

Evidence for Planet 9 found in icy bodies sneaking past Neptune

Space.com - Mon, 04/29/2024 - 8:00pm
The hypothetical ninth planet may be slingshotting Oort Cloud objects onto orbits that come closer to the sun than Neptune does.
Categories: Astronomy

Galaxies Evolved Surprisingly Quickly in the Early Universe

Universe Today - Mon, 04/29/2024 - 7:25pm

Anyone familiar with astronomy will know that galaxies come in a fairly limited range of shapes, typically; spiral, elliptical, barred-spiral and irregular. The barred-spiral galaxy has been known to be a feature of the modern universe but a study from astronomers using the Hubble Space Telescope has recently challenged that view. Following on observations using the James Webb Space Telescope has found the bar feature in some spiral galaxies as early as 11 billion years ago suggesting galaxies evolved faster in the early Universe than previously expected. 

Our own Galaxy, the Milky Way is a spiral galaxy with a central nucleus and spiral arms emanating out from the centre. Our Solar System lies about 25,000 light years from the centre. Look at the galaxies in the sky though and you will see a real mix but generally they fall under the four main categories. Edwin Hubble tried to bring some structure to the different shapes by developing his galaxy classification scheme to articulate not only the shape but also the sub categories within them. 

This research published in Nature is the first direct confirmation that supermassive black holes are capable of shutting down galaxies

It has been known for some time that galaxies aren’t static. They move and they evolve and change. Spiral galaxies for example, as they age, they often develop a bar feature. The bar joins up the spiral arms instead of a nucleus connecting them and it is believed they are temporary, forming when a build of gas creates a burst of star formation. 

The existence of a bar in a spiral galaxy suggests that the galaxy is fairly stable. Understanding just how the bar feature forms is key to understanding the evolutionary process of the galaxy itself. All previous observations showed that the appearance of the bar significantly reduces from the nearby Universe to redshifts near a value of one. This tells us that the bar seemed to be a modern feature and not present in the early Universe. 

The barred spiral galaxy NGC 1300. Credit: NASA, ESA, and The Hubble Heritage Team (STScI/AURA)

In a new paper by lead author Zoe A Le Conte, observations from the more sensitive James Webb Space Telescope report that galaxies to greater redshift are studied for bar features. Data is used from the Cosmic Evolution Early Release Science Survey and the observations from the Public Release Imaging for Extragalactic Research studies. Only the galaxies that also appear in the Cosmic Assembly Near Infra Red Deep Extragalactic Legacy Survey are used giving a sample of 368 face on galaxies. 

The team visually searched through the 368 galaxy selection to classify and identify those with bars between redshifts 1 and 2 and then repeated the exercise for those between redshift 2 and 3. As expected, the fraction of bars reduced from around 17.8% between a red shift of 1 and 2 down to 13.8% at the greater red shift of 2 to 3. 

The study revealed that JWST’s infra-red sensitivity picked up twice as many barred-spiral galaxies than the HST’s more blue sensitive imaging platform. Le Conte and her team conclude that the evolution of bars in spiral galaxies began to appear at a much earlier epoch, around 11 billion years ago. 

Source : A JWST investigation into the bar fraction at redshifts 1 ? z ? 3

The post Galaxies Evolved Surprisingly Quickly in the Early Universe appeared first on Universe Today.

Categories: Astronomy

NASA Marshall Prepares for Strategic Facilities Updates 

NASA - Breaking News - Mon, 04/29/2024 - 6:39pm

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

NASA’s Marshall Space Flight Center is getting ready for the next big step in the evolution of its main campus in Huntsville, Alabama. Through a series of multi-year infrastructure projects, Marshall is optimizing its footprint to assure its place as a vibrant and vital hub for the aerospace community in the next era. 

Near-term plans call for the carefully orchestrated take-down of 19 obsolete and idle structures – among them the 363-foot-tall Dynamic Test Stand, the Propulsion and Structural Test Facility, and Neutral Buoyancy Simulator. These facilities are not required for current or future missions, and the demolitions will help the center transition to a more modern, sustainable, and affordable infrastructure.

Test engineers fire up the Saturn I rocket’s first stage (S-1-10) at the Propulsion and Structural Test Facility, or “T-tower,” at NASA’s Marshall Space Flight Center in 1964.NASA

“These facilities helped NASA make history – the Dynamic Test Stand was the tallest manmade structure in North Alabama and helped us test both the Saturn V rocket and the space shuttle,” said Joseph Pelfrey, Marshall’s Center Director. “Without these structures, we wouldn’t have the space program we have today. While it is hard to let them go, the most important legacy remaining are the people that built and stewarded these facilities and the missions they enabled. That same bold spirit fuels us, today. We are committed to carrying it forward to inspire the workforce of tomorrow.” 

Built in 1964, the Dynamic Test Stand initially was used to test fully assembled Saturn V rockets. In 1978, engineers there also integrated all space shuttle elements for the first time, including the orbiter, external fuel tank, and solid rocket boosters.

The Propulsion and Structural Test Facility – better known at Marshall as the “T-tower” due to its unique shape – was built in 1957 by the U.S. Army Ballistic Missile Agency and transferred to NASA when Marshall was founded in 1960. There, engineers tested components of the Saturn launch vehicles, the Army’s Redstone Rocket, and shuttle solid rocket boosters.

The Neutral Buoyancy Simulator, including its 1.3-million-gallon tank and control room, was built in the late 1960s. From 1969 until its closing in 1997, the facility enabled NASA astronauts and researchers to experience near-weightlessness, conducting underwater testing of space hardware and practice runs for servicing the Hubble Space Telescope. It was replaced in 1997 by a new facility at NASA’s Johnson Space Center in Houston.

Astronauts conduct underwater testing on the International Space Station’s power module in the Neutral Buoyancy Simulator at NASA’s Marshall Space Flight Center in 1995.NASA Honoring the Past, Building the Future

Marshall master planner Justin Taylor said the facilities team looked at every possibility for refurbishing the old sites.

“The upkeep of aging facilities is costly, and we have to put our funding where it does the most good for NASA’s mission,” he said. “These are tough choices, but we have to prioritize function and cost over nostalgia. We’re making way for what’s next.”

To preserve NASA history, the agency has worked with architectural historians over the years on detailed drawings, written histories, and large-format photographs of the sites. Those documents are part of the Library of Congress’s permanent Historic American Engineering Record collection, making their history and accomplishments available to the public for generations to come.

Marshall facilities engineers are still finalizing the details and timeline for the demolitions. Work is expected to begin in late 2024 and end in late 2025. Additionally, to support the center’s employees and all the mission work they are doing, Marshall has a few infrastructure projects in design stages that will include the construction of two state-of-the-art buildings within the decade ahead.

A new Marshall Exploration Facility will offer a two to three story facility at approximately 55,000 square feet located within the 4200 complex. The facility will include an auditorium, along with conferencing, training, retail, and administrative spaces. The new Engineering Science Lab – at approximately 140,000 square feet – will provide a modern, flexible laboratory environment to accommodate a new focus for research and testing capabilities.

Ultimately, NASA’s vision for Marshall is a dynamic, interconnected campus. The center’s master plan features a central greenway connecting its two most densely populated zones – its administrative complex and engineering complex.

“As we look towards the aspirational goals we have as an agency, Marshall’s contributions may look different than our past but be no less important,” said Pelfrey. “And we want our partners, employees, and the community to be part of the evolution with us, bringing complementary skills and capabilities, innovative ideas, and a passion for exploration and discovery.”

To learn more about NASA’s Marshall Space Flight Center, visit:

https://www.nasa.gov/marshall

Molly Porter

Marshall Space Flight Center, Huntsville, Ala.
256-544-0034
molly.a.porter@nasa.gov 

Share Details Last Updated Apr 29, 2024 Related Terms Explore More 6 min read NASA’s Optical Comms Demo Transmits Data Over 140 Million Miles Article 5 days ago 29 min read The Marshall Star for April 24, 2024 Article 6 days ago 4 min read NASA’s Chandra Releases Doubleheader of Blockbuster Hits Article 6 days ago Keep Exploring Discover More Topics From NASA

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

NASA crew announced for simulated Mars mission next month

Space.com - Mon, 04/29/2024 - 6:00pm
NASA picked a crew of four volunteers to undergo a simulation of life on Mars. The project will begin on May 10.
Categories: Astronomy

NASA's Viper moon rover gets its 'neck' and 'head' installed for mission later this year

Space.com - Mon, 04/29/2024 - 5:00pm
With its "mighty mast," NASA's Polar Exploration Rover dubbed VIPER continues to be prepped for its mission to the moon slated for late 2024.
Categories: Astronomy

Ep. 717: Understanding the Ages of Distant Cosmic Objects

Astronomy Cast - Mon, 04/29/2024 - 5:00pm

How old is that star? That planet? That nebula? Figuring out the ages of astronomical objects is surprisingly challenging. Fortunately, astronomers have developed a series of techniques they can use to work out the ages of stuff.

Download Now

Categories: Astronomy

Plastic pollution treaty would be 'failure' without tackling emissions

New Scientist Space - Cosmology - Mon, 04/29/2024 - 4:44pm
Plastic production is responsible for more greenhouse gas emissions than flying – at a summit in Canada, countries were divided on how to deal with this under-recognised part of the plastic problem
Categories: Astronomy

Plastic pollution treaty would be 'failure' without tackling emissions

New Scientist Space - Space Headlines - Mon, 04/29/2024 - 4:44pm
Plastic production is responsible for more greenhouse gas emissions than flying – at a summit in Canada, countries were divided on how to deal with this under-recognised part of the plastic problem
Categories: Astronomy

Foxes' skulls are specially adapted for diving into snow

New Scientist Space - Cosmology - Mon, 04/29/2024 - 4:00pm
Red foxes and Arctic foxes dive headfirst into snow at up to 4 metres per second to catch small rodents, and the shape of their snouts reduces the impact force
Categories: Astronomy

Foxes' skulls are specially adapted for diving into snow

New Scientist Space - Space Headlines - Mon, 04/29/2024 - 4:00pm
Red foxes and Arctic foxes dive headfirst into snow at up to 4 metres per second to catch small rodents, and the shape of their snouts reduces the impact force
Categories: Astronomy

China releases world's most detailed moon atlas (video)

Space.com - Mon, 04/29/2024 - 4:00pm
The atlas, which is available in Chinese and English, depicts the surface of the moon with a scale of 1:2.5 million. It highlights many intriguing geological features, such as impact craters.
Categories: Astronomy

How Knot Theory Can Help Spacecraft Can Change Orbits Without Using Fuel

Universe Today - Mon, 04/29/2024 - 3:58pm

When a spacecraft arrives at its destination, it settles into an orbit for science operations. But after the primary mission is complete, there might be other interesting orbits where scientists would like to explore. Maneuvering to a different orbit requires fuel, limiting a spacecraft’s number of maneuvers.

Researchers have discovered that some orbital paths allow for no-fuel orbital changes. But the figuring out these paths also are computationally expensive. Knot theory has been shown to find these pathways more easily, allowing the most fuel-efficient routes to be plotted. This is similar to how our GPS mapping software plots the most efficient routes for us here on Earth.

In mathematics, knot theory is the study of closed curves in three dimensions. Think of it as looking at a knotted necklace or a tangle of fishing line, and figuring out how to untangle them in the most efficient manner.

In the same way, a spacecraft’s path could be computed in a crowded planetary system – around Jupiter and all its moons, for example – where the best, simplest and least tangled route could be computed mathematically.

A graphic showing the orbital path the Danuri Lunar Pathfinder spacecraft will take to go into orbit around the Moon. Credit: Korea Aerospace Research Institute (KARI)

According to a new paper in the journal Astrodynamics, “Applications of knot theory to the detection of heteroclinic connections between quasi-periodic orbits,” using knot theory to untangle complicated spacecraft routes would decrease the amount of computer power or just plain guesswork in plotting out changes in spacecraft orbits.

“Previously, when the likes of NASA wanted to plot a route, their calculations relied on either brute force or guesswork,” said Danny Owen, a postgraduate research student in astrodynamics, in a press release from the University of Surrey. “Our new technique neatly reveals all possible routes a spacecraft could take from A to B, as long as both orbits share a common energy level.”

Owen added that this new process makes the task of planning missions much simpler. “We think of it as a tube [subway] map for space,” he said.

Spacecraft navigation is complicated by the fact that nothing in space is a fixed position. Navigators must meet the challenges of calculating the exact speeds and orientations of a rotating Earth, a rotating target destination, as well as a moving spacecraft, while all are simultaneously traveling in their own orbits around the Sun.

Since fuel is a limited resource for most missions, it would be beneficial to require the least amount of fuel possible in making any changes to the course of a spacecraft in orbit.  

Spacecraft navigators use something called heteroclinic orbits — often called heteroclinic connections — which are paths that allow a spacecraft to travel from one orbit to another using the most efficient amount of fuel – or sometimes no fuel at all. But this usually takes a large amount of computer power or a lot of time to figure out.  

Artist’s impession of the Lunar Gateway with the Orion spacecraft docked on the left side. Credit: ESA

But Owen and co-author Nicola Baresi, a lecturer in Orbital Mechanics at the University of Surrey, wrote that by using knot theory, they have developed “a method of robustly detecting heteroclinic connections,” they wrote in their paper, to quickly generate rough trajectories – which can then be refined. This gives spacecraft navigators a full list of all possible routes from a designated orbit, and the one that best fits the mission can be chosen. They can then choose the one that best suits their mission.

The researchers tested their technique on various planetary systems, including the Moon, and the Galilean moons of Jupiter.

“Spurred on by NASA’s Artemis program, the new Moon race is inspiring mission designers around the world to research fuel-efficient routes that can better and more efficiently explore the vicinity of the Moon,” said Baresi. “Not only does our technique make that cumbersome task more straightforward, but it can also be applied to other planetary systems, such as the icy moons of Saturn and Jupiter.”

The post How Knot Theory Can Help Spacecraft Can Change Orbits Without Using Fuel appeared first on Universe Today.

Categories: Astronomy

Another New Molecule Discovered Forming in Space

Universe Today - Mon, 04/29/2024 - 3:14pm

The list of chemicals found in space is growing longer and longer. Astronomers have found amino acids and other building blocks of life on comets, asteroids, and even floating freely in space. Now, researchers have found another complex chemical to add to the list.

The new chemical is known as 2-methoxyethanol (CH3OCH2CH2OH). It’s one of several methoxy molecules that scientists have found in space. But with 13 atoms, it’s one of the largest and most complex ones ever detected.

A team of scientists called the McGuire Group specializes in detecting chemicals in space. The McGuire Group and other researchers from institutions in Florida and France worked together to find 2-methoxyethanol.

The researchers published their findings in The Astrophysical Journal Letters. It’s titled “Rotational Spectrum and First Interstellar Detection of 2-methoxyethanol Using ALMA Observations of NGC 6334I.” The lead author is Zachary Fried, a graduate student in the McGuire Group at MIT.

A ball and stick model of 2-methoxyethanol (CH3OCH2CH2OH). With 13 atoms, it’s one of the largest complex chemicals ever found in space. Image Credit: By Ben Mills – Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=3081683

“There are a number of ‘methoxy’ molecules in space, like dimethyl ether, methoxymethanol, ethyl methyl ether, and methyl formate, but 2-methoxyethanol would be the largest and most complex ever seen,” said lead author Fried.

The researchers didn’t stumble upon the large molecule. It was found as part of a concerted effort to detect new chemicals in space. It all started with machine learning. In 2023, one machine-learning model suggested they look for 2-methoxyethanol. The next step was the lab, where researchers performed experiments that measured and analyzed the molecule’s rotational spectrum here on Earth.

“We do this by looking at the rotational spectra of molecules, the unique patterns of light they give off as they tumble end-over-end in space,” said Fried. “These patterns are fingerprints (barcodes) for molecules. To detect new molecules in space, we first must have an idea of what molecule we want to look for, then we can record its spectrum in the lab here on Earth, and then finally we look for that spectrum in space using telescopes.”

The researchers measured the molecule’s spectrum over a broadband region of frequencies ranging from the microwave to sub-millimetre wave regimes (from about 8 to 500 gigahertz).

With that data in hand, the researchers turned to ALMA, the Atacama Large Millimetre/sub-millimetre Array. ALMA gathered data from two star-forming regions: NGC 6334I and IRAS 16293-2422B. Researchers from the McGuire Group, the National Radio Astronomy Observatory, and the University of Copenhagen all worked on analyzing ALMA’s observations.

“Ultimately, we observed 25 rotational lines of 2-methoxyethanol that lined up with the molecular signal observed toward NGC 6334I (the barcode matched!), thus resulting in a secure detection of 2-methoxyethanol in this source,” said Fried. “This allowed us to then derive physical parameters of the molecule toward NGC 6334I, such as its abundance and excitation temperature. It also enabled an investigation of the possible chemical formation pathways from known interstellar precursors.”

NGC 6334m the Cat’s Paw Nebula. Image Credit: ESO

Here on Earth, 2-methoxyethanol is used mostly as a solvent. It’s toxic to bone marrow and testicles. But its status here on Earth isn’t relevant to its discovery.

The large molecule isn’t a building block for life, either. It’s significant because of its size and complexity. Scientists are interested in understanding how chemistry evolves and forms large molecules in regions where stars and planets are forming.

“Our group tries to understand what molecules are present in regions of space where stars and solar systems will eventually take shape,” explained Fried. “This allows us to piece together how chemistry evolves alongside the process of star and planet formation.”

Molecular complexity is the hallmark of life, so, of course, scientists want to understand molecular complexity in space. As of 2021, scientists only found six molecules in space larger than 13 atoms outside our Solar System. McGuire’s team found many of them.

Finding them is the first step. The next step is to figure out how and where they form. Though there are no direct links between 2-methoxyethanol and life, all complex chemistry has something to tell us about complex chemistry in general.

“Continued observations of large molecules and subsequent derivations of their abundances allows us to advance our knowledge of how efficiently large molecules can form and by which specific reactions they may be produced,” said Fried. “Additionally, since we detected this molecule in NGC 6334I but not in IRAS 16293-2422B, we were presented with a unique opportunity to look into how the differing physical conditions of these two sources may be affecting the chemistry that can occur.”

IRAS 16293?2422 in the star-forming region Rho Ophiuchi. Image Credit: ESO

NGC 6334I is a higher-mass star-forming region compared to IRAS 16293-2422B. That means it could have a potentially enhanced radiation field. That enhanced radiation could produce more precursors for 2-methoxyethanol, eventually leading to more of the molecule itself. Warmer dust temperatures may have contributed, too. Warmer dust allows greater dust mobility, leading to chemical fragments being allowed to recombine.

Thanks to ever-improving observational tools and methods, including machine learning, astrochemistry is a blossoming field. If we’re ever going to understand how life on Earth arose and where it may likely rise elsewhere in the galaxy, astrochemistry will play a leading role. Though 2-methoxyethanol isn’t directly related to life, its detection still tells scientists something.

The post Another New Molecule Discovered Forming in Space appeared first on Universe Today.

Categories: Astronomy

What would happen if the moon disappeared?

Space.com - Mon, 04/29/2024 - 3:00pm
What would happen if our closest neighbor, the moon, disappeared? Here we explore the possible effects it could have on the environment and life on Earth.
Categories: Astronomy

NASA Sets Coverage for Boeing Starliner’s First Crewed Launch, Docking

NASA - Breaking News - Mon, 04/29/2024 - 2:08pm
Boeing’s Starliner spacecraft approaches the International Space Station. NASA astronauts Butch Wilmore and Suni Williams will launch aboard Starliner on a United Launch Alliance Atlas V rocket for NASA’s Boeing Crew Flight Test.Credits: NASA

NASA will provide live coverage of prelaunch and launch activities for the agency’s Boeing Crew Flight Test, which will carry NASA astronauts Butch Wilmore and Suni Williams to and from the International Space Station.

Launch of the ULA (United Launch Alliance) Atlas V rocket and Boeing Starliner spacecraft is targeted for 10:34 p.m. EDT Monday, May 6, from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida.

The flight test will carry Wilmore and Williams to the space station for about a week to test the Starliner spacecraft and its subsystems before NASA certifies the transportation system for rotational missions to the orbiting laboratory for the agency’s Commercial Crew Program.

Starliner will dock to the forward-facing port of the station’s Harmony module at 12:48 a.m., Wednesday, May 8.

The deadline for media accreditation for in-person coverage of this launch has passed. The agency’s media credentialing policy is available online. For questions about media accreditation, please email: ksc-media-accreditat@mail.nasa.gov.

NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):

Wednesday, May 1

1:30 p.m. – Virtual news conference at Kennedy with the flight test astronauts:

  • NASA astronaut Butch Wilmore
  • NASA astronaut Suni Williams

Coverage of the virtual news conference will stream live on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website.

Media may ask questions via phone only. For the dial-in number and passcode, please contact the Kennedy newsroom no later than 12:30 p.m., Wednesday, May 1, at: ksc-newsroom@mail.nasa.gov.

Friday, May 3
12:30 p.m. – Prelaunch news conference at Kennedy (no earlier than one hour after completion of the Launch Readiness Review) with the following participants:

  • NASA Administrator Bill Nelson
  • Steve Stich, manager, NASA’s Commercial Crew Program
  • Dana Weigel, manager, NASA’s International Space Station Program
  • Emily Nelson, chief flight director, NASA
  • Jennifer Buchli, chief scientist, NASA’s International Space Station Program
  • Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing
  • Gary Wentz, vice president, Government and Commercial Programs, ULA
  • Brian Cizek, launch weather officer, 45th Weather Squadron, Cape Canaveral Space Force Station

Coverage of the prelaunch news conference will stream live on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website.

Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the Kennedy newsroom no later than 11:30 a.m., Friday, May 3, at ksc-newsroom@mail.nasa.gov.

3:30 p.m. – NASA Social panel live stream event at Kennedy with the following participants:

  • Ian Kappes, deputy launch vehicle office manager, NASA’s Commercial Crew Program
  • Amy Comeau Denker, Starliner associate chief engineer, Boeing
  • Caleb Weiss, system engineering and test leader, ULA
  • Jennifer Buchli, chief scientist, NASA’s International Space Station Program

Coverage of the panel live stream event will stream live at @NASAKennedy on YouTube, @NASAKennedy on X, and @NASAKennedy on Facebook. Members of the public may ask questions online by posting questions to the YouTube, X, and Facebook livestreams using #AskNASA.

Monday, May 6

6:30 p.m. – Launch coverage begins on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website.

10:34 p.m. – Launch

Launch coverage on NASA+ will end shortly after Starliner orbital insertion. NASA Television will provide continuous coverage leading up to docking and through hatch opening and welcome remarks.

Tuesday, May 7

12 a.m. – Postlaunch news conference with the following participants:

  • NASA Deputy Administrator Pam Melroy
  • Ken Bowersox, associate administrator, NASA’s Space Operations Mission Directorate
  • Steve Stich, manager, NASA’s Commercial Crew Program
  • Dana Weigel, manager, NASA’s International Space Station Program
  • Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing
  • Gary Wentz, vice president, Government and Commercial Programs, ULA

Coverage of the postlaunch news conference will air live on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website.

NASA+ will resume coverage and NASA Television’s media channel will break from in-orbit coverage to carry the postlaunch news conference. Mission operational coverage will continue on NASA Television’s public channel and the agency’s website. Once the postlaunch news conference is complete, NASA+ coverage will end, and mission coverage will continue on both NASA channels.

Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the Kennedy newsroom no later than 10:30 p.m., Monday, May 6, at ksc-newsroom@mail.nasa.gov.

10:15 p.m. – Arrival coverage resumes on NASA+, the NASA app, and YouTube, and continues on NASA Television and the agency’s website.

Wednesday, May 8
12:48 a.m. – Targeted docking to the forward-facing port of the station’s Harmony module

2:35 a.m. – Hatch opening

3:15 a.m. – Welcome remarks

4:15 a.m. – Post-docking news conference at Johnson with the following participants:

  • NASA Associate Administrator Jim Free
  • Steve Stich, manager, NASA’s Commercial Crew Program
  • Dana Weigel, manager, NASA’s International Space Station Program
  • Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing

Coverage of the post-docking news conference will air live on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website.

All times are estimates and could be adjusted based on operations after launch. Follow the space station blog for the most up-to-date operations information.

Audio Only Coverage

Audio only of the news conferences and launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, -1240 or -7135. On launch day, “mission audio,” countdown activities without NASA Television launch commentary, will be carried on 321-867-7135.

Launch audio also will be available on Launch Information Service and Amateur Television System’s VHF radio frequency 146.940 MHz and KSC Amateur Radio Club’s UHF radio frequency 444.925 MHz, FM mode, heard within Brevard County on the Space Coast.

Live Video Coverage Prior to Launch

NASA will provide a live video feed of Space Launch Complex-41 approximately 48 hours prior to the planned liftoff of the mission. Pending unlikely technical issues, the feed will be uninterrupted until the prelaunch broadcast begins on NASA Television, approximately four hours prior to launch. Once the feed is live, find it here: http://youtube.com/kscnewsroom.

NASA Website Launch Coverage

Launch day coverage of the mission will be available on the agency’s website. Coverage will include live streaming and blog updates beginning no earlier than 6:30 p.m., May 6 as the countdown milestones occur. On-demand streaming video and photos of the launch will be available shortly after liftoff.

For questions about countdown coverage, contact the Kennedy newsroom at 321-867-2468. Follow countdown coverage on the commercial crew or the Crew Flight Test blog.

Attend the Launch Virtually

Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch.

Watch and Engage on Social Media

Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtags #Starliner and #NASASocial. You can also stay connected by following and tagging these accounts:

X: @NASA, @NASAKennedy, @NASASocial, @Space_Station, @ISS_Research, @ISS National Lab, @BoeingSpace, @Commercial_Crew

Facebook: NASA, NASAKennedy, ISS, ISS National Lab

Instagram: @NASA, @NASAKennedy, @ISS, @ISSNationalLab

Coverage en Espanol

Did you know NASA has a Spanish section called NASA en Espanol? Check out NASA en Espanol on X, Instagram, Facebook, and YouTube for additional mission coverage.

Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: 321-501-8425; antonia.jaramillobotero@nasa.gov; o Messod Bendayan: 256-930-1371; messod.c.bendayan@nasa.gov.

NASA’s Commercial Crew Program has delivered on its goal of safe, reliable, and cost-effective transportation to and from the International Space Station from the United States through a partnership with American private industry. This partnership is changing the arc of human spaceflight history by opening access to low-Earth orbit and the International Space Station to more people, science, and commercial opportunities. The space station remains the springboard to NASA’s next great leap in space exploration, including future missions to the Moon and, eventually, to Mars.

For NASA’s launch blog and more information about the mission, visit:

https://www.nasa.gov/commercialcrew

-end-

Joshua Finch / Claire O’Shea
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov

Steven Siceloff / Danielle Sempsrott / Stephanie Plucinsky
Kennedy Space Center, Florida
321-867-2468
steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov

Leah Cheshier
Johnson Space Center, Houston
281-483-5111
leah.d.cheshier@nasa.gov

Share Details Last Updated Apr 29, 2024 LocationNASA Headquarters Related Terms
Categories: NASA

The Horse’s Mane

NASA Image of the Day - Mon, 04/29/2024 - 2:04pm
Rising from turbulent waves of dust and gas is the Horsehead Nebula, otherwise known as Barnard 33, which resides roughly 1,300 light-years away. The NASA/ESA/CSA James Webb Space Telescope has captured the sharpest infrared images to date of one of the most distinctive objects in our skies, the Horsehead Nebula. Webb’s new view focuses on the illuminated edge of the top of the nebula’s distinctive dust and gas structure.
Categories: Astronomy, NASA

The Horse’s Mane

NASA - Breaking News - Mon, 04/29/2024 - 2:02pm
Rising from turbulent waves of dust and gas is the Horsehead Nebula, otherwise known as Barnard 33, which resides roughly 1300 light-years away. The NASA/ESA/CSA James Webb Space Telescope has captured the sharpest infrared images to date of one of the most distinctive objects in our skies, the Horsehead Nebula. Webb’s new view focuses on the illuminated edge of the top of the nebula’s distinctive dust and gas structure.

This image of part of the Horsehead Nebula, captured by NASA’s James Webb Space Telescope and released on April 29, 2024, shows the nebula in a whole new light, capturing the region’s complexity with unprecedented spatial resolution. Located roughly 1,300 light-years away, the nebula formed from a collapsing interstellar cloud of material, and glows because it is illuminated by a nearby hot star. The gas clouds surrounding the Horsehead have already dissipated, but the jutting pillar is made of thick clumps of material and therefore is harder to erode. Astronomers estimate that the Horsehead has about 5 million years left before it too disintegrates.

Image Credit: NASA, ESA, CSA, K. Misselt (University of Arizona) and A. Abergel (IAS/University Paris-Saclay, CNRS)

Categories: NASA