These earthly godfathers of Heaven's lights, that give a name to every fixed star, have no more profit of their shining nights than those that walk and know not what they are.

— William Shakespeare

Feed aggregator

How Your Brain Tells Speech and Music Apart

Scientific American.com - Wed, 09/18/2024 - 8:00am

Simple cues help people to distinguish song from the spoken word

Categories: Astronomy

Reinventing the Clock: NASA’s New Tech for Space Timekeeping

NASA - Breaking News - Wed, 09/18/2024 - 8:00am
5 Min Read Reinventing the Clock: NASA’s New Tech for Space Timekeeping The Optical Atomic Strontium Ion Clock is a higher-precision atomic clock that is small enough to fit on a spacecraft. Credits: NASA/Matthew Kaufman

Here on Earth, it might not matter if your wristwatch runs a few seconds slow. But crucial spacecraft functions need accuracy down to one billionth of a second or less. Navigating with GPS, for example, relies on precise timing signals from satellites to pinpoint locations. Three teams at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, are at work to push timekeeping for space exploration to new levels of precision.

  • One team develops highly precise quantum clock synchronization techniques to aid essential spacecraft communication and navigation.
  • Another Goddard team is working to employ the technique of clock synchronization in space-based platforms to enable telescopes to function as one enormous observatory.
  • The third team is developing an atomic clock for spacecraft based on strontium, a metallic chemical element, to enable scientific observations not possible with current technology.

The need for increasingly accurate timekeeping is why these teams at NASA Goddard, supported by the center’s Internal Research and Development program, hone clock precision and synchronization with innovative technologies like quantum and optical communications.

Syncing Up Across the Solar System

“Society requires clock synchronization for many crucial functions like power grid management, stock market openings, financial transactions, and much more,” said Alejandro Rodriguez Perez, a NASA Goddard researcher. “NASA uses clock synchronization to determine the position of spacecraft and set navigation parameters.”

If you line up two clocks and sync them together, you might expect that they will tick at the same rate forever. In reality, the more time passes, the more out of sync the clocks become, especially if those clocks are on spacecraft traveling at tens of thousands of miles per hour. Rodriguez Perez seeks to develop a new way of precisely synchronizing such clocks and keeping them synced using quantum technology.

Work on the quantum clock synchronization protocol takes place in this lab at NASA’s Goddard Space Flight Center in Greenbelt, Md.NASA/Matthew Kaufman

In quantum physics, two particles are entangled when they behave like a single object and occupy two states at once. For clocks, applying quantum protocols to entangled photons could allow for a precise and secure way to sync clocks across long distances.

The heart of the synchronization protocol is called spontaneous parametric down conversion, which is when one photon breaks apart and two new photons form. Two detectors will each analyze when the new photons appear, and the devices will apply mathematical functions to determine the offset in time between the two photons, thus synchronizing the clocks.

While clock synchronization is currently done using GPS, this protocol could make it possible to precisely synchronize clocks in places where GPS access is limited, like the Moon or deep space.

Syncing Clocks, Linking Telescopes to See More than Ever Before

When it comes to astronomy, the usual rule of thumb is the bigger the telescope, the better its imagery.

“If we could hypothetically have a telescope as big as Earth, we would have incredibly high-resolution images of space, but that’s obviously not practical,” said Guan Yang, an optical physicist at NASA Goddard. “What we can do, however, is have multiple telescopes in various locations and have each telescope record the signal with high time precision. Then we can stich their observations together and produce an ultra-high-res image.”

The idea of linking together the observations of a network of smaller telescopes to affect the power of a larger one is called very long baseline interferometry, or VLBI.

For VLBI to produce a whole greater than the sum of its parts, the telescopes need high-precision clocks. The telescopes record data alongside timestamps of when the data was recorded. High-powered computers assemble all the data together into one complete observation with greater detail than any one of the telescopes could achieve on its own. This technique is what allowed the Event Horizon Telescope’s network of observatories to produce the first image of a black hole at the center of our galaxy.

The Event Horizon Telescope (EHT) — a planet-scale array of eight ground-based radio telescopes forged through international collaboration — was designed to capture images of a black hole. Although the telescopes making up the EHT are not physically connected, they are able to synchronize their recorded data with atomic clocks.EHT Collaboration

Yang’s team is developing a clock technology that could be useful for missions looking to take the technique from Earth into space which could unlock many more discoveries.

An Optical Atomic Clock Built for Space Travel

Spacecraft navigation systems currently rely on onboard atomic clocks to obtain the most accurate time possible. Holly Leopardi, a physicist at NASA Goddard, is researching optical atomic clocks, a more precise type of atomic clock.

While optical atomic clocks exist in laboratory settings, Leopardi and her team seek to develop a spacecraft-ready version that will provide more precision.

The team works on OASIC, which stands for Optical Atomic Strontium Ion Clock. While current spacecraft utilize microwave frequencies, OASIC uses optical frequencies.

The Optical Atomic Strontium Ion Clock is a higher-precision atomic clock that is small enough to fit on a spacecraft.NASA/Matthew Kaufman

“Optical frequencies oscillate much faster than microwave frequencies, so we can have a much finer resolution of counts and more precise timekeeping,” Leopardi said.

The OASIC technology is about 100 times more precise than the previous state-of-the-art in spacecraft atomic clocks. The enhanced accuracy could enable new types of science that were not previously possible.

“When you use these ultra-high precision clocks, you can start looking at the fundamental physics changes that occur in space,” Leopardi said, “and that can help us better understand the mechanisms of our universe.”

The timekeeping technologies unlocked by these teams, could enable new discoveries in our solar system and beyond.

More on cutting-edge technology development at NASA Goddard

By Matthew Kaufman, with additional contributions from Avery Truman
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share Details Last Updated Sep 18, 2024 EditorRob GarnerContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
Categories: NASA

Harvest Moon Supermoon lunar eclipse delights skywatchers worldwide (photos)

Space.com - Wed, 09/18/2024 - 7:33am
Check out these incredible Harvest Moon Supermoon lunar eclipse photos from around the world. September's full moon did not disappoint.
Categories: Astronomy

Why Are There Fewer Spotted Lanternflies in New York City?

Scientific American.com - Wed, 09/18/2024 - 7:30am

Invasive spotted lanternflies are spreading across the metro areas of New York City, Philadelphia and Washington, D.C., despite professional and amateur attempts to reduce their numbers

Categories: Astronomy

Quantum ‘Ghost Imaging’ Reveals the Dark Side of Plants

Scientific American.com - Wed, 09/18/2024 - 6:45am

Entanglement lets researchers watch plants in action without disruptive visible light

Categories: Astronomy

Watch Rocket Lab launch 5 'Internet of Things' satellites today

Space.com - Wed, 09/18/2024 - 6:00am
Rocket Lab plans to boost a French company's 'Internet of Things' constellation with a five-satellite launch today (Sept. 18). Watch the event live.
Categories: Astronomy

Why Early Prostate Cancer Screening Matters for Black Men

Scientific American.com - Wed, 09/18/2024 - 6:00am

According to the American Cancer Society, Black men are about 70 percent more likely than white men to develop prostate cancer in their lifetime and twice as likely to die from the disease.

Categories: Astronomy

Sentinel-2C to Vega and orbit – fit-check to liftoff timelapse

ESO Top News - Wed, 09/18/2024 - 6:00am
Video: 00:03:02

From the arrival of the Earth obversation satellite Sentinel-2C in July 2024 and the first fit-check to launch from Europe’s Spaceport in French Guiana, this timelapse shows how the third Sentinel-2 satellite was prepared for launch. The last Vega rocket, flight VV24, lifted off on 5 September at 03:50 CEST (4 September 22:50 local time).

Sentinel-2C will provide high-resolution data that is essential to Copernicus – the Earth observation component of the European Union’s Space programme. Developed, built and operated by ESA, the Copernicus Sentinel-2 mission provides high-resolution optical imagery for a wide range of applications including land, water and atmospheric monitoring.

The mission is based on a constellation of two identical satellites flying in the same orbit but 180° apart: Sentinel-2A and Sentinel-2B. Together, they cover all of Earth’s land and coastal waters every five days. Once Sentinel-2C is operational, it will replace its predecessor, Sentinel-2A, following a brief period of tandem observations. Sentinel-2D will eventually take over from Sentinel-2B.

Sentinel-2C was the last liftoff for the Vega rocket – after 12 years of service this was the final flight, the original Vega is being retired to make way for an upgraded Vega-C.

Access the related broadcast quality video material.

Categories: Astronomy

Mystery of Deep-Ocean ‘Biotwang’ Sound Has Finally Been Solved

Scientific American.com - Wed, 09/18/2024 - 12:05am

A strange sound dubbed “biotwang” was first heard bouncing around the Mariana Trench 10 years ago, and scientists have finally figured out where it comes from

Categories: Astronomy

Astronomers Have Found a Star with a Hot Jupiter and a Cold Super Jupiter in Orbit

Universe Today - Tue, 09/17/2024 - 10:19pm

Located in the constellation Ursa Major, roughly 300 light-years from Earth, is the Sun-like star HD 118203 (Liesma). In 2006, astronomers detected an exoplanet (HD 118203 b) similar in size and twice as massive as Jupiter that orbits very closely to Liesma (7% of the distance between Earth and the Sun), making it a “Hot Jupiter.” In a recent study, an international team of astronomers announced the detection of a second exoplanet in this system: a Super Jupiter with a wide orbit around its star. In short, they discovered a “Cold Super-Jupiter” in the outskirts of this system.

Gracjan Maciejewski – an Associate Professor with the Institute of Astronomy at Nicolaus Copernicus University (NCU) in Torun, Poland – led the study, which recently appeared in the journal Astronomy & Astrophysics. He was joined by researchers from the Department of Astronomy and Astrophysics and the Center for Exoplanets and Habitable Worlds at Pennsylvania State University (PSU), the Instituto de Astrofísica de Canarias, the Agencia Espacial Española (AEE), the Instituto de Astrofísica de Andalucía (IAA-CSIC), and the Center for Astrophysical Surveys at the National Center for Supercomputing Applications (NCSA).

According to their study, the planet (HD 118203 c) is up to eleven times the mass of Jupiter and orbits its parent star at a distance of 6 AU (six times the distance between Earth and the Sun) with a period of 14 years. Astronomers discovered the parent star in 1891 using the Draper telescope, now located in the NCU Institute of Astronomy in Piwnice, near Torun. Liesma is a G-type yellow dwarf (like our Sun), but 20% more massive and twice as large. Astronomers estimate that the star and its entire planetary system are slightly older than the Sun (an estimated 5 billion years).

Henry Draper’s Astrograph (1891), donated by Harvard College Observatory in 1947. Credit: Andrzej Romanski

While astronomers have known that a fairly massive planet orbits HD 118203 for nearly twenty years, it was only in 2006 that it was confirmed using Radial Velocity (Doppler Spectroscopy) measurements. However, these measurements indicated a linear trend that indicated there may be a companion planet with a wider orbit. The presence of another planet would indicate that the system has a hierarchical orbital architecture, which could help astronomers learn more about the origins of hot Jupiters. As Prof. Andrzej Niedzielski, a co-author of the study, explained in an NCU news story:

“Doppler observations, however, indicated that this was not the end of the story, that there might be another planet out there. Therefore, we immediately included this system in our observational programs. At first, as part of the Torun-Pennsylvania exoplanet research program, conducted in collaboration with Professor Aleksander Wolszczan, we tracked the object with one of the largest optical instruments on Earth, the nine-metre Hobby-Eberly Telescope in Texas.”

The results were so promising that the international team continued observing the star using the Telescopio Nazionale Galileo (TNG) at the Roque de los Muchachos Observatory. But first, it was necessary to rule out the possibility that more planets were hiding in the system. “I analyzed photometric observations obtained with the Transiting Exoplanet Survey Satellite space telescope, showing that there were no other planets around HD 118203 larger than twice the size of Earth, and therefore not massive enough to be relevant for studying the dynamics of the system,” said Julia Sierzputowska – an astronomy student and co-author of the study.

By 2023, the team obtained solid data of a Super Jupiter with a wide orbit, demonstrating that HD 118203 was a hierarchical planetary system. Said Prof. Maciejewski:

“Patience pays off. The new observations collected in March 2023 proved crucial in determining the planet’s orbital parameters. Moreover, because it takes a planet several years to orbit its star, we were able to combine our Doppler observations with available astrometric measurements to unambiguously determine its mass. This allowed us to build a complete model of this planetary system and study its dynamical behaviour.”

Astronomers from the NCU have discovered a new planet in the constellation Ursa Major. Credit: Andrzej Romanski

The configuration is peculiar, where one planet orbits closely with its star (forming a pair) while a second orbits them wide enough to form another pair with the first one. While both planets are massive and have rather elongated orbits, their mutual gravitational influence does not destabilize the system over the course of eons. According to their study, this is due to the effects of General Relativity, which prevents the planets from constantly changing the shape of their orbits and orientation in space.

This makes HD 118203 one of only a handful of hierarchical systems known to astronomers, which will help address theories of how massive planets form. This will, in turn, allow astronomers to learn more about the formation and evolution of the gas giants in our Solar System – Jupiter, Saturn, Uranus, and Neptune. The international team also plans to keep gathering data on this system in the hopes of finding additional exoplanets.

Further Reading: NCU News, Astronomy & Astrophysics

The post Astronomers Have Found a Star with a Hot Jupiter and a Cold Super Jupiter in Orbit appeared first on Universe Today.

Categories: Astronomy

Air jacket helps 'scuba-diving' lizards stay underwater for longer

New Scientist Space - Cosmology - Tue, 09/17/2024 - 8:01pm
Some lizards dive into streams to escape predators, and a specialised bubble-breathing technique enables them to stay submerged for up to 18 minutes
Categories: Astronomy

Air jacket helps 'scuba-diving' lizards stay underwater for longer

New Scientist Space - Space Headlines - Tue, 09/17/2024 - 8:01pm
Some lizards dive into streams to escape predators, and a specialised bubble-breathing technique enables them to stay submerged for up to 18 minutes
Categories: Astronomy

<p><a href="https://apod.nasa.gov/apod

APOD - Tue, 09/17/2024 - 8:00pm

A natural border between


Categories: Astronomy, NASA

Future Gravitational Wave Observatories Could See the Earliest Black Hole Mergers in the Universe

Universe Today - Tue, 09/17/2024 - 7:46pm

In February 2016, scientists at the Laser Interferometer Gravitational-wave Observatory (LIGO) confirmed they made the first-ever detection of gravitational waves (GWs). These events occur when massive objects like neutron stars and black holes merge, sending ripples through spacetime that can be detected millions (and even billions) of light-years away. Since the first event, more than 100 GW events have been confirmed by LIGO, the Advanced VIRGO collaboration, and the Kamioka Gravitational Wave Detector (KAGRA).

Moreover, scientists have found numerous applications for GW astronomy, from probing the interiors of supernovae and neutron stars to measuring the expansion rate of the Universe and learning what it looked like one minute after the Big Bang. In a recent study, an international team of astronomers proposed another application for binary black hole (BBH) mergers: using the earliest mergers in the Universe to probe the first generation of stars (Population III) in the Universe. By modeling how the events evolved, they determined what kind of GW signals the proposed Einstein Telescope (ET) could observe in the coming years.

The study was led by Boyuan Liu, a postdoctoral researcher at the Center for Astronomy of Heidelberg University (ZAH) and a member of the Excellence Cluster STRUCTURES program. He was joined by colleagues from the ZAH and the Institut für Theoretische Astrophysik at Heidelberg University, the Cambridge Institute of Astronomy, the Institute for Physics of Intelligence, the Institut d’Astrophysique de Paris, the Centre de Recherche Astrophysique de Lyon, the Gran Sasso Science Institute (GSSI), the Kavli Institute for Cosmology, the Weinberg Institute for Theoretical Physics, and multiple universities.

From Cosmic Dark to Dawn

Population III stars are the first to have formed in the Universe, roughly 100 to 500 million years after the Big Bang. At the time, hydrogen and helium were the most plentiful forms of matter in the Universe, leading to stars that were very massive and had virtually no metals (low metallicity). These stars were also short-lived, lasting only 2 to 5 million years before they exhausted their hydrogen fuel and went supernova. At this point, the heavier elements created in their cores (lithium, carbon, oxygen, iron, etc.) dispersed throughout the cosmos, leading to Population II and I stars with higher metallicity content.

Astronomers and cosmologists refer to this period as “Cosmic Dawn” since these first stars and galaxies ended the “Cosmic Dark Ages” that preceded it. As Liu explained to Universe Today via email, the properties of Pop III stars were sensitive to the peculiar conditions of the Universe during Cosmic Dawn, which were very different from the present-day conditions. This includes the presence of Dark Matter Haloes, which scientists believe were vital to the formation of the first galaxies:

“The timing of Pop III star formation reflects the pace of early structure formation, which can teach us about the nature of dark matter and gravity. In the standard cosmology model, cosmic structure formation is bottom-up, starting from small halos, which then grow by accretion and mergers to become larger halos. Pop III stars are expected to be massive (> 10 solar masses, reaching up to 1 million solar masses, while present-day stars have an average mass of ~ 0.5 solar masses). So, many of them will explode as supernovae or become massive black holes (BHs) when they run out of fuel for nuclear fusion.”

These Pop III black holes are further believed to be where the first supermassive black holes (SMBHs) in the Universe came from. As astronomers have demonstrated, SMBHs play an important role in the evolution of galaxies. In addition to assisting in the formation of new stars and encouraging galaxy formation in the early Universe, they are also responsible for shutting down star formation in galaxies ca. 2 to 4 billion years after the Big Bang, during the epoch known as “Cosmic Noon.” The growth of these black holes and the UV radiation emitted by Pop III stars reionized the neutral hydrogen and helium that permeated the early Universe.

This led to the major phase transition that ended the Cosmic Dark Ages (ca. 1 billion years after the Big Bang), allowing the Universe to become “transparent” as it is today. However, as Liu stated, how this process started remains unclear:

“Generally speaking, Pop III stars mark the onset of cosmic evolution from a starless (boring) state to the current state with rich phenomena (reionization, diverse populations of galaxies with different masses, morphologies, and compositions, andquasars powered by accreting supermassive BHs). To understand this complex evolution, it isessential to characterize its initial phase dominated by Pop III stars.”

Probing the Early Universe

The confirmation of gravitational waves (GW) was revolutionary for astronomers, and many applications have since been proposed. In particular, scientists are eager to study the primordial GWs created by the Big Bang, which will be possible with next-generation GW detectors like the Laser Interferometer Space Antenna (LISA). As Liu explained, existing GW detectors are mostly dedicated to studying binary black hole (BBH) mergers. The same is true of detectors expected to be built in the near future. Said Liu:

“The GW emission from a BH binary is stronger when they are closer. The GW emission carries away energy and angular momentum from the system such that the two BHs will get closer over time and eventually merge. We can only detect the GW signal at the final stage when they are about to merge. The time taken to reach the final stage is highly sensitive to the initial separation of the BHs. Basically, they have to start close (e.g., less than ~ 10% of the earth-sun distance for BHs below 10 solar masses) to merge within the current age of the Universe to be seen by us.”

The question is, how do two black holes get so close to each other that they will eventually merge? Astronomers currently rely on two evolutionary “channels” (sets of physical processes working together) to model this process: isolated binary stellar evolution (IBSE) and nuclear star cluster-dynamical hardening (NSC-DH). As Liu indicated, the resulting BBH mergers have distinct features in their merger rate and properties, depending on the channel they follow. They contain valuable information about the underlying physical processes.

“Knowledge of evolution channels is necessary to extract such information to fully utilize GWs as a probe for astrophysics and cosmology,” he added.

Modeling BBH Evolution

To determine how black holes come to form binaries that will eventually merge, the team combined both channels into a single theoretical framework based on the semianalytical model Ancient Stars and Local Observables by Tracing Halos (A-SLOTH). This model is the first publicly available code that connects the formation of the first stars and galaxies to observations. “In general, A-SLOTH follows the thermal and chemical evolution of gas along the formation, growth, and mergers of dark matter halos, including star formation and the impact of stars on gas (stellar feedback) at the intermediate scale of individual galaxies/halos,” said Liu.

Current operating facilities in the global network and their planned expansion. Credit: Caltech/MIT/LIGO Lab

They also used the Stellar EVolution for N-body (SEVN) code to predict how stellar binaries evolve into BBHs. They then modeled the orbit of each BBH in their respective dark matter halos and during halo mergers, which allowed them to predict when some BBHs will merge. In other cases, BBHs travel to the center of their galaxies and become part of a nuclear star cluster (NSC), where they are subject to disruptions, ejections, and hardening by gravitational scattering. From this, they followed the evolution of internal binary orbits to the moment of merger or disruption.

Next-Generation Observatories

As Lui explained, their results had significant theoretical and observational implications:

“On the theory side, my work showed that the isolated binary evolution channel dominates at high redshifts (less than 600 million years after the Big Bang) and the merger rate is sensitive to the formation rate and initial statistics of Pop III binary stars. In fact, the majority (> 84%) of BH binaries, especially the most massive ones, are initially too wide to merge within the age of the Universe if they evolve in isolation. But a significant fraction (~ 45 – 64%) of them can merge by dynamical hardening if they fall into NSCs. These predictions are useful for the identification and interpretation of merger origins in observations.”

In terms of observational results, they found that the predicted detection of Pop III BBH mergers is not likely to be discernible by current instruments like LIGO, Advance Virgo, and KAGRA, which generally observe BBH mergers closer to Earth. “[A]ltough Pop III mergers can potentially account for a significant fraction of the most massive BH mergers detected so far (with BHs above 50 solar masses),” said Liu. “It is difficult to learn much about Pop III stars and galaxies in the early Universe from the existing data because the sample size of detected massive mergers is too small.”

However, next-generation detectors like the Einstein Telescope will be more efficient in detecting these distant sources of GWs. Once completed, the ET will allow astronomers to explore the Universe through GWs back to the Cosmic Dark Ages, providing information on the earliest BBH mergers, Pop III stars, and the first SMBHs. “My model predicts that the Einstein Telescope can detect up to 1400 Pop III mergers per year, offering us much better statistics to constrain the relevant physics.”

The paper that describes their findings recently appeared online and is being reviewed for publication in the Monthly Notices of the Royal Astronomical Society.

Further Reading: arXiv

The post Future Gravitational Wave Observatories Could See the Earliest Black Hole Mergers in the Universe appeared first on Universe Today.

Categories: Astronomy

People hugely underestimate the carbon footprints of the 1 per cent

New Scientist Space - Cosmology - Tue, 09/17/2024 - 6:25pm
In a survey of thousands of people, respondents underestimated the massive difference between the carbon footprints of the wealthiest and poorest individuals – and that’s bad for climate policy
Categories: Astronomy

People hugely underestimate the carbon footprints of the 1 per cent

New Scientist Space - Space Headlines - Tue, 09/17/2024 - 6:25pm
In a survey of thousands of people, respondents underestimated the massive difference between the carbon footprints of the wealthiest and poorest individuals – and that’s bad for climate policy
Categories: Astronomy

Quantum computers teleport and store energy harvested from empty space

New Scientist Space - Cosmology - Tue, 09/17/2024 - 6:18pm
A quantum computing protocol makes it possible to extract energy from seemingly empty space, teleport it to a new location, then store it for later use
Categories: Astronomy

Quantum computers teleport and store energy harvested from empty space

New Scientist Space - Space Headlines - Tue, 09/17/2024 - 6:18pm
A quantum computing protocol makes it possible to extract energy from seemingly empty space, teleport it to a new location, then store it for later use
Categories: Astronomy

Measuring Moon Dust to Fight Air Pollution

NASA - Breaking News - Tue, 09/17/2024 - 4:39pm

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) While astronaut Gene Cernan was on the lunar surface during the Apollo 17 mission, his spacesuit collected loads of lunar dust. The gray, powdery substance stuck to the fabric and entered the capsule causing eye, nose, and throat irritation dubbed “lunar hay fever.” Credit: NASACredit: NASA

Moon dust, or regolith, isn’t like the particles on Earth that collect on bookshelves or tabletops – it’s abrasive and it clings to everything. Throughout NASA’s Apollo missions to the Moon, regolith posed a challenge to astronauts and valuable space hardware.

During the Apollo 17 mission, astronaut Harrison Schmitt described his reaction to breathing in the dust as “lunar hay fever,” experiencing sneezing, watery eyes, and a sore throat. The symptoms went away, but concern for human health is a driving force behind NASA’s extensive research into all forms of lunar soil.

The need to manage the dust to protect astronaut health and critical technology is already beneficial on Earth in the fight against air pollution.

Working as a contributor on a habitat for NASA’s Next Space Technologies for Exploration Partnerships (NextSTEP) program, Lunar Outpost Inc. developed an air-quality sensor system to detect and measure the amount of lunar soil in the air that also detects pollutants on Earth. 

Originally based in Denver, the Golden, Colorado-based company developed an air-quality sensor called the Space Canary and offered the sensor to Lockheed Martin Space for its NextSTEP lunar orbit habitat prototype. After the device was integrated into the habitat’s environmental control system, it provided distinct advantages over traditional equipment.

Rebranded as Canary-S (Solar), the sensor is now meeting a need for low-cost, wireless air-quality and meteorological monitoring on Earth. The self-contained unit, powered by solar energy and a battery, transmits data using cellular technology. It can measure a variety of pollutants, including particulate matter, carbon monoxide, methane, sulfur dioxide, and volatile organic compounds, among others. The device sends a message up to a secure cloud every minute, where it’s routed to either Lunar Outpost’s web-based dashboard or a customer’s database for viewing and analysis.

The oil and gas industry uses the Canary-S sensors to provide continuous, real-time monitoring of fugitive gas emissions, and the U.S. Forest Service uses them to monitor forest-fire emissions.

“Firefighters have been exhibiting symptoms of carbon monoxide poisoning for decades. They thought it was just part of the job,” explained Julian Cyrus, chief operating officer of Lunar Outpost. “But the sensors revealed where and when carbon monoxide levels were sky high, making it possible to issue warnings for firefighters to take precautions.”

The Canary-S sensors exemplify the life-saving technologies that can come from the collaboration of NASA and industry innovations. 

Read More Share Details Last Updated Sep 17, 2024 Related Terms Explore More 2 min read Printed Engines Propel the Next Industrial Revolution

Efforts to 3D print engines produce significant savings in rocketry and beyond

Article 6 days ago
2 min read Tech Today: Flipping NASA Tech and Sticking the Landing 

NASA tech adds gecko grip to phone accessory

Article 1 month ago
2 min read Tech Today: Space Age Swimsuit Reduces Drag, Breaks Records

SpeedoUSA worked with Langley Research Center to design a swimsuit with reduced surface drag.

Article 2 months ago
Keep Exploring Discover Related Topics

Technology Transfer and Spinoffs News

Humans in Space

Climate Change

Solar System

Categories: NASA

NASA Selects Lunar Relay Contractor for Near Space Network Services

NASA - Breaking News - Tue, 09/17/2024 - 4:32pm
Credit: NASA

NASA has awarded a contract to Intuitive Machines, LLC of Houston, to support the agency’s lunar relay systems as part of the Near Space Network, operated by the agency’s Goddard Space Flight Center in Greenbelt, Maryland.

This Subcategory 2.2 GEO to Cislunar Relay Services is a new firm-fixed-price, multiple award, indefinite-delivery/indefinite-quantity task order contract. The contract has a base period of five years with an additional 5-year option period, with a maximum potential value of $4.82 billion. The base ordering period begins Tuesday, Oct. 1, 2024, through Sept. 30, 2029, with the option period potentially extending the contract through Sept. 30, 2034.

Lunar relays will play an essential role in NASA’s Artemis campaign to establish a long-term presence on the Moon. These relays will provide vital communication and navigation services for the exploration and scientific study of the Moon’s South Pole region. Without the extended coverage offered by lunar relays, landing opportunities at the Moon’s South Pole will be significantly limited due to the lack of direct communication between potential landing sites and ground stations on Earth.

The lunar relay award also includes services to support position, navigation, and timing capabilities, which are crucial for ensuring the safety of navigation on and around the lunar surface. Under the contract, Intuitive Machines also will enable NASA to provide communication and navigation services to customer missions in the near space region.

The initial task award will support the progressive validation of lunar relay capabilities/services for Artemis. NASA anticipates these lunar relay services will be used with human landing systems, the LTV (lunar terrain vehicle), and CLPS (Commercial Lunar Payload Services) flights.

As lunar relay services become fully operational, they will be integrated into the Near Space Network’s expanding portfolio, enhancing communications and navigation support for future lunar missions. By implementing these new capabilities reliance on NASA’s Deep Space Network will be reduced.

NASA’s goal is to provide users with communication and navigation services that are secure, reliable, and affordable, so that all NASA users receive the services required by their mission within their latency, accuracy, and availability requirements.

This is another step in NASA partnering with U.S. industry to build commercial space partners to support NASA missions, including NASA’s long-term Moon to Mars objectives for interoperable communications and navigation capabilities. This award is part of the Space Communications and Navigation (SCaN) Program and will be executed by the Near Space Network team at NASA Goddard.

For information about NASA and agency programs, visit:

https://www.nasa.gov

-end-

Joshua Finch
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov

Tiernan Doyle
Headquarters, Washington
202-358-1600
tiernan.doyle@nasa.gov

Share Details Last Updated Sep 17, 2024 LocationNASA Headquarters Related Terms
Categories: NASA