Any sufficiently advanced technology is indistinguishable from magic.

— Arthur C. Clarke's Third Law

Feed aggregator

Russia faces $32 billion bill for carbon emissions from Ukraine war

New Scientist Space - Cosmology - Wed, 06/12/2024 - 7:01pm
The estimated greenhouse gas emissions caused by the war in Ukraine are equivalent to around 175 million tonnes of carbon dioxide, and Ukraine plans to include the associated climate damage in its compensation claim against Russia
Categories: Astronomy

Russia faces $32 billion bill for carbon emissions from Ukraine war

New Scientist Space - Space Headlines - Wed, 06/12/2024 - 7:01pm
The estimated greenhouse gas emissions caused by the war in Ukraine are equivalent to around 175 million tonnes of carbon dioxide, and Ukraine plans to include the associated climate damage in its compensation claim against Russia
Categories: Astronomy

NASA Welcomes Armenia as 43rd Artemis Accords Signatory

NASA - Breaking News - Wed, 06/12/2024 - 6:45pm
Acting Assistant Secretary of State for the Bureau of Oceans and International Environmental and Scientific Affairs Jennifer Littlejohn, left, NASA Administrator Bill Nelson, and Ambassador of the Republic of Armenia to the United States Lilit Makunts, right, look on as Mkhitar Hayrapetyan, Minister of High-Tech Industry of the Republic of Armenia, signs the Artemis Accords, Wednesday, June 12, 2024, at the Mary W. Jackson NASA Headquarters building in Washington. The Republic of Armenia is the 43rd country to sign the Artemis Accords, which establish a practical set of principles to guide space exploration cooperation among nations participating in NASA’s Artemis program. Photo Credit NASA/Joel Kowsky

NASA Administrator Bill Nelson welcomed Armenia as the newest nation to sign the Artemis Accords Wednesday during a ceremony with the U.S. State Department at NASA Headquarters in Washington. Armenia joins 42 other countries in a commitment to advancing principles for the safe, transparent, and responsible exploration of the Moon, Mars and beyond.

“NASA is proud to welcome Armenia to the Artemis Accords as we expand the peaceful exploration of space,” said Nelson. “Today’s signing builds on an important foundation. Armenia long has looked to the heavens and helped humanity understand them. As the 10th nation this year to sign the Artemis Accords, we are proving that exploration unites nations like few other things can. We will continue to expand humanity’s reach in the cosmos – together.”   

Mkhitar Hayrapetyan, Minister of High-Tech Industry, signed the Artemis Accords on behalf of Armenia. Lilit Makunts, ambassador of Armenia to the U.S. and Jennifer R. Littlejohn, acting assistant secretary, Bureau of Oceans and International Environmental and Scientific Affairs, Department of State, also participated in the event.

“By signing these accords, Armenia joins a community of nations dedicated to advancing the frontiers of human knowledge and capability in space,” said Hayrapetyan. “Our involvement will not only enhance our technological capabilities, but also inspire a new generation of Armenians to dream big, to innovate and to explore the world and universe.”

The United States and seven other nations were the first to sign the Artemis Accords in 2020, which identified an early set of principles promoting the beneficial use of space for humanity. The accords are grounded in the Outer Space Treaty and other agreements including the Registration Convention, the Rescue and Return Agreement, as well as best practices and norms of responsible behavior that NASA and its partners have supported, including the public release of scientific data. More countries are expected to sign the Artemis Accords in the months and years to come.

The commitments of the Artemis Accords, and efforts by the signatories to advance implementation of these principles, support NASA’s Artemis campaign with its partners, as well as for the success of the safe and sustainable exploration activities of the other accords signatories.

For more information about the Artemis Accords, visit:

https://www.nasa.gov/artemis-accords/

-end-

Faith McKie / Jennifer Dooren
Headquarters, Washington
202-358-1600
faith.d.mckie@nasa.gov / jennifer.m.dooren@nasa.gov

Share Details Last Updated Jun 12, 2024 EditorJennifer M. DoorenLocationNASA Headquarters Related Terms
Categories: NASA

Space Omics and Medical Atlas (SOMA) Package

NASA - Breaking News - Wed, 06/12/2024 - 6:10pm

June 11, 2024 – The Space Omics and Medical Atlas (SOMA) package, the largest-ever collection of data for aerospace medicine and space biology, was publicly released on Tuesday! This monumental achievement was made possible through the collaborative efforts of over 100 institutions from more than 25 countries.

Of the total 44 publications in the SOMA package, 32 of them feature at least one member of our Ames Space Biosciences Division team. This is a remarkable accomplishment and a testament to the dedication and expertise of our Open Science Data Repository (OSDR) team and other Space Biosciences researchers.

Congratulations to our OSDR Team members, Analysis Working Group (AWG) members, and Ames scientists for their historic scientific endeavor and invaluable contribution. Their hard work has brought the Ames Space Biosciences Division to the forefront of aerospace and space biology research.

Their efforts have made an indelible mark on the field, and we are incredibly proud of their work.

Thank you all for your continued dedication and excellence!

Read more about this record-breaking release of open science data.

Keep Exploring Discover More Topics From NASA NASA Biological & Physical Sciences

BPS administers NASA’s: BPS partners with the research community and a wide range of organizations to accomplish its mission. Grants…

International Space Station

Human Research Program

Ames Research Center

Categories: NASA

Doctor Who 'Rogue': Who is the eponymous Rogue?

Space.com - Wed, 06/12/2024 - 5:12pm
Who's the man who turns the Doctor's head in Regency England in "Doctor Who" episode 6 "Rogue"?
Categories: Astronomy

The Marshall Star for June 12, 2024

NASA - Breaking News - Wed, 06/12/2024 - 5:10pm
25 Min Read The Marshall Star for June 12, 2024 Shining Stars: Marshall Teams Support Successful Crew Flight Test

By Wayne Smith

From preparing for flight readiness, to providing day-of-launch support, to delivering a critical piece of replacement hardware, NASA’s Marshall Space Flight Center played an integral role in the agency’s crew flight test to the International Space Station.

The Starliner spacecraft – NASA’s Boeing crew flight test (CFT) powered by a United Launch Alliance (ULA) Atlas V rocket – successfully launched June 5 from Cape Canaveral Space Force Station. The flight test carried NASA astronauts Butch Wilmore and Suni Williams to the space station to test the spacecraft and its subsystems before NASA certifies the transportation system for rotational missions to the orbiting laboratory for the agency’s Commercial Crew Program.

Marshall’s Commercial Crew Program (CCP) support team successfully completed the crew flight test (CFT) pre-flight test readiness review April 12. Supporting personnel, from left, are Deborah Crane, CCP launch vehicle (LV) chief engineer; Notlim Burgos, CCP LV Boeing lead engineer; Christopher Wakefield, POD Boeing CFT flight lead; Maggie Freeman, CCP LV program analyst; David Gwaltney, CCP interim launch vehicle deputy manager; Joseph Pelfrey, Marshall center director; Paul Crawford, safety and mission assurance; Jennifer Van Den Driessche, CCP LV Boeing certification manager; Kelli Maloney, CCP LV Boeing deputy lead engineer; Larry Leopard, Marshall associate director, technical; Megan Hines, safety and mission assurance; and Chris Chiesa, CCP spacecraft propulsion. NASA/Jason Waggoner

The Boeing Starliner spacecraft successfully docked to the space station June 6. NASA and Boeing teams set a return date of no earlier than June 18 for the crew flight test. The additional time in orbit will allow the space station crews to perform a spacewalk June 13, while engineers complete Starliner systems checkouts. Coverage of the spacewalk begins at 5:30 a.m. on NASA TV.

“It was incredible to witness yet another historic moment in this new era of space exploration,” said Marshall Director Joseph Pelfrey. “I am immensely proud of our Marshall team for providing the critical support needed to ensure this test flight is as safe as possible. This is just one example of how Marshall is utilizing our capabilities through strategic partnerships to expand space exploration for all humankind.”

Launch Support

Marshall’s role within the Commercial Crew Program, or CCP, is to support certification that the spacecraft and launch vehicle are ready for launch. The support team performs engineering expertise, particularly for propulsion, as well as program management, safety and mission assurance, and spacecraft support. These efforts ultimately lead up to day-of launch support from the Marshall’s Huntsville Operations Support Center (HOSC).

Eighteen Marshall team members supported the launch from inside the HOSC. The team’s primary focus was ensuring the cryo-tanking of the liquid propellants and pressurants on the Centaur and the Atlas V booster went as planned. That included monitoring the replacement self-regulating vent valve (SRV), since the valve it replaced caused the launch scrub on the first attempt.

Marshall’s CCP team members support the CFT launch from inside the Huntsville Operations Support Center on June 5. NASA/Nathaniel Stepp

“The replacement SRV performed perfectly after liquid oxygen load into the Centaur tank,” said David Gwaltney, CCP interim Launch Vehicle Systems Office deputy manager. “The other team members ensured the pre-launch testing for the thrust vector control and the engine cooldown purges in preparation for launch were proceeding properly. Everyone was extremely happy when the launch successfully occurred on the third attempt.”

Understandably, the HOSC is always a hive of activity on launch day, resulting in a sense of pride and accomplishment for the support team for their contributions toward successful NASA missions. However, the crew flight test of the Starliner was different.

“Each and every Commercial Crew Program mission is special in its own way, especially as we continue to forge a new era of spaceflight while working with commercial partners,” said Maggie Freeman, a program analyst supporting the Launch Vehicle Systems Office within CCP at Marshall. “The crew flight test launch is particularly special to us because it is the first time we have crew aboard the Atlas V on a CCP mission. We were extremely excited to support launch and watch them safely board the International Space Station.”

Critical Hardware Delivery

Marshall also used the mission to deliver hardware to the space station – a replacement for the Urine Processor Pump Control Processor Assembly (PCPA). A malfunctioning pump necessitated an expedited delivery, NASA officials said June 7, requiring a cargo change for the mission. The PCPA converts the crew’s urine into drinkable water.

Marshall’s CCP team members take time for a group photo from the HOSC following the Starliner launch. From left, Miranda Holton, Sangita Adhikari, Nathaniel Stepp, Lindsey Blair, Deborah Crane, Allen Henning, Spencer Mitchell, Alex Aueron, Preston Beatty, Megan Hines, Peter Jones, Melissa Neel, Brendan Graham, David Gwaltney, Peter Wreschinsky, Aaron Flinchum, Jonathan Carman, and Jimmy Moore.NASA/Nathaniel Stepp

“This component is critical for space station operations and CFT was the first available mission providing an opportunity for the replacement to be delivered,” Freeman said.  “Due to the PCPA being a large piece of hardware, the ISS, Boeing, and CCP teams assessed the cargo swap requirements and exercised tremendous agility in performing a rapid turnaround to ensure that ISS operations would be maintained.”

Pre-Flight Test Readiness Review

The launch would not have happened without the certification efforts supported by the Marshall CCP team. The first Marshall Center Director CFT Pre-Flight Test Readiness Review was successfully completed in April. After the initial launch attempt May 6, the integrated Boeing, ULA, and CCP teams worked diligently to ensure crew safety remained the top priority. A second round of test readiness was scheduled, with the Marshall CCP team conducting a Marshall Center Director CFT delta pre-flight test readiness review in late May.

For Starliner, the Marshall team’s primary focus was on the certification of the spacecraft’s thrusters, which are the propulsion systems used for translational and rotational control of the spacecraft while on-orbit. The thrusters are essential to mission success, ensuring the spacecraft can get from its initial insertion orbit to the space station and then back to Earth with precisely controlled burns.

Boeing contracted with NASA to use the ULA Atlas V rocket to launch Starliner into orbit. Marshall’s Launch Vehicle Propulsion team evaluated the propulsion systems for the rocket to certify they were ready to launch astronauts to the space station.

Marshall team members and NASA astronaut Josh Cassada developed a new procedure to get the Urine Process Assembly functional and returned to the space station on the CFT flight. This procedure validation was performed at Marshall on June 3-4. From left, Brian O’Connor, Curtis Fox, Steve Wilson, Anita Howard, Roy Price, Mike Gooch, Reggie McCafferty, JP Wilson, Camilla Duenas, Josh Cassada, Diana Marroguin, Harper Cox, Arthur Brown, Kai Yeaton, Jimmy Hill, Ben Craigmyle, and Denny Bartlett. Present but not pictured: Chris Brown, Dona Smith, Allen Hash, Shaun Glasgow, Jill Williamson, Josh Clifton, and Chad Berthelson. NASA JSC/Chris Brown

“This includes following any build issues, evaluating any changes to the vehicles, and working with our partners to ensure that the launch vehicle is ready to fly,” said Miranda Holton, CCP Launch Vehicle Propulsion Systems manager.

The HOSC provides engineering and mission operations support for the space station, the Commercial Crew Program, and Artemis missions, as well as science and technology demonstration missions. The Payload Operations Integration Center within HOSC operates, plans, and coordinates the science experiments onboard the space station 365 days a year, 24 hours a day.

Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.

› Back to Top

Silver Snoopy Awards Presented to 17 Marshall Team Members

By Jessica Barnett

Seventeen team members at NASA’s Marshall Space Flight Center joined an elite group within the agency’s ranks June 11 as they accepted an award that’s granted to less than 1% of NASA’s workforce: the Silver Snoopy.

An astronaut presents the award each year to NASA employees and contractors who have gone above and beyond in contributing to the human spaceflight program. It is a symbol of the intent and spirit of Space Flight Awareness and includes a sterling silver Snoopy lapel pin that has flown in space, along with a certificate of appreciation and a commendation letter for the employee, both signed by the astronaut.

Recipients of the 2024 Silver Snoopy Awards at NASA’s Marshall Space Flight Center pose with their awards and NASA astronaut Kate Rubins, center, June 11 in Activities Building 4316. From left, front row, Mark Montgomery, Brian Saunders, Mignon Thame, Jessica Chaffin, Rubins, Stefanie Justice, Ellen Rabenberg, and Vince Vanek; back row, Manish Mehta, Bill Sadowski, Brad Addona, Christopher Buckley, Jonathan Burkholder, Joseph McCollister, Stacey Steele, Michael Fiske, Paul Gradl, and Trey Cate. NASA/Charles Beason

“One of my favorite parts about my job is getting to share and celebrate the accomplishments of the best that NASA has to offer, and helping to give out the Silver Snoopy awards is just that opportunity,” said Larry Leopard, who serves as associate director, technical, at Marshall and joined NASA astronaut Kate Rubins to present the awards. “These employees embody the More to Marshall slogan – words that signify growth, ambition, and continuous improvement. They’re leaders in cultivating a mindset where every one of us is encouraged to think differently, act decisively, and innovate relentlessly.”

“When we are doing highly dangerous activities, like getting on a rocket to the International Space Station or developing programs for Moon to Mars, we rely on everyone in NASA to support that end goal of exploration and safety,” Rubins said. “Our mission success is in their hands, and this is our way of saying thank you for everything they do.”

NASA astronaut Kate Rubins speaks to attendees at Marshall’s 2024 Silver Snoopy Awards Ceremony held June 11 in Activities Building 4316.NASA/Charles Beason

The following team members were honored during the ceremony in Activities Building 4316:

  • Brad Addona, Engineering Directorate
  • Christopher Buckley, Human Exploration Development and Operations Office
  • Jonathan Burkholder, Engineering Directorate
  • Trey Cate, Office of Strategic Analysis and Communications
  • Jessica Chaffin, Engineering Directorate
  • Michael Fiske, Jacobs/ESSCA, Science and Technology Office
  • Paul Gradl, Engineering Directorate
  • Stefanie Justice, Engineering Directorate
  • Joseph McCollister, Space Launch System Program
  • Manish Mehta, Engineering Directorate
  • Mark Montgomery, Jacobs/ESSCA, Engineering Directorate
  • Ellen Rabenberg, Engineering Directorate
  • Bill Sadowski, Jacobs/ESSCA, Engineering Directorate
  • Brian Saunders, L3Harris
  • Stacey Steele, Human Exploration Development and Operations Office
  • Mignon Thames, Human Landing System Program
  • Vince Vanek, Office of the General Counsel

The Silver Snoopy pins awarded flew on NASA’s SpaceX Cargo Resupply Mission-9. The Silver Snoopy award is one of eight awards presented annually by Space Flight Awareness. Additional information, including eligibility criteria, can be found here

Barnett, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

Marshall Engineer Kurt Polzin Receives AIAA Honors Award

By Daniel Boyette

Advanced space nuclear propulsion systems are critical to NASA’s Moon to Mars vision. On May 15, one of the individuals at the forefront of those future exploration efforts was honored for his contributions.

Kurt Polzin, chief engineer for the Space Nuclear Propulsion Office at NASA’s Marshall Space Flight Center, received the American Institute of Aeronautics and Astronautics (AIAA) Engineer of the Year award during its awards gala at the John F. Kennedy Center for Performing Arts in Washington.

AIAA Executive Director Daniel Dumbacher, left, and AIAA President Laura McGill, right, present NASA Space Nuclear Propulsion Chief Engineer Kurt Polzin with the Engineer of the Year Award at the AIAA Awards Gala on May 15 at the John F. Kennedy Center for Performing Arts in Washington, D.C.Photo courtesy of AIAA

“The use of nuclear technologies will become increasingly important as the nation returns humans to the Moon and then goes onward to Mars, and realizing these benefits will take not just a NASA effort, but a national effort,” Polzin told the audience. “It’s a privilege to work with and lead some of the best people in government, industry, and academia, bringing the nation closer to a future where nuclear power and propulsion technologies in space become common. What we do today will enable science missions and human exploration beyond anything humans have ever achieved for current and future generations of scientists and explorers.”

Since 2021, Polzin has overseen NASA’s nuclear propulsion technology development and maturation efforts. He’s also the chief engineer for the agency’s partnership with the Defense Advanced Research Projects Agency (DARPA) on the Demonstration Rocket for Agile Cislunar Operations (DRACO) program, which aims to demonstrate a nuclear thermal propulsion system in space as soon as 2027.

“To live and work on the Moon, we’ll need a power and transportation infrastructure, and nuclear space systems offer key capability benefits over current state-of-art,” said Anthony Calomino, NASA’s Space Nuclear Technologies portfolio manager under the agency’s Space Technology Mission Directorate. “Kurt’s leadership in this journey to mature our space nuclear propulsion technology is what will get us there. We are proud to see him recognized as AIAA’s Engineer of the Year.”

Q&A with Kurt Polzin

Q: What were your emotions when you went to accept the award?

Polzin: The list of those who have previously received this award is long and illustrious, so it is an honor to be nominated for it. Being selected by my peers as the recipient was a very thrilling and humbling experience. Receiving it at the Kennedy Center, in the presence of many aerospace leaders and my wife in the audience, made it a truly unique and memorable experience.

Q: You’ve previously stated that individual awards are really team awards. How has being a member of a team helped you to be successful?

Polzin: Realizing big ideas requires the contributions and expertise of many people across a range of skills and disciplines, and using nuclear technologies in space is about the most significant idea there is. The team we assembled and continue to grow consists of true experts in their disciplines. I constantly rely on them to ensure we are asking the right questions and making investments to advance our capabilities and position the nation for success. 

Polzin delivers his acceptance speech.Photo courtesy of AIAA

Q: What excites you most about the future of space exploration?

Polzin: In my lifetime, we have never been closer to fully realizing the benefits of nuclear power and propulsion in space. We now have the potential to cross the threshold and open a new era where nuclear technologies will bring about truly transformational change in how we approach all aspects of space exploration.

Before his current role, Polzin was the Space Systems Team lead in Marshall’s Advanced Concepts Office. He joined NASA in 2004 as a propulsion research engineer.

Polzin has a doctorate and a master’s in Mechanical and Aerospace Engineering from Princeton University in New Jersey and a bachelor’s in Aeronautical and Astronautical Engineering from Ohio State University in Columbus.

He authored or co-authored over 140 publications, including a recently published monograph, and he holds six U.S. patents. He has also been an adjunct professor at the University of Alabama in Huntsville for many years, teaching graduate-level courses in physics and engineering.

Polzin’s other honors include the AIAA Sustained Service Award, the AIAA Greater Huntsville Section’s Martin Schilling Outstanding Service and Earl Pearce Professional of the Year, and multiple NASA Patent, Special Service, and Group Achievement awards. He is an associate fellow of AIAA and a senior member of the Institute of Electrical and Electronics Engineers.

NASA’s Space Technology Mission Directorate funds the SNP Office.

With nearly 30,000 individual members from 91 countries and 95 corporate members, AIAA is the world’s largest technical society dedicated to the global aerospace profession.

Learn more about Space Nuclear Propulsion.

Boyette, a Media Fusion employee, supports the Space Nuclear Propulsion Office and Marshall’s Office of Strategic Analysis & Communications.

› Back to Top

NASA Announces Student Launch Winners

NASA presented the 2024 Student Launch challenge award winners in a virtual award ceremony June 7. Awards were presented to students from colleges, universities, high schools, middle schools, and informal education groups who designed, built, and launched high-powered, amateur rockets and scientific payloads. In addition to the overall winners, other awards were presented for safety, vehicle design, social media presence, STEM engagement, and more. The Student Launch challenge was held May 3 in Toney, Alabama, near the agency’s Marshall Space Flight Center. Read more about Student Launch.

› Back to Top

Meet the Simunauts: Ohio State Students to Test Space Food Solutions for NASA

By Savannah Bullard

NASA’s Deep Space Food Challenge kicks off its final eight-week demonstration this month, and a new crew is running the show. 

NASA’s partner for the Deep Space Food Challenge, the Methuselah Foundation, has teamed up with Ohio State University in Columbus to facilitate the challenge’s third and final phase. The university is employing current and former students to serve on a “Simunaut” crew to maintain and operate the food production technologies during the demonstration period.  

Ohio State University has hired four student “Simunauts” (simulated analog astronauts) to test NASA’s Deep Space Food Challenge technologies at the Wilbur A. Gould Food Industries Center’s Food Processing Pilot Plant this summer. From left, Charlie Frick, Fuanyi Fobellah, Sakura Sugiyama, and Mehr Un Nisa.Ohio State University

The Deep Space Food Challenge creates novel food production systems that offer safe, nutritious, and delicious food for long-duration human exploration missions while conscious of waste, resources, and labor. The challenge could also benefit humanity by helping address Earth’s food scarcity problems. In this challenge phase, NASA will offer a $1.5 million prize purse to winning U.S. teams after demonstrations are completed during an awards ceremony on August 16. 

“It’s easy for a team with intimate knowledge of their food systems to operate them. This will not be the case for astronauts who potentially use these solutions on deep-space missions,” said Angela Herblet, Program Analyst for NASA’s Centennial Challenges and Challenge Manager for the Deep Space Food Challenge. “Incorporating the Simunauts will add a unique flair that will test the acceptability and ease of use of these systems.” 

The demonstrations will occur inside Ohio State’s Wilbur A. Gould Food Industries Center’s Food Processing Pilot Plant until July 31. Meet the students behind the demonstrations: 

Fuanyi Fobellah

Fuanyi Fobellah was a picky eater as a child. But, when he began wrestling in school, food became an essential part of his life. Now a senior majoring in food business management at Ohio State, Fobellah combines his love for space exploration with his food, nutrition, business, and innovation knowledge.

Q: How does the work you’re doing this summer fit into the overall NASA mission, and how do your contributions fit into that mission?

A: Food can easily become an overlooked aspect of space travel, but humans can only live and travel to different planets with sustainable food systems. That’s why a challenge focused on developing food systems for space travel is so vital to NASA’s mission.

Sakura Sugiyama

Sakura Sugiyama’s childhood hobbies were cooking and baking, and with two scientists as parents, the Deep Space Food Challenge piqued the interest of the recent Ohio State graduate. Sugiyama obtained her bachelor’s degree from Ohio State’s Department of Food Science and Technology and plans to work in research and development in the food industry. 

Q: Why do you think this work is important for the future of civilization? 

A: Food variety, sustainability, energy efficiency – all of those are issues we face here on Earth due to climate change, increasing populations, and food insecurity. I hope that solving those issues in space will also help solve those problems on Earth.

Charlie Frick

A fifth-year student studying animal sciences, Charlie Frick, found his passion while growing up on his family’s farm. While finishing his degree, he hopes the Deep Space Food Challenge will allow him to use his agriculture and animal science knowledge to support space technology, nutrition, and food regeneration.

Q: Now that you’re familiar with NASA’s public prize competitions, how do you think they benefit the future of human space exploration? 

A: These challenges help a lot because sometimes you need that third person who doesn’t have that background but can come up with something to help. These challenges are critical in helping bring about technologies that otherwise would never exist.

Mehir Un Nisa

Mehir Un Nisa is a graduate student in Ohio State’s Department of Food Science and Technology. As a kid who dreamed about working at NASA, Un Nisa is using her expertise in food science to make that dream a reality and get a foot in the door of the agency’s food and nutrition programs. 

Q: How does it feel to work alongside NASA on a project like this? 

A: Working with NASA empowers me as a researcher, and it makes me feel good that food science has a part in that big name. It’s a dream come true for me. 

The Deep Space Food Challenge, a NASA Centennial Challenge, is a coordinated effort between NASA and CSA (Canadian Space Agency). Subject matter experts at Johnson Space Center and Kennedy Space Center support the competition. NASA’s Centennial Challenges are part of the Prizes, Challenges, and Crowdsourcing program within NASA’s Space Technology Mission Directorate and managed at Marshall Space Flight Center. The Methuselah Foundation, in partnership with NASA, oversees the United States and international competitors.

Learn more about the Deep Space Food Challenge. 

Bullard, an Aeyon/MTS employee, supports the Marshall Office of Communications.

› Back to Top

NASA, Global Astronomers Await Rare Nova Explosion

By Rick Smith

Around the world this summer, professional and amateur astronomers alike will be fixed on one small constellation deep in the night sky. But it’s not the seven stars of Corona Borealis, the “Northern Crown,” that have sparked such fascination.

It’s a dark spot among them where an impending nova event – so bright it will be visible on Earth with the naked eye – is poised to occur.

A red giant star and white dwarf orbit each other in this animation of a nova similar to T Coronae Borealis. The red giant is a large sphere in shades of red, orange, and white, with the side facing the white dwarf the lightest shades. The white dwarf is hidden in a bright glow of white and yellows, which represent an accretion disk around the star. A stream of material, shown as a diffuse cloud of red, flows from the red giant to the white dwarf. When the red giant moves behind the white dwarf, a nova explosion on the white dwarf ignites, creating a ball of ejected nova material shown in pale orange. After the fog of material clears, a small white spot remains, indicating that the white dwarf has survived the explosion.NASA

“It’s a once-in-a-lifetime event that will create a lot of new astronomers out there, giving young people a cosmic event they can observe for themselves, ask their own questions, and collect their own data,” said Dr. Rebekah Hounsell, an assistant research scientist specializing in nova events at NASA’s Goddard Space Flight Center. “It’ll fuel the next generation of scientists.”

T Coronae Borealis, dubbed the “Blaze Star” and known to astronomers simply as “T CrB,” is a binary system nestled in the Northern Crown some 3,000 light-years from Earth. The system is comprised of a white dwarf – an Earth-sized remnant of a dead star with a mass comparable to that of our Sun – and an ancient red giant slowly being stripped of hydrogen by the relentless gravitational pull of its hungry neighbor.

The hydrogen from the red giant accretes on the surface of the white dwarf, causing a buildup of pressure and heat. Eventually, it triggers a thermonuclear explosion big enough to blast away that accreted material. For T CrB, that event appears to reoccur, on average, every 80 years.

Don’t confuse a nova with a supernova, a final, titanic explosion that destroys some dying stars, Hounsell said. In a nova event, the dwarf star remains intact, sending the accumulated material hurtling into space in a blinding flash. The cycle typically repeats itself over time, a process which can carry on for tens or hundreds of thousands of years.

“There are a few recurrent novae with very short cycles, but typically, we don’t often see a repeated outburst in a human lifetime, and rarely one so relatively close to our own system,” Hounsell said. “It’s incredibly exciting to have this front-row seat.”

The first recorded sighting of the T CrB nova was more than 800 years ago, in autumn 1217, when a man named Burchard, abbot of Ursberg, Germany, noted his observance of “a faint star that for a time shone with great light.”

The T CrB nova was last seen from Earth in 1946. Its behavior over the past decade appears strikingly similar to observed behavior in a similar timeframe leading up to the 1946 eruption. If the pattern continues, some researchers say, the nova event could occur by September 2024.

What should stargazers look for? The Northern Crown is a horseshoe-shaped curve of stars west of the Hercules constellation, ideally spotted on clear nights. It can be identified by locating the two brightest stars in the Northern Hemisphere – Arcturus and Vega – and tracking a straight line from one to the other, which will lead skywatchers to Hercules and the Corona Borealis.

A conceptual image of how to find Hercules and the “Northern Crown” in the night sky, created using planetarium software. Look up after sunset during summer months to find Hercules, then scan between Vega and Arcturus, where the distinct pattern of Corona Borealis may be identified.NASA

The outburst will be brief. Once it erupts, it will be visible to the naked eye for a little less than a week – but Hounsell is confident it will be quite a sight to see.

Dr. Elizabeth Hays, chief of Goddard’s Astroparticle Physics Laboratory, agreed. She said part of the fun in preparing to observe the event is seeing the enthusiasm among amateur stargazers, whose passion for extreme space phenomena has helped sustain a long and mutually rewarding partnership with NASA.

Citizen scientists and space enthusiasts are always looking for those strong, bright signals that identify nova events and other phenomena,” Hays said. “Using social media and email, they’ll send out instant alerts, and the flag goes up. We’re counting on that global community interaction again with T CrB.”

Hays is the project scientist for NASA’s Fermi Gamma-ray Space Telescope, which has made gamma-ray observations from low Earth orbit since 2008. Fermi is poised to observe T CrB when the nova eruption is detected, along with other space-based missions including NASA’s James Webb Space Telescope, Neil Gehrels Swift Observatory, IXPE (Imaging X-ray Polarimetry Explorer), NuSTAR (Nuclear Spectroscopic Telescope Array), NICER (Neutron star Interior Composition Explorer), and the European Space Agency’s INTEGRAL (Extreme Universe Surveyor). Numerous ground-based radio telescopes and optical imagers, including the National Radio Astronomy Observatory’s Very Large Array in Mexico, also will take part. Collectively, the various telescopes and instruments will capture data across the visible and non-visible light spectrum.

“We’ll observe the nova event at its peak and through its decline, as the visible energy of the outburst fades,” Hounsell said. “But it’s equally critical to obtain data during the early rise to eruption – so the data collected by those avid citizen scientists on the lookout now for the nova will contribute dramatically to our findings.”

For astrophysics researchers, that promises a rare opportunity to shed new light on the structure and dynamics of recurring stellar explosions like this one.

“Typically, nova events are so faint and far away that it’s hard to clearly identify where the erupting energy is concentrated,” Hays said. “This one will be really close, with a lot of eyes on it, studying the various wavelengths and hopefully giving us data to start unlocking the structure and specific processes involved. We can’t wait to get the full picture of what’s going on.”

Some of those eyes will be very new. Gamma-ray imagers didn’t exist the last time T CrB erupted in 1946, and IXPE’s polarization capability – which identifies the organization and alignment of electromagnetic waves to determine the structure and internal processes of high-energy phenomena – is also a brand-new tool in X-ray astronomy. Combining their data could offer unprecedented insight into the lifecycles of binary systems and the waning but powerful stellar processes that fuel them.

Learn more about NASA astrophysics.

Smith, an Aeyon/MTS employee, supports the Marshall Office of Communications.

› Back to Top

‘Super’ Star Cluster Shines in New Look from NASA’s Chandra

Westerlund 1 is the biggest and closest “super” star cluster to Earth. New data from NASA’s Chandra X-ray Observatory, in combination with other NASA telescopes, is helping astronomers delve deeper into this galactic factory where stars are vigorously being produced.

This is the first data to be publicly released from a project called the Extended Westerlund 1 and 2 Open Clusters Survey, or EWOCS, led by astronomers from the Italian National Institute of Astrophysics in Palermo. As part of EWOCS, Chandra observed Westerlund 1 for about 12 days in total.

An image of the Westerlund 1 star cluster and the surrounding region, as detected in X-ray and optical light. The black canvas of space is peppered with colored dots of light of various sizes, mostly in shades of red, green, blue, and white.X-ray: NASA/CXC/INAF/M. Guarcello et al.; Optical: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/L. Frattare

Currently, only a handful of stars form in our galaxy each year, but in the past the situation was different. The Milky Way used to produce many more stars, likely hitting its peak of churning out dozens or hundreds of stars per year about 10 billion years ago and then gradually declining ever since. Astronomers think that most of this star formation took place in massive clusters of stars, known as “super star clusters,” like Westerlund 1. These are young clusters of stars that contain more than 10,000 times the mass of the Sun. Westerlund 1 is between about 3 million and 5 million years old.

This new image shows the new deep Chandra data along with previously released data from NASA’s Hubble Space Telescope. The X-rays detected by Chandra show young stars (mostly represented as white and pink) as well as diffuse heated gas throughout the cluster (colored pink, green, and blue, in order of increasing temperatures for the gas). Many of the stars picked up by Hubble appear as yellow and blue dots.

Only a few super star clusters still exist in our galaxy, but they offer important clues about this earlier era when most of our galaxy’s stars formed. Westerlund 1 is the biggest of these remaining super star clusters in the Milky Way and contains a mass between 50,000 and 100,000 Suns. It is also the closest super star cluster to Earth at about 13,000 light-years.

These qualities make Westerlund 1 an excellent target for studying the impact of a super star cluster’s environment on the formation process of stars and planets as well as the evolution of stars over a broad range of masses.

This new deep Chandra dataset of Westerlund 1 has more than tripled the number of X-ray sources known in the cluster. Before the EWOCS project, Chandra had detected 1,721 sources in Westerlund 1. The EWOCS data found almost 6,000 X-ray sources, including fainter stars with lower masses than the Sun. This gives astronomers a new population to study.

One revelation is that 1,075 stars detected by Chandra are squeezed into the middle of Westerlund 1 within four light-years of the cluster’s center. For a sense of how crowded this is, four light-years is about the distance between the Sun and the next closest star to Earth.

The diffuse emission seen in the EWOCS data represents the first detection of a halo of hot gas surrounding the center of Westerlund 1, which astronomers think will be crucial in assessing the cluster’s formation and evolution, and giving a more precise estimate of its mass.

paper published in the journal Astronomy and Astrophysics, led by Mario Guarcello from the Italian National Institute of Astrophysics in Palermo, discusses the survey and the first results. Follow-up papers will discuss more about the results, including detailed studies of the brightest X-ray sources. This future work will analyze other EWOCS observations, involving NASA’s James Webb Space Telescope and NICER (Neutron Star Interior Composition Explorer).

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts.

› Back to Top

NASA Awards Contract for Safety and Mission Assurance Services

NASA has selected KBR Wyle Services LLC, of Fulton, Maryland, to provide safety and mission assurance services to the agency.

The Safety and Mission Assurance, Audits, Assessments, and Analysis (SA3) Services contract is a cost-plus-fixed-fee contract with an indefinite-delivery/indefinite-quantity provision and a maximum potential value of approximately $75.3 million. The three-year base performance period of this contract begins August 1, 2024, and is followed by a two-year option, which would end July 31, 2029.

The SA3 contract will provide safety and mission assurance services to NASA Headquarters and other NASA centers, programs, projects, and activities through the NASA Safety Center. These services include, but aren’t limited to, audit/assessment/analysis support, safety assessments and hazard analysis, reliability and maintainability analysis, risk analysis and management, supply chain data management and analytics, software safety and assurance, training and outreach, quality engineering and assurance, and information systems support.

› Back to Top

Categories: NASA

Watch NASA astronauts collect microbe samples during ISS spacewalk today (livestream video)

Space.com - Wed, 06/12/2024 - 5:00pm
Two NASA astronauts will venture outside the International Space Station today (June 13), and you can watch the action live.
Categories: Astronomy

Astronomers Find the Slowest-Spinning Neutron Star Ever

Universe Today - Wed, 06/12/2024 - 4:34pm

Most neutron stars spin rapidly, completing a rotation in seconds or even a fraction of a second. But astronomers have found one that takes its time, completing a rotation in 54 minutes. What compels this odd object to spin so slowly?

When a massive supergiant star explodes as a supernova, it leaves a collapsed core behind. The extreme pressure forces protons and electrons to combine into neutrons. Since they’re made almost entirely of neutrons, we call them neutron stars. These stellar remnants are extremely small and extremely dense. Only black holes have greater density.

Due to the conservation of angular momentum, neutron stars start to spin rapidly, often rotating as fast as several hundred times per second. Astronomers have found more than 3,000 radio-emitting neutron stars, and out of all of them, only a very small number rotate slowly.

We usually detect neutron stars by their electromagnetic radiation and call them pulsars. Astrophysicists also call the ones with slow rotations long-period radio transients. There’s uncertainty around their slow rotation speeds and if they’re even neutron stars, and the most recently discovered one isn’t helping remove the uncertainty.

In new research in Nature Astronomy, a team of researchers presented the discovery of ASKAP J1935+2148, a long-period radio transient about 16,000 light-years away. The paper is “An emission-state-switching radio transient with a 54-minute period.” The lead author is Dr. Manisha Caleb from the University of Sydney in Australia.

“Long-period radio transients are an emerging class of extreme astrophysical events of which only three are known,” the paper’s authors write. “These objects emit highly polarized, coherent pulses of typically a few tens of seconds duration, and minutes to approximately hour-long periods.”

Researchers have proposed different explanations for these long-period objects, including highly-magnetic white dwarfs and highly-magnetic neutron stars called magnetars. But the research community hasn’t reached a consensus.

ASKAP J1935+2148 has an extremely long period of 53.8 minutes and three distinct emission states. Its bright pulse state lasts between 10 and 50 seconds, and its weaker pulse state, 26 times dimmer, lasts about 370 milliseconds. It also exhibits what’s called a “quenched state” with no pulses.

This image took six hours to acquire and shows the new object close to the magnetar SGR 1935+2154. The six hours of observations revealed the object’s long-period emissions. Image Credit: Caleb, M., Lenc, E., Kaplan, D.L. et al. An emission-state-switching radio transient with a 54-minute period. Nat Astron (2024). CC 4.0

Astronomers discovered the puzzling object accidentally while observing an unrelated gamma-ray burst with the Australian Square Kilometre Array Pathfinder (ASKAP) telescope in October 2022. The observations revealed ASKAP J1935+2148’s bright pulses of radio emissions. In about six hours of observations, the object emitted four bright pulses lasting from 10 to 50 seconds. Light curve inspections and follow-up observations with the MeerKAT radiotelescope revealed the object’s entire pulsing pattern.

“This discovery relied on the combination of the complementary capabilities of ASKAP and MeerKAT telescopes as well as the ability to search for these objects on timescales of minutes while studying how their emission changes from second to second! Such synergies are allowing us to shed new light on how these compact objects evolve,” said Dr. Kaustubh Rajwade, paper co-author and an Astronomer at the University of Oxford.

The three emission states, each different from the others, are puzzling. The researchers needed to verify that each signal from each state came from the same point in the sky. The fact that each signal had the same time of arrival (TOA), as determined by both ASKAP and MeerKAT observations, indicates a single source.

“What is intriguing is how this object displays three distinct emission states, each with properties entirely dissimilar from the others. The MeerKAT radio telescope in South Africa played a crucial role in distinguishing between these states. If the signals didn’t arise from the same point in the sky, we would not have believed it to be the same object producing these different signals.”

ASKAP detected the object’s strong, bright pulse mode, while MeerKAT detected its fainter, weak pulse mode. Both telescopes detected the quiescent mode.

This figure from the research shows the light curves detected by ASKAP and MeerKAT. A critical part of the results is that the ASKAP and MeerKAT arrived in phase with one another. Image Credit: Caleb, M., Lenc, E., Kaplan, D.L. et al. An emission-state-switching radio transient with a 54-minute period. Nat Astron (2024). CC 4.0

“In the study of radio-emitting neutron stars, we are used to extremes, but this discovery of a compact star spinning so slowly and still emitting radio waves was unexpected,” said paper co-author Ben Stappers, Professor of Astrophysics at the University of Manchester. “It is demonstrating that pushing the boundaries of our search space with this new generation of radio telescopes will reveal surprises that challenge our understanding.”

The nature of the emissions and the rate of change of the spin periods strongly suggest that ASKAP J1935+2148 is a neutron star. However, the researchers say they can’t rule out a highly magnetized white dwarf. Since astrophysicists think that white dwarfs become highly magnetized as binaries, and there are no other white dwarfs nearby, the neutron star explanation is more likely.

The object’s radius also doesn’t conform to our understanding of white dwarfs. “However, the implied radius is ~0.8? solar radii, leading us to conclude that this source cannot be expected by standard white-dwarf models,” the researchers explain. White dwarfs are only slightly larger than Earth, which seems to eliminate one as the potential source.

Only follow-up observations and more dedicated studies can reveal the object’s true nature. Either way, whether it’s a white dwarf or a neutron star, the object will open another window into the extreme physics of either type of object. Our understanding of both objects is only decades old, so there’s bound to be lots left to discover.

“It is important that we probe this hitherto unexplored region of the neutron-star parameter space to get a complete picture of the evolution of neutron stars, and this may be an important source to do so,” the authors conclude.

The post Astronomers Find the Slowest-Spinning Neutron Star Ever appeared first on Universe Today.

Categories: Astronomy

NASA Selects Raytheon Company to Build Landsat Next Instruments

NASA - Breaking News - Wed, 06/12/2024 - 4:20pm
Credits: NASA

NASA selects Raytheon Company to provide three instruments and related services, with an option for one additional instrument, in support of the Landsat Next mission based at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

The contract includes a cost-plus-award-fee base period and a cost-plus-fixed-fee option period with a total value of $506.7 million. The contractor will provide the design, engineering analyses, algorithms, fabrication, testing, delivery, and support for the Landsat Next Instruments. The work will be primarily performed at the contractor’s facilities in El Segundo, California.

The Landsat Next mission is a major component of NASA’s Earth science portfolio, advancing Earth observing technologies, science, and applications. Landsat Next will continue the longest space-based record of Earth’s land surface, while transforming the breadth and depth of actionable information freely available to the public and other users across governments, industry, and academia.

With Landsat Next, NASA is moving from a single Landsat spacecraft to developing a constellation of three smaller satellites able to deliver two to three times the temporal, spatial, and spectral resolution of previous Landsat satellites.

The new 26-band super-spectral Landsat Next constellation will enhance existing Landsat applications, building upon the 50-year Landsat legacy, improving life on Earth through climate and technological advancements, and unlocking new applications that support water quality and aquatic health assessments, crop production and soil conservation, forest management and monitoring, climate and snow dynamics research, and mineral mapping.

The Landsat Next mission is a partnership between NASA and the U.S. Geological Survey to advance Earth observing technologies, science, and applications under the Sustainable Land Imaging Program to more effectively map, monitor, and manage America’s land, water, and coastal resources.

For information about NASA and other agency programs, visit:

https://www.nasa.gov/

-end-

Tiernan Doyle
Headquarters, Washington
202-358-1600
tiernan.doyle@nasa.gov

Rob Gutro
Goddard Space Flight Center, Greenbelt, Md.
443-858-1779
robert.j.gutro@nasa.gov

Share Details Last Updated Jun 12, 2024 LocationNASA Headquarters Related Terms
Categories: NASA

This action-packed 'Borderlands' sneak peek is a chaotic blizzard of bullets (video)

Space.com - Wed, 06/12/2024 - 4:00pm
Watch a new clip from director Eli Roth's upcoming live-action video game adaptation, "Borderlands."
Categories: Astronomy

NGC 4565: Galaxy on Edge

APOD - Wed, 06/12/2024 - 4:00pm

Magnificent spiral galaxy


Categories: Astronomy, NASA

Martin Rees: Why challenge prizes can solve our most pressing issues

New Scientist Space - Cosmology - Wed, 06/12/2024 - 3:30pm
As the winner of the Longitude prize on antimicrobial resistance is announced, chair of the prize committee Martin Rees, the UK's Astronomer Royal, explains why it pays to reward ideas
Categories: Astronomy

Martin Rees: Why challenge prizes can solve our most pressing issues

New Scientist Space - Space Headlines - Wed, 06/12/2024 - 3:30pm
As the winner of the Longitude prize on antimicrobial resistance is announced, chair of the prize committee Martin Rees, the UK's Astronomer Royal, explains why it pays to reward ideas
Categories: Astronomy

Lack of Bird Flu Tests Could Hide Pandemic Warning Signs

Scientific American.com - Wed, 06/12/2024 - 3:30pm

The FDA has authorized just one type of avian flu test, and it is only available to livestock workers

Categories: Astronomy

'Star Wars: The Acolyte' episode 3: How do the Brendok witches use the Force?

Space.com - Wed, 06/12/2024 - 2:54pm
The third episode of "The Acolyte" is a long flashback that adds more layers to both the story being told and the Star Wars universe as a whole.
Categories: Astronomy

How a Single Atomic Sensor Can Help Track Earth’s Glaciers

Universe Today - Wed, 06/12/2024 - 2:33pm

Earth observations are one of the most essential functions of our current fleet of satellites. Typically, each satellite specializes in one kind of remote sensing – monitoring ocean levels, for example, or watching clouds develop and move. That is primarily due to the constraints of their sensors – particularly the radar. However, a new kind of sensor undergoing development could change the game in remote Earth sensing, and it recently received a NASA Institute for Advanced Concepts (NIAC) grant to further its development.

That new sensor technology is known as a Rydberg sensor, and it uses quantum theory to detect a broad band of radar signals all at once. The grant went to Darmindra Arumugam of NASA’s Jet Propulsion Laboratory, who specializes in remote sensing and has worked with the technology for years. So why are Rydberg sensors so special?

In a typical remote sensing application, a sensor is launched on a satellite that is very good at detecting a particular frequency of light. In radar terms, these are broken up into several different “bands,” each covering anywhere from a few megahertz to a few gigahertz. Some are more familiar than others, such as UHF (ultra-high frequency—300-1000 MHz), but some are more esoteric, such as the Ku band from 12-18 GHz.

Here’s a presentation on the topic Dr. Arumugam gave to NC State’s Electrical and Computer Engineering Department
Credit – NC State ECE

Each of these bands is good at monitoring one particular system back on Earth. For example, NASA uses the VHF (30-300 MHz) to study Earth’s tomography and the UHF band to study snow and rainfall. However, each of these frequencies would require its own specially designed antenna to detect, so any system that would attempt to have detection capabilities over a wide range of frequencies, and thereby be monitoring a wide range of different systems, would get more and more expensive as additional bands were added to the system.

That’s where Rydberg sensors come in. They are a novel type of sensor that uses the quantum state of a single atom to detect a broad band of different electromagnetic waves. For example, a single Rydberg sensor could detect signals from the HF band all the way up through the Ka-band at the faster end of the radar spectrum. This would allow a satellite with a single sensor to monitor all the different systems that radar can detect remotely.

Explaining the functioning of a Rydberg sensor requires a relatively complete understanding of quantum mechanics. Rydberg sensors are named after a quantum state known as the Rydberg state, which is extraordinarily sensitive to its environment. To get to the Rydberg state, engineers have to zap a single atom of Rubidium or Cesium with a laser to make it grow to an extraordinarily large state – almost to the size of a bacteria. They then optically monitor changes in the atom, which is affected by signals in the radar bands previously mentioned. The supporting optical system then analyzes the changes in the atom and can correlate those changes to changes in the signal at a particular frequency band.

In this AstronomyCast episodes, Fraser and Pamela discuss why remote sensing is so useful.

Several proofs of concepts have already been shown, such as those provided by the National Institutes of Standards and Technology. But they have yet to be applied to space – and that is where Dr. Arumugam’s research comes in. His NIAC-funded project is to develop a Rydberg sensor that can be launched on a satellite and detect a broad band of radar signals, including those that monitor the cryosphere, where ice and snow are present on land. With a single Rydberg sensor, Dr. Arumugam hopes to capture all the data for a complete picture of how Earth’s glaciers, snow melt, and ice pack change over time. 

That is still a long way off, as rides into space aren’t well known for being gentle, and so far, Rydberg sensors have only ever been shown to work in a lab. But, given that the technology is only ten years old, there is much potential room for improvement, which is precisely what NIAC grants are for. As Dr. Arumugam says at the end of his proposal write-up, this technology “[has great] potential to generate interest within NASA, the public, and industry…” If it works how theorists expect it to, he will be proven right.

Learn More:
Darmindra Arumugam – Crysopheric Rydberg Radar
UT – Mapping Lava Tubes on the Moon and Mars from Space
UT – Satellite Images Can Help Predict When Underwater Volcanos are About to Erupt
UT – Satellites can Track Microplastics From Space

Lead Image:
Graphical depiction of Rydberg sensing radars.
Credit – Darmindra Arumugam

The post How a Single Atomic Sensor Can Help Track Earth’s Glaciers appeared first on Universe Today.

Categories: Astronomy

Lakita Lowe: Leading Space Commercialization Innovations and Fostering STEM Engagement 

NASA - Breaking News - Wed, 06/12/2024 - 2:25pm

Lakita Lowe is at the forefront of space commercialization, seamlessly merging scientific expertise with visionary leadership to propel NASA’s commercial ambitions and ignite a passion for STEM in future generations. As a project integrator for NASA’s Commercial Low Earth Orbit Development Program (CLDP), Lowe leverages her extensive background in scientific research and biomedical studies to bridge the gap between science and commercial innovation. 

Lowe recently supported both planning and real-time operations contributing to the successful completion of the Axiom-3 private astronaut mission which launched in January 2024 and is gearing up to serve as CLDP’s Axiom-4 private astronaut mission lead. Her responsibilities include managing commercial activity requests to ensure they align with NASA’s policies, supporting real-time mission operations from CLDP’s console station, and working with various stakeholders to ensure commercial policy documentation is updated to align with the agency’s current guidelines. 

“The commercially owned and operated low Earth orbit destinations will offer services that NASA, along with other customers, can purchase, thereby stimulating the growth of commercial activities,” said Lowe.  

Official portrait of Lakita Lowe. Credit: NASA/Bill Stafford

Initially set to attend pharmacy school, a chance encounter at a career fair led her to NASA. Seventeen years later, Lowe now supports the enablement of NASA’s goal to transition human presence in low Earth orbit from a government-run destination to a sustainable economy.  

Lowe’s work has spanned various NASA programs, including the Human Health and Performance Directorate in the Biomedical Research and Environmental Sciences (BRES) Division. Lowe’s role in BRES supported NASA research involving the understanding of human adaptation to spaceflight and planetary environments, the development of effective countermeasures, and the development and dissemination of scientific and technological knowledge.  

“The efforts that go into preparing crew members for spaceflight and ensuring they maintain good health upon their return to Earth is amazing,” she said, highlighting their rigorous pre-flight and post-flight testing.

Lakita Lowe prepares samples for analysis in a microbiology laboratory at NASA’s Johnson Space Center in Houston.

Lowe’s passion for science was ignited in high school by her biology teacher, whose teaching style captivated her curiosity. She received a bachelor’s degree in biology and a master’s in chemistry from Southern University and A&M College in Baton Rouge, Louisiana. With five publications completed during her tenure at NASA (two of which were NASA-related), Lowe has contributed to our understanding of the agency’s vision for human spaceflight and commercial research and development on the orbiting laboratory. 

Lowe is in the process of completing her Ph.D. in Education (Learning, Design, and Technology) from Oklahoma State University in Stillwater, Oklahoma, with a dissertation involving the establishment of telesurgery training programs at medical institutions. She is exploring a field that holds significant promise for space exploration and remote medical care. This technology will enable surgical procedures to be performed remotely, a vital capability for astronauts on long-duration missions. 

Lakita Lowe at the 2022 International Space Station Research & Development Conference (ISSRDC) in Washington D.C.

Lowe dedicated 14 years of her career to integrating science payloads for the International Space Station Program. Early in her career, she worked as a payloads flight controller as a lead increment scientist representative, a dual position between NASA’s Johnson Space Center in Houston and Marshall Space Flight Center in Huntsville, Alabama. After two years supporting real-time console operations, Lowe served as a research scientist with NASA’s Program Scientist’s Office, where she assessed individual science priorities for the agency’s sponsoring organizations’ portfolio to be implemented on the space station.  

Later in her career, she worked as a research portfolio manager in the International Space Station Program’s Research Integration Office where she managed the feasibility and strategic planning for investigations involving remote sensing, technology development, STEM, and commercial utilization. She worked closely with researchers sending their experiments to the orbiting laboratory, tracking their progress from start to finish.  

Now, in the commercial sector, her focus has shifted toward policy and compliance, ensuring commercial activities align with NASA’s regulations and guidance. 

Lakita Lowe (second to left) at a NSBE SCP (National Society of Black Engineers – Space City Professionals) Chapter membership drive on May 23, 2023. Credit: NASA/Robert Markowitz

For Lowe, one of the most rewarding aspects of her job is the ability to inspire young minds. Her advice to young Black women interested in STEM is to not limit themselves and to explore the vast opportunities NASA offers beyond engineering and science roles. She emphasizes the importance of NASA engaging with Historically Black Colleges and Universities and minority-serving institutions to spread awareness about the opportunities within the agency.  

“Considering my busy schedule, I try to make myself available for speaking engagements and mentoring early-career individuals when possible,” she said. 

Lowe actively participates in organizations like the National Society of Black Engineers and serves as a mentor to interns at Johnson. She is also a member of Alpha Kappa Alpha Sorority Incorporated, the Honor Society of Phi Kappa Phi, and Johnson’s African American Employee Resource Group. 

Lowe poses for a selfie at Oklahoma State University in Stillwater, Oklahoma.

Lowe’s relentless pursuit of knowledge and her unwavering dedication to STEM education continue to inspire generations and pave the way for a more dynamic future in human spaceflight.  

“As an African American woman at NASA, I am excited about the future of space exploration, where diversity and inclusion will drive innovative solutions and inspire the next generation to reach for the stars.” 

Categories: NASA

A Solitary Sight

NASA Image of the Day - Wed, 06/12/2024 - 2:24pm
The waning gibbous Moon is pictured above Earth from the International Space Station as it soared into an orbital nighttime 260 miles above the Atlantic Ocean near the northeast coast of South America on Sept. 30, 2023.
Categories: Astronomy, NASA

Quirky Circling Behavior in Mice Informs Research on Humans in Space

NASA - Breaking News - Wed, 06/12/2024 - 2:15pm

During the Rodent Research-1 (RR-1) mission flown to the ISS in 2014, videos that were taken to observe the mice revealed an unusual behavior that researchers are still working to understand. Young (16-week-old) but not old (32-week-old) mice engaged in a high level of ‘running’ behavior beginning within two weeks of launch (Sci Reports, 2019).

Some alternate interpretations of the running behavior of mice on orbit include significant scientific literature on the rewarding effects of physical exercise, as seen in the footage of Astronaut Alan Bean on Space Lab below. A multi-investigator collaborative team of scientists is conducting follow-up studies on the ground as well as in space on the upcoming Rodent Research-26 mission to understand more about what could be driving this behavior. Comprehensive and in-depth molecular biology studies will be looking at potential indicators of stress (maladaptive coping) or whether the running behavior is a beneficial adaptation to the weightlessness of space.

Watch the video below to see the mice (and humans) in space.

To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

Video of the quirky circling behavior of mice aboard the ISS was recently released. Scientists will be doing further research to understand what's behind this unexplained behavior.NASA Keep Exploring Discover More Topics From NASA NASA Biological & Physical Sciences

BPS administers NASA’s: BPS partners with the research community and a wide range of organizations to accomplish its mission. Grants…

International Space Station

Human Research Program

Ames Research Center

Categories: NASA

A Solitary Sight

NASA - Breaking News - Wed, 06/12/2024 - 2:14pm
NASA, ESA/Andreas Mogensen

ESA (European Space Agency) astronaut Andreas Mogensen snapped a photo of the waning gibbous moon from the International Space Station as it soared 260 miles above the Atlantic Ocean near the northeast coast of South America on Sept. 30, 2023.

Waning gibbous is one of eight moon phases, occurring after the full moon. The Sun always illuminates half of the Moon while the other half remains dark, but how much we can see of that illuminated half changes as the Moon travels through its orbit. As the Moon begins its journey back toward the Sun, the lighted side appears to shrink, but the Moon’s orbit is simply carrying it out of view from our perspective.

Image Credit: NASA, ESA/Andreas Mogensen

Categories: NASA