"For the sage, time is only of significance in that within it the steps of becoming can unfold in clearest sequence."

— I Ching

Feed aggregator

Scientists Recreate Mars Spiders in the Lab

Universe Today - Fri, 09/13/2024 - 4:18pm

In 2003, strange features on Mars’s surface got scientists’ “spidey senses” tingling when they saw them. That’s when unusual “anareiform terrain” landforms appeared in images from the Mars Reconnaissance Orbiter. They’ve returned each year, spreading across the southern hemisphere surface.

At first, nobody knew what caused these weird wrinkly spider-like formations. Now, NASA researchers have duplicated them in the lab to explain their existence. No doubt about it, though, these Mars spiders look weird. Some of them stretch across a kilometer and generally appear in clusters.

Since discovering them in 2003 via images from orbiters, scientists have marveled at these Mars spiders sprawled across the southern hemisphere of Mars. No one is entirely sure how these geologic features are created but lab simulations may provide clues. Credit: NASA/JPL-Caltech/University of Arizona

Since carbon dioxide is common on Mars, scientists figured it had something to do with creating these weird formations. They used the “Kieffer model” to delve into the history of Mars spiders. That model explains how carbon dioxide ice slabs under the surface trap gas as it sublimates (turns to gas), usually during southern hemisphere spring.

Sunlight heats the surface and shines through transparent slabs of carbon dioxide. Those ice layers build up each winter. The soil beneath the ice absorbs heat from the Sun and causes the ice closest to it to sublimate. Gas pressure builds up, which cracks the ice and allows gas to escape. As it seeps upward, the gas takes with it a stream of dark dust and sand from the soil that lands on the surface of the ice. Those deposits take the form of spidery landforms.

Confirming Mars Spiders

To see if that process is what’s creating Mars spiders, NASA JPL scientists, led by Lauren McKeown, decided to simulate Mars conditions in their lab. “The spiders are strange, beautiful geologic features in their own right,” said McKeown. “These experiments will help tune our models for how they form.”

The DUSTIE chamber at JPL. This is where scientists simulated the surface conditions under which Mars spiders form. Credit: NASA/JPL-Caltech.

Not that it’s easy to replicate Mars on Earth, even in strict laboratory conditions. For Mc Keown and her team, the hardest part was re-creating conditions found on the Martian polar surface. That region experiences extremely low air pressure. Seasonal changes bring the air and surface temperatures down to a chilly -301 degrees Fahrenheit (minus 185 degrees Celsius). To make it work, the team used a liquid-nitrogen-cooled test chamber at JPL—the Dirty Under-vacuum Simulation Testbed for Icy Environments, or DUSTIE.

“I love DUSTIE. It’s historic,” Mc Keown said, noting that the wine barrel-size chamber was used to test a prototype of a rasping tool designed for NASA’s Mars Phoenix lander. For their experiment, the team chilled Martian soil simulant in a container dipped into a nitrogen bath. Then they put the whole thing into DUSTIE and replaced Earth-normal pressure with Mars air pressure. Carbon dioxide gas flowed in and condensed to ice. The next step was to put a heater inside to simulate Martian conditions in early spring. The team did this several times before the experiment created simulated “spiders” similar to those on Mars.

Mars spider-like formations in soil simulant created during experiments at NASA/JPL in the DUSTIE chamber. Credit: NASA/JPL-Caltech. The Next Steps

That simulation created plumes of carbon dioxide gas escaping from the soil simulant. It’s close to what happens on Mars, but not quite. So, the next step is to do the same experiment and use a simulated Sun to heat the surface materials. If that produces the same results, then the team has a good chance of proving this is what happens on Mars.

However, Mars being what it is—there are still a lot of questions about why the spiders only form in the southern hemisphere at spring. Since subsurface carbon dioxide ice isn’t limited to that region of the planet, why don’t spiders form in other places? One possibility is that these aren’t recent features. They could be left over from a more active time in the planet’s past. Maybe the climate was very different when they formed. Or something catastrophic happened to enable the formation and growth of spiders in the southern hemisphere.

The study at JPL is a good step forward in understanding the Martian terrain. It confirms several formation processes described by the Kieffer model. Of course, it would be really cool to visit those spiders someday. For now, however, lab work is as close as it gets to explaining them. Future rovers and landers could be used to study those landforms up close and personal. However, there aren’t any planned in the near future, and no other spacecraft has landed in the spider-rich southern hemisphere region. For now, scientists will continue testing the lab to understand the conditions that make these strange-looking features.

For More Information

NASA Scientists Re-Create Mars ‘Spiders’ in a Lab for the First Time
A Lab-scale Investigation of the Mars Kieffer Model

The post Scientists Recreate Mars Spiders in the Lab appeared first on Universe Today.

Categories: Astronomy

'We just ran out of time': Boeing Starliner astronauts on why their spaceship returned to Earth without them

Space.com - Fri, 09/13/2024 - 4:09pm
The decision to send Boeing's Starliner capsule home uncrewed from the ISS was driven in part by time constraints, according to NASA astronaut Butch Wilmore.
Categories: Astronomy

Summer 2024 Was the Hottest Ever Measured, Beating Last Year

Scientific American.com - Fri, 09/13/2024 - 4:00pm

The year 2024 could easily shape up to be the hottest ever measured, climate scientists say

Categories: Astronomy

NASA Ames Selects Aeronautics and Exploration Support Contractor

NASA - Breaking News - Fri, 09/13/2024 - 3:59pm
Credit: NASA

NASA has awarded the NASA Academic Mission Services 2 (NAMS-2) contract to Crown Consulting Inc., of Arlington, Virginia, to provide the agency’s Ames Research Center in California’s Silicon Valley, aeronautics and exploration technology research and development support.

NAMS-2 is a single award hybrid cost-plus-fixed-fee indefinite-delivery indefinite-quantity contract with a maximum potential value of $121 million. The contract begins Tuesday, Oct. 1, 2024, with a 60-day phase-in period, followed by a two-year base period, and options to extend performance through November 2029.

Under this contract, the company will support a broad scope of scientific research and development of new and emerging capabilities and technologies associated with air traffic management, advanced technology, nanoelectronics, and prototype software in support of the Aeronautics Directorate and the Exploration Technology Directorate at NASA Ames. The work also will focus on the improvement of aircraft and airspace safety, as well as the transition of advanced aeronautics technologies into future air vehicles.

For information about NASA and agency programs, visit:

https://www.nasa.gov

-end-

Roxana Bardan
Headquarters, Washington
202-358-1600
roxana.bardan@nasa.gov

Rachel Hoover
Ames Research Center, Silicon Valley, Calif.
rachel.hoover@nasa.gov
650-604-4789

Share Details Last Updated Sep 13, 2024 LocationAmes Research Center
Categories: NASA

Polaris Dawn is Away, Sending Another Crew Into Orbit to Perform the First Private Spacewalk

Universe Today - Fri, 09/13/2024 - 3:28pm

We’ve officially entered a new era of private spaceflight. Yesterday, the crew of Polaris Dawn, a privately funded mission managed by SpaceX, officially performed the first private extra-vehicular activity, commonly known as a spacewalk. The spacewalk was a success, along with the rest of the mission so far. But it’s attracted detractors as well as supporters. Let’s take a look at the mission objectives and why some pundits are opposed to it.

There are two main “firsts” for the Polaris Dawn flight, which is the first in a series of private space missions that could include a third mission that would make the first crewed use of SpaceX’s massive Starship launcher. The most talked-about “first” of the mission was a spacewalk that mission commander Jared Isaacman and mission specialist Sarah Gillis took part in yesterday morning. They utilized SpaceX’s newly designed, more mobile EVA suits, which marks a clear departure from the previous bulky suit iterations.

Another first is that this crew is the farthest any private space passengers have ever been from Earth. In fact, they are farther away from Earth than anyone since to Apollo missions in the 1960s and 70s. Their list of things to do so far away from home includes monitoring 36 scientific experiments ranging from monitoring bone health to how to control motion sickness during spaceflight.

Full video of the Polaris Dawn spacewalk.
Credit – VideosfromSpace YouTube Channel

But the mission has attracted its share of detractors too. Some of the most well-reasoned include experts quoted in Al-Jazeera that SpaceX might be violating a clause in the Outer Space Treaty that requires governments to be responsible for the health and safety of their missions in space, even if the mission is run by a non-governmental agency. NASA has very clearly not contracted for the safety of the mission once it is in space. However it gave permission for the rocket launch that got them there, especially since it launched from the agency’s Kennedy Space Center.

Space policy experts argue that, since this is an entirely privately funded mission, it is in itself a violation of the Outer Space Treaty. They might be right, but an alternative interpretation is that the treaty, which was signed in early 1967, might be out of date for the more modern world of private spaceflight.

A less well-reasoned line of argument against the missions is the complaint that billionaires, which include the mission commander among their number, are simply blowing the Earth’s resources on their own pet projects. This line of reasoning is supported by the fact that the missions is supported by Doritos, who supplied a specially designed chip that wouldn’t get cheese dust everywhere inside the Dragon capsule the astronauts are using.

Fraser discusses the EVA suit used in the Polaris Dawn mission.

But it is also off-set by the fact the mission is donating much of its income (admittedly some of which is derived from merchandise sales) to St. Jude Children’s Hospital, to help kids fight cancer. Whether or not you agree with the motivations behind the mission, it doesn’t seem that anyone will get upset about trying to help kids with cancer.

And noone can take away the mission’s achievements so far. Of particular note is that the two female crew members – Sarah Gillis and Anna Menon – are now officially the women that have been the farthest away from the Earth ever. With the launch and spacewalk a success, the final real test of the mission will be its return. Given that Dragon has successfully returned to Earth dozens of times at this point, there’s a good chance that part will be successful too. And then humanity will have the opportunity to hope for, or complain about, the Polaris’ next step in private space flight.

Learn More:
Polaris Program – Polaris Dawn Successfully Launches to Earth’s Orbit and Begins Five-Day Mission 
UT – See a First-Person View of the First Private Spacewalk
UT – Civilian Astronauts are Going to try Spacewalking From a Crew Dragon Capsule
UT – NASA and SpaceX Will Study Low-Cost Plan to Give Hubble a Boost

Lead Image:
Shot of the curvature of the Earth from the Polaris Dawn mission.
Credit – Polaris Program

The post Polaris Dawn is Away, Sending Another Crew Into Orbit to Perform the First Private Spacewalk appeared first on Universe Today.

Categories: Astronomy

The Outer Reaches of the Milky Way are Full of Stars, and the JWST is Observing Them

Universe Today - Fri, 09/13/2024 - 3:22pm

The Milky Way’s outer reaches are coming into view thanks to the JWST. Astronomers pointed the powerful space telescope to a region over 58,000 light-years away called the Extreme Outer Galaxy (EOG). They found star clusters exhibiting extremely high rates of star formation.

The Milky Way’s EOG is defined as the part of the galaxy with a galactocentric radius of 18 kpc. That translates to almost 59,000 light-years, and for comparison, our Solar System is about 26,000 light-years from the galactic centre.

A team of astronomers used the JWST’s powerful NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) to examine star formation in two specific regions of the EOG. They’re molecular clouds named Digel Cloud 1 and Digel Cloud 2. They’re named after the astronomer Seth Digel, who discovered them in 1994.

The environment in the EOG is different than our Solar System’s neighbourhood; their metallicity and gas density are significantly lower. Metallicity and gas density play huge roles in how Solar Systems evolve and how planets form. The JWST is giving astronomers an opportunity to examine star formation in the EOG at the same level of detail they can closer to home.

The JWST’s supreme observing power allowed the researchers to examine the regions, and they found nebular structures, extremely young protostars, and outflow jets. Their findings are in research published in the Astronomical Journal titled “Overview Results of JWST Observations of Star-forming Clusters in the Extreme Outer Galaxy.” The lead author is Natsuko Izumi of Gifu University and the National Astronomical Observatory of Japan.

“What was fascinating and astounding to me from the Webb data is that there are multiple jets shooting out in all different directions from this cluster of stars.”

Mike Ressler, NASA’s Jet Propulsion Laboratory

“In the past, we knew about these star forming regions but were not able to delve into their properties,” said Izumi. “The Webb data builds upon what we have incrementally gathered over the years from prior observations with different telescopes and observatories. We can get very powerful and impressive images of these clouds with Webb. In the case of Digel Cloud 2, I did not expect to see such active star formation and spectacular jets.”

Astronomers have previously observed the region with the Subaru 8.2 meter telescope at the Mauna Kea Observatory in Hawaii. In 2008, some of the same astronomers used the Subaru to observe star formation in the clusters in Digel Cloud 2S. In that research, the authors said that star-forming clusters were likely triggered by the same supernova.

This is an image of Digel Cloud2-S captured with the Subaru Telescope. If there was ever any doubt about what an improvement the JWST is over previous telescopes, this image puts it to rest. Image Credit: Yasui et al. 2008.

But the Webb’s NIR is from 10 to 80 times more sensitive than the Subaru. “Accordingly, the mass detection limit reaches to about 0.01–0.05 solar masses, which is about 10 times better than the previous observations,” the researchers explain in their paper.

This is Digel Cloud 2S, where a bright cluster of young stars has formed. The white arrows show extended jets emitted from some of the stars. To the upper right of the cluster is another, smaller sub-cluster. Astronomers suspected it was there in previous observations, and now the JWST has confirmed it. The red structures are gaseous, nebulous structures being carved and shaped by the powerful radiation coming from the young stars. The JWST captured invisible near- and mid-infrared wavelengths that have been translated into visible light. Image Credit: NASA, ESA, CSA, STScI, M. Ressler (NASA-JPL)

“We know from studying other nearby star-forming regions that as stars form during their early life phase, they start emitting jets of material at their poles,” said Mike Ressler, the study’s second author. Ressler is from NASA’s Jet Propulsion Laboratory and is the principal investigator of the observing program. “What was fascinating and astounding to me from the Webb data is that there are multiple jets shooting out in all different directions from this cluster of stars. It’s a little bit like a firecracker, where you see things shooting this way and that.”

This image from the research gives the overall context of the Digel Clouds in galactic coordinates. Star formation in Cloud 2N was likely triggered by a nearby huge supernova remnant, according to the authors. Izumi et al. 2024.

The astronomers observed nebular structures both in and around all the main clusters. “Notably, distinct nebular structures are identified within Cloud 2N and 2S,” they write. In Cloud 2N, the nebular structures are cliff-like and pillar-like and are similar to the ones found in star-forming regions closer to home, like in the JWST’s well-known ‘Cosmic Cliffs‘ and ‘Pillars of Creation‘ images.

These images of the nebular structures in Cloud 2N show the JWST’s power to resolve detail compared to the Spitzer IR telescope. The features in the structures are similar to ones found in star-forming regions closer to home. Image Credit: Izumi et al. 2024.

These features are likely caused by intense ultraviolet radiation emitted by the nearby B-type star, MR 1, near Cloud 2N’s main structure.

This image from the research shows HI (neutral atomic hydrogen) near Digel Cloud 2. The MR1 star is labelled in the image. Its powerful UV radiation is likely responsible for carving some of the nebular cliffs and pillars. Image Credit: Izumi et al. 2024.

This research provides an overview of the JWST’s observing effort in the EOG and the Digel Clouds. The authors say it’s just a starting point, and there’s lots more to discover. They want to determine the relative abundance of stars of different masses in the EOG and understand how the different environments shape that abundance.

“I’m interested in continuing to study how star formation is occurring in these regions. By combining data from different observatories and telescopes, we can examine each stage in the evolution process,” said Izumi. “We also plan to investigate circumstellar disks within the Extreme Outer Galaxy. We still don’t know why their lifetimes are shorter than in star-forming regions much closer to us. And of course, I’d like to understand the kinematics of the jets we detected in Cloud 2S.”

The post The Outer Reaches of the Milky Way are Full of Stars, and the JWST is Observing Them appeared first on Universe Today.

Categories: Astronomy

More Bodies Discovered in the Outer Solar System

Universe Today - Fri, 09/13/2024 - 3:20pm

The outer Solar System has been a treasure trove of discoveries in recent decades. Using ground-based telescopes, astronomers have identified eight large bodies since 2002 – Quouar, Sedna, Orcus, Haumea, Salacia, Eris, Makemake, and Gonggang. These discoveries led to the “Great Planet Debate” and the designation “dwarf planet,” an issue that remains contentious today. On December 21st, 2018, the New Horizons mission made history when it became the first spacecraft to rendezvous with a Kuiper Belt Object (KBO) named Arrokoth – the Powhatan/Algonquin word for “sky.”

Since 2006, the Subaru Telescope at the Mauna Kea Observatory in Hawaii has been observing the outer Solar System to search for other KBOs the New Horizons mission could study someday. In that time, these observations have led to the discovery of 263 KBOs within the traditionally accepted boundaries of the Kuiper Belt. However, in a recent study, an international team of astronomers identified 11 new KBOs beyond the edge of what was thought to be the outer boundary of the Kuiper Belt. This discovery has profound implications for our understanding of the structure and evolution of the Solar System.

The research team was led by Wesley C. Fraser, a Plaskett Fellow and a Professor of Astronomy at the University of Victoria (UVic) and the Herzberg Astronomy and Astrophysics Research Centre. He was joined by colleagues from UVic, the National Astronomical Observatory of Japan (NAOJ), the Southwest Research Institute (SwRI), NOIRLab, the Centre National de la Recherche Scientifique (CNRS), the Instituto de Astrofisica de Andalucia, the John Hopkins University Applied Physics Laboratory (JHUAPL), the Space Telescope Science Institute (STScI), the NASA Goddard Space Flight Center, and many other institutes and universities. The paper that describes their findings recently appeared in the Planetary Science Journal.

Since its last flyby of the KBO Arrokoth, the New Horizons mission has been exploring objects in the Kuiper Belt as well as performing heliospheric and astrophysical observations. Courtesy: Credit: NASA/JHUAPL/SWRI/Roman Tkachenko

In recent years, mounting evidence has been provided that objects exist beyond the edge of the Kuiper Belt. However, this study is the first to provide clear evidence of a large number of objects in a relatively small search area that cannot be attributed to false positives. Moreover, these KBOs appear to represent a new class of objects that orbit in a ring separated from the known Kuiper Belt by a gap where very few objects exist. This type of structure has been observed around many young planetary systems observed by the Atacama Large Millimeter/submillimeter Array (ALMA) array.

This suggests that the Solar System has more in common with extrasolar systems than previously thought, which could have implications for astrobiology—the search for extraterrestrial life in the Universe. Dr. Fraser, who is also a co-investigator on the New Horizons mission science team, explained in a NOAJ press release:

“Our Solar System’s Kuiper Belt long appeared to be very small in comparison with many other planetary systems, but our results suggest that idea might just have arisen due to an observational bias. So maybe, if this result is confirmed, our Kuiper Belt isn’t all that small and unusual after all compared to those around other stars.”

As any astrobiologist knows, the search for life is a major challenge because of our limited perspective. To date, we know of only one planet where life emerged and evolved (i.e., Earth), making it difficult to understand what conditions life can arise from. As such, scientists are eager to identify what sets our Solar System apart from others to constrain the prerequisites for life. Discovering that the Kuiper Belt may be larger than previously thought eliminates the idea that larger belts are an impediment to the emergence of life in extrasolar systems (possibly because they constitute a larger population of potential comets).

Artist’s impression of NASA’s New Horizons spacecraft. Credit: NASA/APL/SwRI and NASA/JPL-Caltech

“If this is confirmed, it would be a major discovery,” said study co-author Dr. Fumi Yoshida of the University of Occupational and Environmental Health and the Planetary Exploration Research Center. “The primordial solar nebula was much larger than previously thought, and this may have implications for studying the planet formation process in our Solar System.”

“This is a groundbreaking discovery revealing something unexpected, new, and exciting in the distant reaches of the Solar System; this discovery probably would not have been possible without the world-class capabilities of Subaru Telescope,” added New Horizons mission Principal Investigator Dr. Alan Stern.

These results indicate that more discoveries await beyond the traditionally recognized edge of the Kuiper Belt, which was thought to be a cold, empty end of space. They also entice astronomers to conduct follow-up studies to confirm these results and identify additional families of objects. Last but certainly not least, they offer a tantalizing clue as to what objects the New Horizons mission may be able to study someday.

Further Reading: NAOJ, Planetary Science Journal

The post More Bodies Discovered in the Outer Solar System appeared first on Universe Today.

Categories: Astronomy

The best 70s sci-fi movies

Space.com - Fri, 09/13/2024 - 3:00pm
Sci-fi in the 1970s was weird, wonderful, and where franchises were born.
Categories: Astronomy

Watch space aliens invade in wild new 'Venom: The Last Dance' trailer (video)

Space.com - Fri, 09/13/2024 - 2:59pm
Sony Pictures released a final launch trailer for "Venom: The Last Dance," which premieres on Oct. 25, 2024.
Categories: Astronomy

Waxing Gibbous Moon over Minnesota

NASA Image of the Day - Fri, 09/13/2024 - 2:30pm
The waxing gibbous Moon is pictured from the International Space Station as it orbited 265 miles above the U.S. state of Minnesota on Dec. 17, 2021.
Categories: Astronomy, NASA

Waxing Gibbous Moon over Minnesota

NASA - Breaking News - Fri, 09/13/2024 - 2:29pm
NASA, ESA/Matthias Maurer

An astronaut aboard the International Space Station snapped this picture of the Moon as the station orbited 265 miles above the U.S. state of Minnesota on Dec. 17, 2021.

Astronauts aboard the orbital lab take images using handheld digital cameras, usually through windows in the station’s cupola, for Crew Earth Observations. Crew members have produced hundreds of thousands of images of the Moon and Earth’s land, oceans, and atmosphere.

On Saturday, Sept. 14, 2024, International Observe the Moon Night, everyone on Earth is invited to learn about lunar science, participate in celestial observations, and honor cultural and personal connection to the Moon. Find an event to join in the celebration.

Image credit: NASA, ESA/Matthias Maurer

Categories: NASA

SpaceX Super Heavy rocket gets supersonic wind tunnel test for NASA's Artemis moon missions (photos)

Space.com - Fri, 09/13/2024 - 2:00pm
A 1.2% scale model of SpaceX's Starship Super Heavy rocket underwent NASA wind tunnel testing, during which high-speed forced air simulated varying flight conditions.
Categories: Astronomy

A Huge Tsunami Caused by a Thinning Glacier Created a Seismic Event for Nine Days

Scientific American.com - Fri, 09/13/2024 - 2:00pm

Scientists have traced a baffling monotonous planetary hum that lasted for nine days back to a glacier in Greenland

Categories: Astronomy

NASA’s Lunar Challenge Participants to Showcase Innovations During Awards

NASA - Breaking News - Fri, 09/13/2024 - 1:52pm
The Sun rises above the Flight Research Building at NASA’s Glenn Research Center in Cleveland.Credit: NASA

Editor’s note: This media advisory was updated Friday, Sept. 13, 2024, with a correct phone number for the media contact at NASA’s Glenn Research Center.

NASA‘s Watts on the Moon Challenge, designed to advance the nation’s lunar exploration goals under the Artemis campaign by challenging United States innovators to develop breakthrough power transmission and energy storage technologies that could enable long-duration Moon missions, concludes on Friday, Sept. 20, at the Great Lakes Science Center in Cleveland.

“For astronauts to maintain a sustained presence on the Moon during Artemis missions, they will need continuous, reliable power,” said Kim Krome-Sieja, acting program manager, Centennial Challenges at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “NASA has done extensive work on power generation technologies. Now, we’re looking to advance these technologies for long-distance power transmission and energy storage solutions that can withstand the extreme cold of the lunar environment.”

The technologies developed through the Watts on the Moon Challenge were the first power transmission and energy storage prototypes to be tested by NASA in an environment that simulates the extreme cold and weak atmospheric pressure of the lunar surface, representing a first step to readying the technologies for future deployment on the Moon. Successful technologies from this challenge aim to inspire, for example, new approaches for helping batteries withstand cold temperatures and improving grid resiliency in remote locations on Earth that face harsh weather conditions.

Media and the public are invited to attend the grand finale technology showcase and awards ceremony for the $5 million, two-phase competition. U.S. and international media interested in covering the event should confirm their attendance with Lane Figueroa by 3 p.m. CDT Tuesday, Sept. 17, at: lane.e.figueroa@nasa.gov. NASA’s media accreditation policy is available online. Members of the public may register as an attendee by completing this form, also by Friday, Sept. 17.

During the final round of competition, finalist teams refined their hardware and delivered a full system prototype for testing in simulated lunar conditions at NASA’s Glenn Research Center in Cleveland. The test simulated a challenging power system scenario where there are six hours of solar daylight, 18 hours of darkness, and the user is three kilometers from the power source.

“Watts on the Moon was a fantastic competition to judge because of its unique mission scenario,” said Amy Kaminski, program executive, Prizes, Challenges, and Crowdsourcing, Space Technology Mission Directorate at NASA Headquarters in Washington. “Each team’s hardware was put to the test against difficult criteria and had to perform well within a lunar environment in our state-of-the-art thermal vacuum chambers at NASA Glenn.”

Each finalist team was scored based on Total Effective System Mass (TESM), which determines how the system works in relation to its mass. At the awards ceremony, NASA will award $1 million to the top team who achieves the lowest TESM score, meaning that during testing, that team’s system produced the most efficient output-to-mass ratio. The team with the second lowest mass will receive $500,000. The awards ceremony stream live on NASA Glenn’s YouTube channel and NASA Prize’s Facebook page.

The Watts on the Moon Challenge is a NASA Centennial Challenge led by NASA Glenn. NASA Marshall manages Centennial Challenges, which are part of the agency’s Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate. NASA has contracted HeroX to support the administration of this challenge.

For more information on NASA’s Watts on the Moon Challenge, visit:

https://www.nasa.gov/wattson

-end- 

Jasmine Hopkins
Headquarters, Washington
321-432-4624
jasmine.s.hopkins@nasa.gov

Lane Figueroa
Marshall Space Flight Center, Huntsville, Ala.
256-932-1940
lane.e.figueroa@nasa.gov

Brian Newbacher
Glenn Research Center, Cleveland
216-469-9726
brian.t.newbacher@nasa.gov

Share Details Last Updated Sep 13, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
Categories: NASA

Sols 4302-4303: West Side of Upper Gediz Vallis, From Tungsten Hills to the Next Rocky Waypoint

NASA - Breaking News - Fri, 09/13/2024 - 1:38pm
Curiosity Navigation

3 min read

Sols 4302-4303: West Side of Upper Gediz Vallis, From Tungsten Hills to the Next Rocky Waypoint This photo taken by NASA’s Mars rover Curiosity of ‘Balloon Dome’ covers a low dome-like structure formed by the light-toned slab-like rocks. This image was taken by Left Navigation Camera aboard Curiosity on Sol 4301 — Martian day 4,301 of the Mars Science Laboratory mission — on Sept. 11, 2024, at 09:14:42 UTC. NASA/JPL-Caltech

Earth planning date: Wednesday, Sept. 11, 2024

The rover is on its way from the Tungsten Hills site to the next priority site for Gediz Vallis channel exploration, in which we plan to get in close enough for arm science to one of the numerous large dark-toned “float” blocks in the channel and also to one of the light-toned slabs.  We have seen some dark blocks in the channel that seem to be related to the Stimson formation material that the rover encountered earlier in the mission, but some seem like they could be something different. We don’t think any of them originated in the channel so they have to come from somewhere higher up that the rover hasn’t been, and we’re interested in how they were transported down into the channel.

We aren’t there yet, but the 4302-4303 plan’s activities include some important longer-range characterization of the dark-toned and light-toned materials via imaging. Context for the future close-up science on the dark-toned blocks will be provided by the Mastcam mosaics named “Bakeoven Meadow” and “Balloon Dome.”  The broad Balloon Dome mosaic also covers a low dome-like structure formed by the light-toned slab-like rocks (pictured).  Smaller mosaics will cover a pair of targets that include contacts where other types of light-toned and dark-toned material occur next to each other in the same block: “Rattlesnake Creek” which appears to be in place, and “Casa Diablo Hot Springs,” which is a float.

The rover’s arm workspace provided an opportunity for present-day aeolian science on the sandy-looking ripple, Sandy Meadow. Mastcam stereo imaging will document the shape of the ripple, while a suite of high-resolution MAHLI images will tell us something about the particle size of the grains in it.  The modern environment will also be monitored via a suprahorizon observation, a dust devil survey, and imaging of the rover deck to look for dust movement.

The workspace included small examples of the dark float blocks, so the composition of one of them will be measured by both APXS and ChemCam LIBS as targets “Lucy’s Foot Pass” and “Colt Lake” respectively.

In the meantime, the Mastcam Boneyard Meadow mosaic will provide a look back at the Tungsten Hills dark rippled block along its bedding plane to try to narrow down the origin of the ripples and the potential roles of water vs. wind in their formation.

Communication remains a challenge for the rover in this location. During planning, the rover’s drive was shifted from the second sol to the first sol in order to increase the downlink data volume available for the post-drive imaging, thereby enabling better planning at the science waypoint we expect to reach in the weekend plan. However, maintaining communications will require the rover to end its drive in a narrow range of orientations, which could make approaching our next science target a bit tricky.  We’ll find out on Friday!

Written by: Lucy Lim, Planetary Scientist at NASA Goddard Space Flight Center
Edited by: Abigail Fraeman, Planetary Geologist at NASA’s Jet Propulsion Laboratory

Share

Details

Last Updated

Sep 13, 2024

Related Terms Explore More

2 min read Margin’ up the Crater Rim!

Article


3 days ago

3 min read Sols 4300-4301: Rippled Pages

Article


3 days ago

2 min read Sols 4297-4299: This Way to Tungsten Hills

Article


3 days ago

Keep Exploring Discover More Topics From NASA

Mars

Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


All Mars Resources

Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


Rover Basics

Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


Mars Exploration: Science Goals

The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

Categories: NASA

'Star Wars Outlaws' finally lets fans play as the scoundrel (review)

Space.com - Fri, 09/13/2024 - 1:06pm
The first open-word game from the galaxy far, far away feels like the Han Solo simulator we've been waiting for.
Categories: Astronomy

NASA Airport Throughput Prediction Challenge

NASA - Breaking News - Fri, 09/13/2024 - 1:03pm
Image Credit: BitGrit

The Digital Information Platform (DIP) Sub-Project of Air Traffic Management – eXploration (ATM-X) is seeking to make available in the National Airspace System a variety of live data feeds and services built on that data. The goal is to allow external partners to build advanced, data-driven services using this data and to make these services available to flight operators, who will use these capabilities to save fuel and avoid delays. Different wind directions, weather conditions at or near the airport, inoperative runway, etc., affects the runway configurations to be used and impacts the overall arrival throughputs. Knowing the arrival runway and its congestion level ahead of time will enable aviation operators to perform better flight planning and improve the flight efficiency. This competition seeks to make better predictions of runway throughputs using machine learning or other techniques. This competition engages students, faculty members, and other individuals employed by United States universities to develop a machine learning model that provides a short-term forecast of estimated airport runway throughput using simulated real-time information from historical NAS and weather forecast data, as well as other factors such as meteorological conditions, airport runway configuration, and airspace congestion.

Award: $120,000 in total prizes

Open Date: September 13, 2024

Close Date: December 8, 2024

For more information, visit: https://bitgrit.net/competition/23

Categories: NASA

Antidote to deadly pesticides boosts bee survival

New Scientist Space - Space Headlines - Fri, 09/13/2024 - 1:00pm
Feeding bees edible bits of hydrogel increases their odds of surviving pesticide exposure by 30 per cent
Categories: Astronomy

Antidote to deadly pesticides boosts bee survival

New Scientist Space - Cosmology - Fri, 09/13/2024 - 1:00pm
Feeding bees edible bits of hydrogel increases their odds of surviving pesticide exposure by 30 per cent
Categories: Astronomy

NASA’s Artemis II Crew Uses Iceland Terrain for Lunar Training

NASA - Breaking News - Fri, 09/13/2024 - 12:52pm
4 Min Read NASA’s Artemis II Crew Uses Iceland Terrain for Lunar Training

Credits:
NASA/Trevor Graff/Robert Markowitz

Black and gray sediment stretches as far as the eye can see. Boulders sit on top of ground devoid of vegetation. Humans appear almost miniature in scale against a swath of shadowy mountains. At first glance, it seems a perfect scene from an excursion on the Moon’s surface … except the people are in hiking gear, not spacesuits.

Iceland has served as a lunar stand-in for training NASA astronauts since the days of the Apollo missions, and this summer the Artemis II crew took its place in that long history. NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen, along with their backups, NASA astronaut Andre Douglas and CSA astronaut Jenni Gibbons, joined geology experts for field training on the Nordic island.

NASA astronaut and Artemis II mission specialist Christina Koch stands in the desolate landscape of Iceland during a geology field training course. NASA/Robert Markowitz NASA/Robert Markowitz

“Apollo astronauts said Iceland was one of the most lunar-like training locations that they went to in their training,” said Cindy Evans, Artemis geology training lead at NASA’s Johnson Space Center in Houston. “It has lunar-like planetary processes – in this case, volcanism. It has the landscape; it looks like the Moon. And it has the scale of features astronauts will both be observing and exploring on the Moon.”

Iceland’s geology, like the Moon’s, includes rocks called basalts and breccias. Basalts are dark, fine-grained, iron-rich rocks that form when volcanic magma cools and crystalizes quickly. In Iceland, basalt lavas form from volcanoes and deep fissures. On the Moon, basalts can form from both volcanoes and lava pooling in impact basins. Breccias are angular fragments of rock that are fused together to create new rocks. In Iceland, volcanic breccias are formed from explosive volcanic eruptions and on the Moon, impact breccias are formed from meteoroids impacting the lunar surface.

Apollo astronauts said Iceland was one of the most lunar-like training locations that they went to in their training.

Cindy Evans

Artemis Geology Training Lead

Along with exploring the geology of Iceland, the astronauts practiced navigation and expeditionary skills to prepare them for living and working together, and gave feedback to instructors, who used this as an opportunity to hone their instruction and identify sites for future Artemis crew training. They also put tools to the test, learning to use hammers, scoops, and chisels to collect rock samples.

Caption: The Artemis II crew, NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and Canadian Space Agency (CSA) astronaut Jeremy Hansen, and backup crew members NASA astronaut Andre Douglas and CSA astronaut Jenni Gibbons trek across the Icelandic landscape during their field geology training. NASA/Robert Markowitz

“The tools we used during the Apollo missions haven’t changed that much for what we’re planning for the Artemis missions,” said Trevor Graff, exploration geologist and the hardware and testing lead on the Artemis science team at NASA Johnson. “Traditionally, a geologist goes out with just standard tool sets of things like rock hammers and scoops or shovels to sample the world around them, both on the surface and subsurface.”

The Artemis tools have a bit of a twist from traditional terrestrial geology tools, though. Engineers must take into consideration limited mass availability during launch, how easy it is to use a tool while wearing pressurized gloves, and how to ensure the pristine nature of the lunar samples is preserved for study back on Earth.

There’s really transformational science that we can learn by getting boots back on the Moon, getting samples back, and being able to do field geology with trained astronauts on the surface.

Angela Garcia

Exploration Geologist and Artemis II Science Officer

Caption: Angela Garcia, Artemis II science officer and exploration geologist, demonstrates how to use a rock hammer and chisel to dislodge a rock sample from a large boulder during the Artemis II field geology training in Iceland. NASA/Robert Markowitz

“There’s really transformational science that we can learn by getting boots back on the Moon, getting samples back, and being able to do field geology with trained astronauts on the surface,” said Angela Garcia, exploration geologist and an Artemis II science officer at NASA Johnson.

The Artemis II test flight will be NASA’s first mission with crew under Artemis and will pave the way to land the first woman, first person of color, and first international partner astronaut on the Moon on future missions. The crew will travel approximately 4,600 miles beyond the far side of the Moon. While the Artemis II astronauts will not land on the surface of the Moon, the geology fundamentals they develop during field training will be critical to meeting the science objectives of their mission.

These objectives include visually studying a list of surface features, such as craters, from orbit. Astronauts will snap photos of the features, and describe their color, reflectivity, and texture — details that can reveal their geologic history.

The Artemis II crew astronauts, their backups, and the geology training field team pose in a valley in Iceland’s Vatnajökull national park. From front left: Angela Garcia, Jacob Richardson, Cindy Evans, Jenni Gibbons, Jacki Mahaffey, back row from left: Jeremy Hansen, John Ramsey, Reid Wiseman, Ron Spencer, Scott Wray, Kelsey Young, Patrick Whelley, Christina Koch, Andre Douglas, Jacki Kagey, Victor Glover, Rick Rochelle (NOLS), Trevor Graff.

“Having humans hold the camera during a lunar pass and describe what they’re seeing in language that scientists can understand is a boon for science,” said Kelsey Young, lunar science lead for Artemis II and Artemis II science officer at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “In large part, that’s what we’re training astronauts to do when we take them to these Moon-like environments on Earth.”


Read More

Download additional high-resolution images here.

Share

Details

Last Updated

Sep 13, 2024

Related Terms Explore More

2 min read Hubble Examines a Spiral Star Factory

Article


7 hours ago

5 min read NASA’s Webb Peers into the Extreme Outer Galaxy

Article


1 day ago

23 min read The Next Full Moon is a Partial Lunar Eclipse; a Supermoon; the Corn Moon; and the Harvest Moon

The next full Moon will be Tuesday, September 17, 2024, at 10:35 PM EDT. The…



Article


2 days ago

Keep Exploring Discover More Topics From NASA

Astromaterials


Humans In Space


Our Solar System


Artemis Science

A Time Capsule The Moon is a 4.5-billion-year-old time capsule, pristinely preserved by the cold vacuum of space. It is…

Categories: NASA