Feed aggregator
NASA's Future Telescope Could Solve the Mystery of Life's Origins
A team of scientists are preparing to use NASA's upcoming Habitable Worlds Observatory to answer one of the most profound questions of all time: How does life begin? Rather than searching for individual signs of life, the team plan to study patterns across dozens of exoplanets to test competing theories about the origins of life; from scenarios where life is so rare we might be alone within 33 light-years, to theories predicting that life emerges wherever basic conditions exist. This approach could transform perhaps our oldest question into testable science, potentially revealing whether our biosphere is an accident or part of a universe teeming with life.
Advances in NASA Imaging Changed How World Sees Mars
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA’s Mariner 4 captured the first-ever close-up image of Mars on July 14, 1965. While waiting for the data to be processed into the image (inset at right), team members hand-colored strips of paper that the data was printed on, assigning hues to value ranges. The result is on display at JPL.NASA/JPL-CaltechSixty years ago, NASA’s Mariner 4 captured groundbreaking views of the Red Planet, leading to a steady stream of advances in the cameras used to study other worlds.
In 1965, NASA’s Mariner 4 mission brought Mars into American living rooms, where TV sets showed fuzzy black-and-white images of a cratered landscape. The spacecraft took 21 complete pictures — the first ever captured of another planet — as it flew by as close as 6,118 miles (9,846 kilometers) above the surface.
The mission team couldn’t wait to see what the camera aboard the spacecraft would return. When the actual images were delayed, they went so far as to create a color-by-numbers image, assigning hues to specific values in the data.
Their handiwork wasn’t far off, and the barren landscape Mariner 4 captured ignited the imaginations of future scientists and engineers who would go on to work on a succession of missions, each revealing Mars in a way it had never been seen before.
Millions of Mars images have been taken since then, many of which are captivating in their own way. The images that follow highlight some of the “firsts” in the way the agency has used imaging to help unlock the secrets of Mars.
Viking 1 Sets Foot on MarsJuly 20, 1976
This historic image — the first from the surface of Mars — confirmed that NASA’s Viking 1 lander had become the first spacecraft to touch down on the Red Planet on July 20, 1976. NASA/JPL-CaltechViking 1 became the first spacecraft to touch down on Mars on July 20, 1976. The first high-resolution image it sent to Earth captured a dry, rocky landscape that dashed any hope among scientists of discovering life on the surface. But the crisp images that followed from the lander’s 360-degree cylindrical scan camera underscored the scientific value of seeing Mars from the ground and generated excitement for a more ambitious visit: a robotic spacecraft that could drive across this alien world.
Portrait of Mars by Viking 1 Orbiter1980
NASA’s twin Viking landers didn’t travel alone. Two accompanying orbiters circled Mars to study it from above. The Viking 1 orbiter captured many images in 1980 that were combined to produce this view of Valles Marineris, the “Grand Canyon of Mars.”NASA/JPL-Caltech/USGSWhen the twin Viking landers arrived at Mars, each descended from an orbiter that used cameras to map Mars in a way Earth-based telescopes couldn’t. They began capturing images before the landers even touched down, continuing until 1980. That year, the Viking 1 orbiter captured images that were later stitched into a defining portrait of Valles Marineris — the “Grand Canyon of Mars.”
Sojourner Starts to ExploreJuly 5, 1997
The size of a microwave oven, NASA’s Sojourner rover was the first spacecraft to drive on Mars, as seen in this image taken by NASA’s Pathfinder lander on July 5, 1997. The rover explored the Martian surface for 83 days, well beyond its planned seven-day mission.NASA/JPL-CaltechBy the time NASA returned to the Martian surface in 1997 with the Pathfinder lander and its microwave-oven-size Sojourner rover, much had changed on Earth since Mariner 4’s images beamed to TV viewers: Now, the internet was bringing around-the-clock news to personal computers, allowing a young generation of space fans to witness the tentative first steps of a new form of planetary exploration. The panoramic images from the ground were the first since Viking and, as part of NASA’s “faster, better, cheaper” initiative, offered more detail and a comparatively lower cost.
Opportunity Spots Passing Dust DevilMarch 31, 2016
NASA’s Spirit and Opportunity rovers crossed many miles of Martian terrain, capturing stunning vistas and passing dust devils along the way. The twins far outlasted their planned mission of 90 days: Spirit traveled the Red Planet for more than six years, while Opportunity journeyed for almost 15.NASA/JPL-CaltechIn 2004, NASA’s golf-cart-size twin rovers Spirit and Opportunity set down on the Red Planet, beginning a new phase of Martian exploration. Equipped with both mast-mounted panoramic and arm-mounted microscopic imagers, the roving spacecraft let scientists, engineers, and the world discover new terrain each day. They captured colorful views of Martian vistas and revealed details of pebble-size “blueberries.” Mars was beginning to feel less like an unfamiliar world than a place with recognizable landmarks.
MRO’s HiRISE Views Victoria CraterJuly 18, 2009
More advanced orbiters have brought a different perspective of the Red Planet — especially NASA’s Mars Reconnaissance Orbiter, which uses its HiRISE camera to see surface features that appeared blurry in earlier images. Here, HiRISE views Victoria Crater.NASA/JPL-Caltech/University of ArizonaSince Viking, a series of increasingly advanced orbiters have arrived at Mars with new science tools and cameras. Using increasingly sophisticated imagers, they have mapped the planet’s hills and valleys, identified significant minerals, and found buried glaciers. A camera that has been in operation aboard NASA’s Mars Reconnaissance Orbiter since 2006, the High-Resolution Imaging Science Experiment (HiRISE) frequently captures individual dunes, boulders, and craters, as with this picture of Victoria Crater, revealing features that had been blurry in previous images. The camera has also identified landing sites and places where future rovers (perhaps even astronauts) could explore.
Curiosity, Perseverance Bring More Cameras and ColorAug. 5, 2012 and Feb. 18, 2021
before after NASA/JPL-Caltech NASA/JPL-Caltech beforeafter NASA/JPL-Caltech NASA/JPL-Caltech before after More Cameras, More Color CurtainToggle2-Up Image Details NASA’s Curiosity and Perseverance rovers each brought more cameras — and more color — to the Martian surface. One example are the hazard-avoidance cameras, which are black-and-white on Curiosity, left, and higher-resolution color on Perseverance. NASA/JPL-CaltechBoth Curiosity and Perseverance arrived at Mars (in 2012 and 2021, respectively) loaded with cameras that pack millions of pixels into their images and peer farther into the distance than Spirit or Opportunity ever could. They also feature upgraded arm-mounted cameras for studying fine details like sand particles and rock textures. Perseverance took a step beyond Curiosity in several ways, including with high-speed cameras that showed its parachute deploying and its rocket-powered jetpack flying away during entry, descent, and landing on Mars. Another advance can be seen in each vehicle’s hazard-avoidance cameras, which help rover drivers spot rocks they might bump into. As seen in the first images each rover sent back, Curiosity’s black-and-white cameras were upgraded to color and higher resolution for Perseverance, providing clearer views of the surface.
Ingenuity Spots Perseverance at Belva CraterAug. 22, 2023
NASA’s Perseverance landed along with the Ingenuity helicopter, which proved flight in Mars’ thin atmosphere was possible. This view from Ingenuity — taken from an altitude of about 40 feet (12 meters) during its 51st flight — includes the rover, visible as a whitish speck at upper left.NASA/JPL-CaltechJust as Pathfinder brought the tiny Sojourner rover to Mars, NASA’s next-generation Perseverance rover carried the Ingenuity helicopter. Along with proving flight in Mars’ thin air was possible, Ingenuity used a commercial, off-the-shelf color camera to take aerial views over the course of 72 flights. During one of those flights, Ingenuity even spotted Perseverance in the distance — another first on the Red Planet. Future Mars helicopters might be able to scout paths ahead and find scientifically interesting sites for robots and astronauts alike.
More About These MissionsNASA JPL, which is managed for the agency by Caltech in Pasadena, California, built Mariner 4, the Viking 1 and 2 orbiters, Pathfinder, Sojourner, Spirit and Opportunity, Curiosity, Perseverance, and Ingenuity. It continues to operate Curiosity and Perseverance.
Lockheed Martin Space in Denver built MRO and supports its operations, while JPL manages the mission. The University of Arizona, in Tucson, operates HiRISE, which was built by BAE Systems, in Boulder, Colorado.
The Viking 1 and 2 landers were built by Martin Marietta; the Viking program was managed by NASA’s Langley Research Center in Hampton, Virginia. JPL led operations for the Viking landers and orbiters.
Mariner 4 Mars Flyby 60th Anniversary Media Reel News Media ContactsAndrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2025-088
Share Details Last Updated Jul 11, 2025 Related Terms Explore More 6 min read NASA Mars Orbiter Learns New Moves After Nearly 20 Years in Space Article 2 weeks ago 6 min read NASA’s Perseverance Rover Scours Mars for Science Article 2 weeks ago 5 min read NASA’s Curiosity Mars Rover Starts Unpacking Boxwork Formations Article 3 weeks ago Keep Exploring Discover Related TopicsMissions
Humans in Space
Climate Change
Solar System
Advances in NASA Imaging Changed How World Sees Mars
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA’s Mariner 4 captured the first-ever close-up image of Mars on July 14, 1965. While waiting for the data to be processed into the image (inset at right), team members hand-colored strips of paper that the data was printed on, assigning hues to value ranges. The result is on display at JPL.NASA/JPL-CaltechSixty years ago, NASA’s Mariner 4 captured groundbreaking views of the Red Planet, leading to a steady stream of advances in the cameras used to study other worlds.
In 1965, NASA’s Mariner 4 mission brought Mars into American living rooms, where TV sets showed fuzzy black-and-white images of a cratered landscape. The spacecraft took 21 complete pictures — the first ever captured of another planet — as it flew by as close as 6,118 miles (9,846 kilometers) above the surface.
The mission team couldn’t wait to see what the camera aboard the spacecraft would return. When the actual images were delayed, they went so far as to create a color-by-numbers image, assigning hues to specific values in the data.
Their handiwork wasn’t far off, and the barren landscape Mariner 4 captured ignited the imaginations of future scientists and engineers who would go on to work on a succession of missions, each revealing Mars in a way it had never been seen before.
Millions of Mars images have been taken since then, many of which are captivating in their own way. The images that follow highlight some of the “firsts” in the way the agency has used imaging to help unlock the secrets of Mars.
Viking 1 Sets Foot on MarsJuly 20, 1976
This historic image — the first from the surface of Mars — confirmed that NASA’s Viking 1 lander had become the first spacecraft to touch down on the Red Planet on July 20, 1976. NASA/JPL-CaltechViking 1 became the first spacecraft to touch down on Mars on July 20, 1976. The first high-resolution image it sent to Earth captured a dry, rocky landscape that dashed any hope among scientists of discovering life on the surface. But the crisp images that followed from the lander’s 360-degree cylindrical scan camera underscored the scientific value of seeing Mars from the ground and generated excitement for a more ambitious visit: a robotic spacecraft that could drive across this alien world.
Portrait of Mars by Viking 1 Orbiter1980
NASA’s twin Viking landers didn’t travel alone. Two accompanying orbiters circled Mars to study it from above. The Viking 1 orbiter captured many images in 1980 that were combined to produce this view of Valles Marineris, the “Grand Canyon of Mars.”NASA/JPL-Caltech/USGSWhen the twin Viking landers arrived at Mars, each descended from an orbiter that used cameras to map Mars in a way Earth-based telescopes couldn’t. They began capturing images before the landers even touched down, continuing until 1980. That year, the Viking 1 orbiter captured images that were later stitched into a defining portrait of Valles Marineris — the “Grand Canyon of Mars.”
Sojourner Starts to ExploreJuly 5, 1997
The size of a microwave oven, NASA’s Sojourner rover was the first spacecraft to drive on Mars, as seen in this image taken by NASA’s Pathfinder lander on July 5, 1997. The rover explored the Martian surface for 83 days, well beyond its planned seven-day mission.NASA/JPL-CaltechBy the time NASA returned to the Martian surface in 1997 with the Pathfinder lander and its microwave-oven-size Sojourner rover, much had changed on Earth since Mariner 4’s images beamed to TV viewers: Now, the internet was bringing around-the-clock news to personal computers, allowing a young generation of space fans to witness the tentative first steps of a new form of planetary exploration. The panoramic images from the ground were the first since Viking and, as part of NASA’s “faster, better, cheaper” initiative, offered more detail and a comparatively lower cost.
Opportunity Spots Passing Dust DevilMarch 31, 2016
NASA’s Spirit and Opportunity rovers crossed many miles of Martian terrain, capturing stunning vistas and passing dust devils along the way. The twins far outlasted their planned mission of 90 days: Spirit traveled the Red Planet for more than six years, while Opportunity journeyed for almost 15.NASA/JPL-CaltechIn 2004, NASA’s golf-cart-size twin rovers Spirit and Opportunity set down on the Red Planet, beginning a new phase of Martian exploration. Equipped with both mast-mounted panoramic and arm-mounted microscopic imagers, the roving spacecraft let scientists, engineers, and the world discover new terrain each day. They captured colorful views of Martian vistas and revealed details of pebble-size “blueberries.” Mars was beginning to feel less like an unfamiliar world than a place with recognizable landmarks.
MRO’s HiRISE Views Victoria CraterJuly 18, 2009
More advanced orbiters have brought a different perspective of the Red Planet — especially NASA’s Mars Reconnaissance Orbiter, which uses its HiRISE camera to see surface features that appeared blurry in earlier images. Here, HiRISE views Victoria Crater.NASA/JPL-Caltech/University of ArizonaSince Viking, a series of increasingly advanced orbiters have arrived at Mars with new science tools and cameras. Using increasingly sophisticated imagers, they have mapped the planet’s hills and valleys, identified significant minerals, and found buried glaciers. A camera that has been in operation aboard NASA’s Mars Reconnaissance Orbiter since 2006, the High-Resolution Imaging Science Experiment (HiRISE) frequently captures individual dunes, boulders, and craters, as with this picture of Victoria Crater, revealing features that had been blurry in previous images. The camera has also identified landing sites and places where future rovers (perhaps even astronauts) could explore.
Curiosity, Perseverance Bring More Cameras and ColorAug. 5, 2012 and Feb. 18, 2021
before after NASA/JPL-Caltech NASA/JPL-Caltech beforeafter NASA/JPL-Caltech NASA/JPL-Caltech before after More Cameras, More Color CurtainToggle2-Up Image Details NASA’s Curiosity and Perseverance rovers each brought more cameras — and more color — to the Martian surface. One example are the hazard-avoidance cameras, which are black-and-white on Curiosity, left, and higher-resolution color on Perseverance. NASA/JPL-CaltechBoth Curiosity and Perseverance arrived at Mars (in 2012 and 2021, respectively) loaded with cameras that pack millions of pixels into their images and peer farther into the distance than Spirit or Opportunity ever could. They also feature upgraded arm-mounted cameras for studying fine details like sand particles and rock textures. Perseverance took a step beyond Curiosity in several ways, including with high-speed cameras that showed its parachute deploying and its rocket-powered jetpack flying away during entry, descent, and landing on Mars. Another advance can be seen in each vehicle’s hazard-avoidance cameras, which help rover drivers spot rocks they might bump into. As seen in the first images each rover sent back, Curiosity’s black-and-white cameras were upgraded to color and higher resolution for Perseverance, providing clearer views of the surface.
Ingenuity Spots Perseverance at Belva CraterAug. 22, 2023
NASA’s Perseverance landed along with the Ingenuity helicopter, which proved flight in Mars’ thin atmosphere was possible. This view from Ingenuity — taken from an altitude of about 40 feet (12 meters) during its 51st flight — includes the rover, visible as a whitish speck at upper left.NASA/JPL-CaltechJust as Pathfinder brought the tiny Sojourner rover to Mars, NASA’s next-generation Perseverance rover carried the Ingenuity helicopter. Along with proving flight in Mars’ thin air was possible, Ingenuity used a commercial, off-the-shelf color camera to take aerial views over the course of 72 flights. During one of those flights, Ingenuity even spotted Perseverance in the distance — another first on the Red Planet. Future Mars helicopters might be able to scout paths ahead and find scientifically interesting sites for robots and astronauts alike.
More About These MissionsNASA JPL, which is managed for the agency by Caltech in Pasadena, California, built Mariner 4, the Viking 1 and 2 orbiters, Pathfinder, Sojourner, Spirit and Opportunity, Curiosity, Perseverance, and Ingenuity. It continues to operate Curiosity and Perseverance.
Lockheed Martin Space in Denver built MRO and supports its operations, while JPL manages the mission. The University of Arizona, in Tucson, operates HiRISE, which was built by BAE Systems, in Boulder, Colorado.
The Viking 1 and 2 landers were built by Martin Marietta; the Viking program was managed by NASA’s Langley Research Center in Hampton, Virginia. JPL led operations for the Viking landers and orbiters.
Mariner 4 Mars Flyby 60th Anniversary Media Reel News Media ContactsAndrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2025-088
Share Details Last Updated Jul 11, 2025 Related Terms Explore More 6 min read NASA Mars Orbiter Learns New Moves After Nearly 20 Years in Space Article 2 weeks ago 6 min read NASA’s Perseverance Rover Scours Mars for Science Article 2 weeks ago 5 min read NASA’s Curiosity Mars Rover Starts Unpacking Boxwork Formations Article 3 weeks ago Keep Exploring Discover Related TopicsMissions
Humans in Space
Climate Change
Solar System
NASA Astronaut Shannon Walker Retires
NASA astronaut Shannon Walker retired July 10, concluding a career that spanned 38 years, including 30 years of federal service and more than 21 years as an astronaut. During two spaceflights, she spent 330 days in orbit, contributing to hundreds of scientific experiments and technology demonstrations for the benefit of humanity.
Walker served as a mission specialist during NASA’s SpaceX Crew-1 mission to the International Space Station in 2020, the first crewed operational Dragon spacecraft flight. She also was the first woman to fly aboard a Dragon spacecraft. Once aboard the orbiting laboratory, Walker joined the Expedition 64/65 crew and briefly commanded Expedition 65, logging 167 days in space before returning to Earth in May 2021.
She spent 163 days in space during her first spaceflight in 2010 as a member of the space station’s Expedition 24/25 crew. She was the pilot of the Soyuz TMA-19, which became the first crew to dock with the station’s Rassvet module.
“Shannon’s dedication to human space exploration has left an incredible impact, not just here in Houston, but across the industry,” said Steve Koerner, acting director of NASA’s Johnson Space Center in Houston. “Her leadership and guidance will be missed immensely, but she leaves behind a legacy of excellence that will continue to inspire the next generation of explorers for decades to come.”
Most recently, Walker served as the deputy chief of the Astronaut Office. She also oversaw the 2021 class of astronaut candidates, supervising their training and graduation in 2024.
“Shannon and I were a part of the same astronaut class back when we first started,” said Joe Acaba, chief of the Astronaut Office at NASA Johnson. “She has been a great friend to me ever since and a great leader within the Astronaut Office. I could not imagine a better partner by my side when, nearly 20 years later, we’d become chief and deputy chief. She has undoubtedly been a positive influence on this office, and her retirement is well-deserved.”
Walker began her career as a flight controller in the Mission Control Center at NASA Johnson, supporting several shuttle missions. She next worked in the International Space Station Program Office, helping to develop, build, and integrate hardware for the space station. In the early days of the space station, she returned to mission control, leading the engineering team responsible for the space station’s technical health.
She was selected as an astronaut in 2004. After completing her initial two years of training, she served as a crew support astronaut and worked as a capsule communicator, or capcom. She also held leadership positions within the several branches of the Astronaut Office focused on International Space Station operations, crew Soyuz missions, and supporting astronauts with flight assignments. She also commanded the NASA Extreme Environment Mission Operations project, or NEEMO 15 underwater mission.
“I had always known I wanted to be an astronaut when I grew up, but looking back on the past 38 years, I never would have imagined how many adventures my career would take me on,” said Walker. “I feel fortunate to have been able to work with people all over the world in the pursuit of space exploration. I have seen a lot of change in the evolution of human spaceflight, and I know the future is in good hands with all the talented people we have here and the generations yet to come.”
The Houston native attended Rice University in her hometown, where she earned a bachelor’s degree in physics, followed by a master’s degree and doctorate in space physics.
Learn more about how NASA explores the unknown and innovates for the benefit of humanity at: https://www.nasa.gov/
-end-
Chelsey Ballarte
Johnson Space Center, Houston
281-483-5111
Chelsey.n.ballarte@nasa.gov
NASA Astronaut Shannon Walker Retires
NASA astronaut Shannon Walker retired July 10, concluding a career that spanned 38 years, including 30 years of federal service and more than 21 years as an astronaut. During two spaceflights, she spent 330 days in orbit, contributing to hundreds of scientific experiments and technology demonstrations for the benefit of humanity.
Walker served as a mission specialist during NASA’s SpaceX Crew-1 mission to the International Space Station in 2020, the first crewed operational Dragon spacecraft flight. She also was the first woman to fly aboard a Dragon spacecraft. Once aboard the orbiting laboratory, Walker joined the Expedition 64/65 crew and briefly commanded Expedition 65, logging 167 days in space before returning to Earth in May 2021.
She spent 163 days in space during her first spaceflight in 2010 as a member of the space station’s Expedition 24/25 crew. She was the pilot of the Soyuz TMA-19, which became the first crew to dock with the station’s Rassvet module.
“Shannon’s dedication to human space exploration has left an incredible impact, not just here in Houston, but across the industry,” said Steve Koerner, acting director of NASA’s Johnson Space Center in Houston. “Her leadership and guidance will be missed immensely, but she leaves behind a legacy of excellence that will continue to inspire the next generation of explorers for decades to come.”
Most recently, Walker served as the deputy chief of the Astronaut Office. She also oversaw the 2021 class of astronaut candidates, supervising their training and graduation in 2024.
“Shannon and I were a part of the same astronaut class back when we first started,” said Joe Acaba, chief of the Astronaut Office at NASA Johnson. “She has been a great friend to me ever since and a great leader within the Astronaut Office. I could not imagine a better partner by my side when, nearly 20 years later, we’d become chief and deputy chief. She has undoubtedly been a positive influence on this office, and her retirement is well-deserved.”
Walker began her career as a flight controller in the Mission Control Center at NASA Johnson, supporting several shuttle missions. She next worked in the International Space Station Program Office, helping to develop, build, and integrate hardware for the space station. In the early days of the space station, she returned to mission control, leading the engineering team responsible for the space station’s technical health.
She was selected as an astronaut in 2004. After completing her initial two years of training, she served as a crew support astronaut and worked as a capsule communicator, or capcom. She also held leadership positions within the several branches of the Astronaut Office focused on International Space Station operations, crew Soyuz missions, and supporting astronauts with flight assignments. She also commanded the NASA Extreme Environment Mission Operations project, or NEEMO 15 underwater mission.
“I had always known I wanted to be an astronaut when I grew up, but looking back on the past 38 years, I never would have imagined how many adventures my career would take me on,” said Walker. “I feel fortunate to have been able to work with people all over the world in the pursuit of space exploration. I have seen a lot of change in the evolution of human spaceflight, and I know the future is in good hands with all the talented people we have here and the generations yet to come.”
The Houston native attended Rice University in her hometown, where she earned a bachelor’s degree in physics, followed by a master’s degree and doctorate in space physics.
Learn more about how NASA explores the unknown and innovates for the benefit of humanity at: https://www.nasa.gov/
-end-
Chelsey Ballarte
Johnson Space Center, Houston
281-483-5111
Chelsey.n.ballarte@nasa.gov
Prime Day is over but savings are still active — invest in some new optics for the return of Saturn to late-night skies
Sunspot crackling with magnetic 'bombs' is now turning toward Earth (photo)
I couldn't keep quiet about $1000 off the Sony A7R V in this anti-Prime Day deal
LIVE NOW : 11th July Sun Close up Views/ Backyard Astronomy with Lunt Telescope
The Fortress of Solitude: Every live-action incarnation of Superman's iconic ice hideout
Don't miss the last full 'Manhattanhenge' sunset of 2025 light up NYC today
Putting the X-59 to the Test
Putting the X-59 to the Test
Researchers from NASA and the Japanese Aerospace Exploration Agency (JAXA) recently tested a scale model of the X-59 experimental aircraft in a supersonic wind tunnel located in Chofu, Japan, to assess the noise audible underneath the aircraft. The model can be seen in the wind tunnel in this image released on July 11, 2025.
The test was an important milestone for NASA’s one-of-a-kind X-59, which is designed to fly faster than the speed of sound without causing a loud sonic boom. When the X-59 flies, sound underneath it – a result of its pressure signature – will be a critical factor for what people hear on the ground.
This marked the third round of wind tunnel tests for the X-59 model, following a previous test at JAXA and at NASA’s Glenn Research Center in Cleveland. The data will help researchers understand the noise level that will be created by the shock waves the X-59 produces at supersonic speeds.
Image credit: JAXA
Putting the X-59 to the Test
Researchers from NASA and the Japanese Aerospace Exploration Agency (JAXA) recently tested a scale model of the X-59 experimental aircraft in a supersonic wind tunnel located in Chofu, Japan, to assess the noise audible underneath the aircraft. The model can be seen in the wind tunnel in this image released on July 11, 2025.
The test was an important milestone for NASA’s one-of-a-kind X-59, which is designed to fly faster than the speed of sound without causing a loud sonic boom. When the X-59 flies, sound underneath it – a result of its pressure signature – will be a critical factor for what people hear on the ground.
This marked the third round of wind tunnel tests for the X-59 model, following a previous test at JAXA and at NASA’s Glenn Research Center in Cleveland. The data will help researchers understand the noise level that will be created by the shock waves the X-59 produces at supersonic speeds.
Image credit: JAXA
These Amazon Prime Day deals must end tonight — don't miss out on big savings across skywatching optics
Last chance budget-friendly Prime Day star projector deal — now under $14
Billionaire private astronaut Jared Isaacman donating $15 million for Space Camp programs
NASA to Provide Coverage of Axiom Mission 4 Departure from Station
NASA will provide live coverage of the undocking and departure of the Axiom Mission 4 private astronaut mission from the International Space Station.
The four-member astronaut crew is scheduled to undock from the space-facing port of the station’s Harmony module aboard the SpaceX Dragon spacecraft at approximately 7:05 a.m. EDT Monday, July 14, pending weather, to begin their return to Earth and splashdown off the coast of California.
Coverage of departure operations will begin with hatch closing at 4:30 a.m. on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, ISRO (Indian Space Research Organization) astronaut Shubhanshu Shukla, ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland, and HUNOR (Hungarian to Orbit) astronaut Tibor Kapu of Hungary, will have spent about two weeks in space at the conclusion of their mission.
The Dragon spacecraft will return with more than 580 pounds of cargo, including NASA hardware and data from over 60 experiments conducted throughout the mission.
NASA’s coverage is as follows (all times Eastern and subject to change based on real-time operations):
Monday, July 14
4:30 a.m. – Hatch closing coverage begins on NASA+.
4:55 a.m. – Crew enters spacecraft followed by hatch closing.
6:45 a.m. – Undocking coverage begins on NASA+, Axiom Space, and SpaceX channels.
7:05 a.m. – Undocking
NASA’s coverage ends approximately 30 minutes after undocking when space station joint operations with Axiom Space and SpaceX conclude. Axiom Space will resume coverage of Dragon’s re-entry and splashdown on the company’s website.
A collaboration between NASA and ISRO allowed Axiom Mission 4 to deliver on a commitment highlighted by President Trump and Indian Prime Minister Narendra Modi to send the first ISRO astronaut to the station. The space agencies participated in five joint science investigations and two in-orbit science, technology, engineering, and mathematics demonstrations. NASA and ISRO have a long-standing relationship built on a shared vision to advance scientific knowledge and expand space collaboration.
The private mission also carried the first astronauts from Poland and Hungary to stay aboard the space station.
The International Space Station is a springboard for developing a low Earth orbit economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
Learn more about NASA’s commercial space strategy at:
https://www.nasa.gov/commercial-space
-end-
Claire O’Shea
Headquarters, Washington
202-358-1100
claire.a.o’shea@nasa.gov
Anna Schneider
Johnson Space Center, Houston
281-483-5111
anna.c.schneider@nasa.gov
NASA to Provide Coverage of Axiom Mission 4 Departure from Station
NASA will provide live coverage of the undocking and departure of the Axiom Mission 4 private astronaut mission from the International Space Station.
The four-member astronaut crew is scheduled to undock from the space-facing port of the station’s Harmony module aboard the SpaceX Dragon spacecraft at approximately 7:05 a.m. EDT Monday, July 14, pending weather, to begin their return to Earth and splashdown off the coast of California.
Coverage of departure operations will begin with hatch closing at 4:30 a.m. on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, ISRO (Indian Space Research Organization) astronaut Shubhanshu Shukla, ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland, and HUNOR (Hungarian to Orbit) astronaut Tibor Kapu of Hungary, will have spent about two weeks in space at the conclusion of their mission.
The Dragon spacecraft will return with more than 580 pounds of cargo, including NASA hardware and data from over 60 experiments conducted throughout the mission.
NASA’s coverage is as follows (all times Eastern and subject to change based on real-time operations):
Monday, July 14
4:30 a.m. – Hatch closing coverage begins on NASA+.
4:55 a.m. – Crew enters spacecraft followed by hatch closing.
6:45 a.m. – Undocking coverage begins on NASA+, Axiom Space, and SpaceX channels.
7:05 a.m. – Undocking
NASA’s coverage ends approximately 30 minutes after undocking when space station joint operations with Axiom Space and SpaceX conclude. Axiom Space will resume coverage of Dragon’s re-entry and splashdown on the company’s website.
A collaboration between NASA and ISRO allowed Axiom Mission 4 to deliver on a commitment highlighted by President Trump and Indian Prime Minister Narendra Modi to send the first ISRO astronaut to the station. The space agencies participated in five joint science investigations and two in-orbit science, technology, engineering, and mathematics demonstrations. NASA and ISRO have a long-standing relationship built on a shared vision to advance scientific knowledge and expand space collaboration.
The private mission also carried the first astronauts from Poland and Hungary to stay aboard the space station.
The International Space Station is a springboard for developing a low Earth orbit economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
Learn more about NASA’s commercial space strategy at:
https://www.nasa.gov/commercial-space
-end-
Claire O’Shea
Headquarters, Washington
202-358-1100
claire.a.o’shea@nasa.gov
Anna Schneider
Johnson Space Center, Houston
281-483-5111
anna.c.schneider@nasa.gov
Marjorie Taylor Greene Plans Hearing on Geoengineering amid Cloud Seeding Conspiracy Theories
Republican Representative Marjorie Taylor Greene of Georgia has said she will hold a hearing on geoengineering as conspiracy theories have swirled around cloud seeding after the recent floods in Texas