We are all in the gutter, but some of us are looking at the stars.

— Oscar Wilde

Feed aggregator

Space Stations Get Pretty Moldy. How Can We Prevent it?

Universe Today - Wed, 09/11/2024 - 4:39pm

Ask any property inspector, and they’ll tell you one of the maxims of their profession – where there’s moisture, there’s mold. That relationship also holds true for the International Space Station. The interior climate on the ISS is carefully controlled, but if thrown out of whack, potentially dangerous mold could sprout overnight. A new paper by researchers at The Ohio State University explains why – and provides some insights into how we might prevent it if it does happen.

The paper’s main finding was that dust collection, when exposed to moisture for only a short time, leads to a massive increase in the microbial population and a fundamental change in the dust itself to make it easier for the microbes to grow. There is plenty of dust on the ISS, so astronauts must be careful.

They already clean the screens covering the air filtration system on board regularly. The dust they collected from those screens formed the basis of the samples provided to Dr. Karen Dannemiller and her team at OSU. They separated the dust samples into different sub-samples and exposed each to a varying amount of moisture. Then, they watched as the microbes already present in the dust did their work.

A picture of mold growing on the ISS.
Credit – NASA

Dust is naturally created in the ISS from dead human skin and, of course, the microbes that live alongside us on a daily basis. However, in closed environments, an outbreak of bacteria would cause even more severe reactions than they do on Earth, including allergies and asthma. It is even possible that the dust and associated bacteria degrade the material structure of the ISS itself.

Running the collected samples through a higher moisture content is designed to mimic a possible failure on the ISS, such as an equipment malfunction. Knocking out an air ventilation fan in one part of the space station could create an environment similar to the one the dust is subjected to back on the ground.

So, what does that mean for our astronauts? For now, it’s best to understand where mold could form and keep up with cleaning schedules that allow them to nip it in the bud. There are several famous pictures of mold growing in a space station, so while generally successful, that has still been a known problem for a long time in space exploration. 

Bacteria were also found growing in the old Mir space station, as discussed in this Science Channel episode.
Credit – Science Channel YouTube Channel

Dr. Dannemiller and her colleagues have developed a model that could track mold growth in a closed environment like the ISS to combat this. They used data collected by analyzing the dust samples as part of their proof of concept for the software, but the eventual end goal is to predict where mold will grow before it begins and give the astronauts time to clean it out before it becomes a hazard. 

There will be plenty of space stations to work on this system in the future. Private spaceflight companies have become increasingly involved in developing space habitats, and NASA is setting up the ambitious Lunar Gateway to help with its Artemis missions to the moon. As more enclosed, sealed environments come online, it will be increasingly important to keep them free of these potentially dangerous microbial infestations. Experimenting with them and modeling that growth is one way to stay ahead of the curve.

Learn More:
Phys.org – Keeping mold out of future space stations
Nastasi et al – Predicting how varying moisture conditions impact the microbiome of dust collected from the International Space Station
UT – How Can Biofilms Help or Hinder Spaceflight?
UT – Earth’s toughest bacteria can survive unprotected in space for at least a year

Lead Image:
Scanning Electron Microscope image of dust from the ISS.
Credit – Microbiome / Nastasi et al.

The post Space Stations Get Pretty Moldy. How Can We Prevent it? appeared first on Universe Today.

Categories: Astronomy

NASA Astronaut Don Pettit, Crewmates Arrive at Space Station

NASA - Breaking News - Wed, 09/11/2024 - 4:02pm
The Soyuz rocket launches to the International Space Station with Expedition 72 crew members: NASA astronaut Don Pettit, Roscosmos cosmonauts Alexey Ovchinin, and Ivan Vagner, onboard, Wednesday, Sept. 11, 2024, at the Baikonur Cosmodrome in Kazakhstan. Credit: NASA/Bill Ingalls

NASA astronaut Don Pettit, accompanied by Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner, arrived at the International Space Station Wednesday, bringing its number of residents to 12 for the 13-day handover period.

After a two-orbit, three-hour journey to the station, the Roscosmos Soyuz MS-26 spacecraft automatically docked to the orbiting laboratory’s Rassvet module at 3:32 p.m. EDT. The spacecraft launched at 12:23 p.m. EDT (9:23 p.m. Baikonur time) from the Baikonur Cosmodrome in Kazakhstan.

NASA’s coverage of hatch opening will stream at 5:30 p.m. on NASA+, the NASA app, YouTube, and the agency’s website. Hatch opening is scheduled to begin at 5:50 p.m. Learn how to stream NASA content through a variety of platforms, including social media.

Once aboard, the trio will join Expedition 71 crew members, including NASA astronauts Tracy C. Dyson, Mike Barratt, Matthew Dominick, Jeanette Epps, Butch Wilmore, and Suni Williams, as well as Roscosmos cosmonauts Nikolai Chub, Alexander Grebenkin, and Oleg Kononenko. Expedition 72 will begin Monday, Sept. 23, upon the departure of Dyson, Chub, and off-going station commander Kononenko, completing a six-month stay for Dyson and a year-long expedition for Chub and Kononenko.

Pettit, Ovchinin, and Vagner will spend approximately six months aboard the orbital outpost advancing scientific research as Expedition 71/72 crew members before returning to Earth in the spring of 2025. This is Pettit and Ovchinin’s fourth spaceflight and Vagner’s second.

During Expedition 72, two new crews will arrive aboard the space station, including NASA’s SpaceX Crew-9 launching in September, followed by Crew-10, scheduled for launch in February 2025.  

Follow Pettit on X throughout his mission and get the latest space station crew news on Instagram, Facebook, and X.


Learn more about International Space Station research and operations at:

https://www.nasa.gov/station

-end-

Joshua Finch / Claire O’Shea
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov

Leah Cheshier
Johnson Space Center, Houston
281-483-5111
leah.d.cheshier@nasa.gov

Categories: NASA

NASA's Voyager 1 probe swaps thrusters in tricky fix as it flies through interstellar space

Space.com - Wed, 09/11/2024 - 4:00pm
NASA's most distant spacecraft had a critical thruster problem far from home. Fixing it required a long-distance call to overcome extreme cold and dwindling power.
Categories: Astronomy

NASA's Juno probe spots massive new volcano on Jupiter moon Io

Space.com - Wed, 09/11/2024 - 3:59pm
Researchers have spotted a huge new active volcano on Jupiter's moon Io by comparing images taken by two NASA missions more than a quarter of a century apart.
Categories: Astronomy

NASA astronaut, 2 cosmonauts arrive at ISS aboard Russian Soyuz capsule (video)

Space.com - Wed, 09/11/2024 - 3:38pm
A Russian Soyuz spacecraft delivered NASA astronaut Don Pettit and two cosmonauts to the International Space Station today (Sept. 11), just three hours after lifting off.
Categories: Astronomy

NASA to Preview Europa Clipper Mission to Jupiter Moon

NASA - Breaking News - Wed, 09/11/2024 - 3:13pm
This artist’s concept depicts NASA’s Europa Clipper spacecraft in orbit around Jupiter. The mission is targeting an Oct. 10, 2024, launch. NASA/JPL-Caltech

NASA will host a news conference at 11 a.m. EDT Tuesday, Sept. 17, at the agency’s Jet Propulsion Laboratory in Southern California to discuss the upcoming Europa Clipper mission to Jupiter’s icy moon Europa.

The briefing will be open to media and will air live on NASA+ and the agency’s website, plus Facebook, X, and YouTube. Learn how to stream NASA content through a variety of platforms, including social media.

Participants in the news conference include:

  • Gina DiBraccio, acting director, Planetary Science Division, NASA Headquarters
  • Jordan Evans, project manager, Europa Clipper, NASA’s Jet Propulsion Laboratory
  • Bonnie Buratti, deputy project scientist, Europa Clipper, JPL
  • Stuart Hill, propulsion module delivery manager, Johns Hopkins University Applied Physics Laboratory
  • Armando Piloto, senior mission manager, NASA’s Launch Services Program

To ask questions by phone, members of the media must RSVP no later than two hours before the start of the event to Rexana Vizza at: rexana.v.vizza@jpl.nasa.gov.

Members of the news media from the U.S. and non-designated countries who are interested in covering the event in person at JPL must arrange access in advance by contacting Rexana Vizza at: rexana.v.vizza@jpl.nasa.gov no later than 3 p.m. EDT (12 p.m. PDT) on Thursday, Sept. 12. Media representatives must provide one form of government-issued photo identification. Non-U.S. citizens will need to bring a passport or a green card. NASA’s media accreditation policy is available online.

Questions can be asked on social media during the briefing using the hashtag #AskNASA.

Europa is one of the most promising places in our solar system to find an environment suitable for life beyond Earth. Evidence suggests that the ocean beneath Europa’s icy surface could contain the ingredients for life — water, the right chemistry, and energy. While Europa Clipper is not a life-detection mission, it will answer key questions about the moon’s potential habitability.

Europa Clipper’s launch period opens on Thursday, Oct. 10. The spacecraft, the largest NASA has ever built for a planetary mission, will launch on a SpaceX Falcon Heavy rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

Managed by Caltech in Pasadena, California, JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, for NASA’s Science Mission Directorate in Washington. The main spacecraft body was designed by APL in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. The Planetary Missions Program Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, executes program management of the Europa Clipper mission. NASA’s Launch Services Program, based at Kennedy, manages the launch service for the Europa Clipper spacecraft.

To learn more about Europa Clipper, visit:

https://europa.nasa.gov

-end-

Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

Val Gratias / Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif.
626-318-2141 / 818-393-6215
valerie.m.gratias@jpl.nasa.gov / gretchen.p.mccartney@jpl.nasa.gov

Categories: NASA

NASA Finds Summer 2024 Hottest to Date

NASA - Breaking News - Wed, 09/11/2024 - 3:12pm

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) This bar graph shows GISTEMP summer global temperature anomalies for 2023 (shown in yellow) and 2024 (shown in red). June through August is considered meteorological summer in the Northern Hemisphere. The white lines indicate the range of estimated temperatures. The warmer-than-usual summers continue a long-term trend of warming, driven primarily by human-caused greenhouse gas emissions. NASA/Peter Jacobs

The agency also shared new state-of-the-art datasets that allow scientists to track Earth’s temperature for any month and region going back to 1880 with greater certainty.

August 2024 set a new monthly temperature record, capping Earth’s hottest summer since global records began in 1880, according to scientists at NASA’s Goddard Institute for Space Studies (GISS) in New York. The announcement comes as a new analysis upholds confidence in the agency’s nearly 145-year-old temperature record.

June, July, and August 2024 combined were about 0.2 degrees Fahrenheit (about 0.1 degrees Celsius) warmer globally than any other summer in NASA’s record — narrowly topping the record just set in 2023. Summer of 2024 was 2.25 F (1.25 C) warmer than the average summer between 1951 and 1980, and August alone was 2.34 F (1.3 C) warmer than average. June through August is considered meteorological summer in the Northern Hemisphere.

“Data from multiple record-keepers show that the warming of the past two years may be neck and neck, but it is well above anything seen in years prior, including strong El Niño years,” said Gavin Schmidt, director of GISS. “This is a clear indication of the ongoing human-driven warming of the climate.”

NASA assembles its temperature record, known as the GISS Surface Temperature Analysis (GISTEMP), from surface air temperature data acquired by tens of thousands of meteorological stations, as well as sea surface temperatures from ship- and buoy-based instruments. It also includes measurements from Antarctica. Analytical methods consider the varied spacing of temperature stations around the globe and urban heating effects that could skew the calculations.

The GISTEMP analysis calculates temperature anomalies rather than absolute temperature. A temperature anomaly shows how far the temperature has departed from the 1951 to 1980 base average.

New assessment of temperature record

The summer record comes as new research from scientists at the Colorado School of Mines, National Science Foundation, the National Atmospheric and Oceanic Administration (NOAA), and NASA further increases confidence in the agency’s global and regional temperature data.

“Our goal was to actually quantify how good of a temperature estimate we’re making for any given time or place,” said lead author Nathan Lenssen, a professor at the Colorado School of Mines and project scientist at the National Center for Atmospheric Research (NCAR).

This visualization of GISTEMP monthly temperatures with the seasonal cycle derived from the Global Modeling and Assimilation Office’s MERRA-2 model compares 2023 (in red) and 2024 (in purple), with a transparent ribbon around each indicating the confidence intervals from the new GISTEMP uncertainty calculation. The white lines show monthly temperatures from the years 1961 to 2022. June, July, and August 2024 combined were about 0.2 degrees Fahrenheit (about 0.1 degrees Celsius) warmer globally than any other summer in NASA’s record — narrowly topping the record set in 2023.NASA/Peter Jacobs/Katy Mersmann

The researchers affirmed that GISTEMP is correctly capturing rising surface temperatures on our planet and that Earth’s global temperature increase since the late 19th century — summer 2024 was about 2.7 F (1.51 C) warmer than the late 1800s — cannot be explained by any uncertainty or error in the data.

The authors built on previous work showing that NASA’s estimate of global mean temperature rise is likely accurate to within a tenth of a degree Fahrenheit in recent decades. For their latest analysis, Lenssen and colleagues examined the data for individual regions and for every month going back to 1880.  

Estimating the unknown

Lenssen and colleagues provided a rigorous accounting of statistical uncertainty within the GISTEMP record. Uncertainty in science is important to understand because we cannot take measurements everywhere. Knowing the strengths and limitations of observations helps scientists assess if they’re really seeing a shift or change in the world.

The study confirmed that one of the most significant sources of uncertainty in the GISTEMP record is localized changes around meteorological stations. For example, a previously rural station may report higher temperatures as asphalt and other heat-trapping urban surfaces develop around it. Spatial gaps between stations also contribute some uncertainty in the record. GISTEMP accounts for these gaps using estimates from the closest stations.

Previously, scientists using GISTEMP estimated historical temperatures using what’s known in statistics as a confidence interval — a range of values around a measurement, often read as a specific temperature plus or minus a few fractions of degrees. The new approach uses a method known as a statistical ensemble: a spread of the 200 most probable values. While a confidence interval represents a level of certainty around a single data point, an ensemble tries to capture the whole range of possibilities.

The distinction between the two methods is meaningful to scientists tracking how temperatures have changed, especially where there are spatial gaps. For example: Say GISTEMP contains thermometer readings from Denver in July 1900, and a researcher needs to estimate what conditions were 100 miles away. Instead of reporting the Denver temperature plus or minus a few degrees, the researcher can analyze scores of equally probable values for southern Colorado and communicate the uncertainty in their results.

What does this mean for recent heat rankings?

Every year, NASA scientists use GISTEMP to provide an annual global temperature update, with 2023 ranking as the hottest year to date.

Other researchers affirmed this finding, including NOAA and the European Union’s Copernicus Climate Change Service. These institutions employ different, independent methods to assess Earth’s temperature. Copernicus, for instance, uses an advanced computer-generated approach known as reanalysis. 

The records remain in broad agreement but can differ in some specific findings. Copernicus determined that July 2023 was Earth’s hottest month on record, for example, while NASA found July 2024 had a narrow edge. The new ensemble analysis has now shown that the difference between the two months is smaller than the uncertainties in the data. In other words, they are effectively tied for hottest. Within the larger historical record the new ensemble estimates for summer 2024 were likely 2.52-2.86 degrees F (1.40-1.59 degrees C) warmer than the late 19th century, while 2023 was likely 2.34-2.68 degrees F (1.30-1.49 degrees C) warmer.

Read More Share Details Last Updated Sep 11, 2024 LocationGISS Related Terms Explore More 5 min read NASA’s Webb Peers into the Extreme Outer Galaxy

Astronomers have directed NASA’s James Webb Space Telescope to examine the outskirts of our Milky…

Article 6 hours ago
6 min read Childhood Snow Days Transformed Linette Boisvert into a Sea Ice Scientist Article 2 days ago 7 min read Kyle Helson Finds EXCITE-ment in Exoplanet Exploration Article 2 days ago Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

Hot 'Salsa:' European satellite burns up in landmark controlled reentry (photo)

Space.com - Wed, 09/11/2024 - 3:00pm
The European Space Agency's Salsa satellite safely deorbited on Sunday (Sept. 8) over a hand-picked region of the South Pacific Ocean.
Categories: Astronomy

New record! 19 people are orbiting Earth right now

Space.com - Wed, 09/11/2024 - 2:42pm
Three people launched toward the ISS today (Sept. 11) aboard a Russian Soyuz capsule, bringing the total number of people in Earth orbit to 19 — a new record.
Categories: Astronomy

Chile Flowers Bloom in Space

NASA Image of the Day - Wed, 09/11/2024 - 2:37pm
Chile pepper plants growing in the Advanced Plant Habitat aboard the International Space Station bore fruit in the late summer and fall of 2021. Overcoming the challenges of growing fruit in microgravity is important to NASA for long-duration missions during which crew members will need good sources of Vitamin C to supplement their diets.
Categories: Astronomy, NASA

Chile Flowers Bloom in Space

NASA - Breaking News - Wed, 09/11/2024 - 2:36pm
Chile pepper plants growing in the Advanced Plant Habitat aboard the International Space Station bore fruit in the late summer and fall of 2021. Overcoming the challenges of growing fruit in microgravity is important to NASA for long-duration missions during which crew members will need good sources of Vitamin C to supplement their diets.NASA/Megan McArthur

In July 2021, NASA astronauts aboard the International Space Station started growing chile peppers in the Advanced Plant Habitat, as part of the Plant Habitat-04 (PH-04) experiment. The astronauts and a team of researchers at Kennedy worked together to monitor the peppers’ growth before harvesting them. In this image from Sept. 30, 2021, chile flowers and buds can be seen.

PH-04 was one of the longest and most challenging plant experiments attempted aboard the orbital lab. The second harvest resulted in a bumper crop: the 26 chile peppers grown broke the record for feeding the most astronauts from a crop grown in space.

Image credit: NASA/Megan McArthur

Categories: NASA

Projecting what Earth will Look Like 1000 years from now Could Assist in the Search for Advanced Civilizations

Universe Today - Wed, 09/11/2024 - 2:35pm

The Search for Extraterrestrial Intelligence (SETI) is regularly plagued by the fact that humanity has a very limited perspective on civilization and the nature of intelligence itself. When it comes right down to it, the only examples we have to go on are “life as we know it” (aka. Earth organisms) and human civilization. On top of that, given the age of the Universe and the time life has had to evolve on other planets, it is a foregone conclusion that any advanced life in our galaxy would be older than humanity. Luckily, this presents an opportunity to develop and test theoretical frameworks in the field.

To paraphrase Freeman Dyson, if we can conceive of a concept (and the physics are sound), an advanced species will likely have built it already. In this respect, imagining where humanity will be centuries or eons from now could provide potential “technosignatures” to look for. In a recent paper, a team from the Blue Marble Space Institute of Science (BMSIS) and NASA’s Goddard Space Flight Center modeled a series of scenarios that attempt to predict what humanity’s “technosphere” could look like 1,000 years from now. Their research could have implications for future SETI studies.

The research team was led by Jacob Haqq-Misra, an astrobiologist and Research Scientist at Blue Marble Space Institute of Science. He was joined by George Profitiliotis, an Affiliate Research Scientist with BMSIS and a co-founder of the Greek NewSpace Society, and Ravi Kopparapu, a Planetary Scientist at NASA Goddard Space Flight Center. The preprint of their paper recently appeared in Elsevier and is being reviewed for publication in the journal Technological Forecasting and Social Change. The paper is the first in a series titled “Projections of Earth’s technosphere.”

Searching for Technosignatures

When it comes to predicting what advanced civilizations might look like and the technologies they will employ, scientists are often marred by our limited perspective. When it comes right down to it, humanity is familiar with only one example of an advanced species relying on technological innovations to ensure food security, health and safety, transportation, defense, and other applications – i.e., ourselves! But as Freeman Dyson once related when discussing his theory of a Dyson Sphere, if we can conceive of an idea and the physics of it are sound, an advanced civilization may have already built it.

As they indicate in their paper, this process is similar to how astrobiologists rely on the study of Earth organisms to predict what biosignatures they should be searching for. As Haqq-Misra told Universe Today via email:

“Astrobiology has the entire history of Earth to draw upon as examples of how life has modified the planet. The search for extraterrestrial biosignatures can use Earth today or Earth in its past for ideas of what to look for. In the same way, the search for extraterrestrial technosignatures begins with the history of technology on Earth, although technology is much more recent in Earth’s history when compared to life in general. Our paper is an effort to provide a theoretical basis for technosignatures that is based on our undersstanding of life and technology on Earth.”

Similarly, SETI research has benefitted in recent years from anthropological studies that consider the totality of human activity on Earth. This collective activity is known as the “anthroposphere,” which corresponds to the concept of the Anthropocene—the current geological era in which humanity has become the largest driving force in environmental change. When considering this through the lens of technological activity and the technosignatures this would produce, the term “technosphere” is used.

Multiple SETI experiments have been mounted in the past sixty years, most of which searched for signs of extraterrestrial radio transmissions. This should come as no surprise since radio communications are a time-tested and validated technology that humanity has relied on for more than a century. But as Haqq-Misra explained, SETI also has a rich history of drawing upon various projections of future technology as well:

“[T]echnosignature studies begin with what exists on Earth, what could exist on Earth in the near-term, or what could theoretically be possible given known understanding of physics as places for extrapolations into the future. This approach does not assume that such projections are inevitable or even probable, but it at least provides a way to think about the astronomical tools that would be needed to remotely detect an extraterrestrial civilization with even greater technological capabilities than on Earth today.”

Radio telescopes monitor the sky at the Allen Telescope Array in California. Finding a signal from a distant civilization is one way we could experience first contact with ET. Credit: SETI Institute A New Approach

When it comes to predicting humanity’s future (and, by extension, advanced technosignatures), prior studies tend to have suffered from an inherent bias. In many cases, there is the assumption that a technological civilization will continue to grow exponentially. A perfect example is the Kardashev Scale, which predicts how advanced civilizations will invariably grow to occupy more space and harness more energy. This is an understandable assumption given human history and the exponential increase in the global population – from 1 billion in 1800 to 8.1 billion in 2024 (an increase of over 800%)

Similarly, global energy use also grew exponentially during this same period – from 5,653 terawatt-hours (TWh) in 1800 to 182,230 TWh in 2023 (an increase of more than 3200%). This model of continuous growth well into the future has motivated many observational and theoretical approaches for finding technosignatures. Among them is the search for possible megastructures around stars that experience periodic drops in brightness (like Boyajan’s Star) and “disappearing stars.” But as Haqq-Misra explained, this is merely one possibility for an advanced civilization.

Instead of predicting a single evolutionary pathway, Haqq-Misra and his colleagues adopted the “futures studies” approach. This interdisciplinary field relies on various systematic methodological approaches for predicting self-consistent future trajectories. Said Haqq-Misra:

“The plural “futures” is used to indicate that the actual future is unknown and cannot be predicted; instead, futures studies develops systematic projections of multiple contrasting futures that can provide insight into the range and diversity of possible outcomes. Most attempts at making informal projections in technosignature science inevitably succumb to biases based on internal assumptions or prevailing cultural narratives, which can limit the possibility space of imagined futures. The methodological approaches developed by practitioners of futures studies are designed to minimize such biases and enable much more robust exploration of possibilities for the future —in our case, the future of civilization.”

Our Possible Futures

Their approach involved a method known as a “general morphological analysis,” a means of exploring possible solutions to multi-dimensional, non-quantified problems. This method is intended to minimize the bias in underlying assumptions and encompass a wide range of possibilities. From this, the first step for Haqq-Misra and his colleagues was to ask the question:

“What are the technological phenomena of the future anthroposphere,
and how can they be described?”

They then defined a large set of scenarios based on different political, economic, societal, and technological factors, each with different values corresponding to different possible futures. This yielded almost 5,800 scenarios, but the team eliminated many based on logical inconsistencies while clustering others based on similarities. The team also used the Claude large language model (LLM) to assist with analyzing, comparing, and clustering. This allowed them to work their way down to ten future scenarios.

The Arecibo Radio Telescope. Though it’s decommissioned now, Arecibo Data may explain 1977’s mysterious Wow! Signal. Credit: UCF

The next step was to develop a novel worldbuilding “pipeline” based on an assessment of human needs in all ten scenarios. This allowed them to incorporate details for each scenario that would define observable properties for the corresponding technosphere. As Haqq-Misra explained:

“The underlying assumption in our worldbuilding process is that technology is intended to fulfill basic human needs. This means that any future technosphere must be reflective in some way of the needs of humans in a given future scenario. We do not assume that any given technosignature will exist for an arbitrary reason, but any feature of the physical technosphere in our scenarios is the outcome of political, social, or economic factors that drive human needs. We likewise expect that any technosignatures we find in extraterrestrial settings will exist because they are indicative of or derivative from processes that relate to extraterrestrial needs.”

One interesting finding was that only one of the ten scenarios involved the kind of rapid growth predicted by the Kardeshev Scale, Haqq-Misra added. Others showed slower growth, no growth at all, while another oscillated between growth and collapse. “This suggests that focusing the search for technosignatures on the idea of advanced, energy-intensive, and expansive extraterrestrial civilizations may be too limiting,” he said. “Numerous possibilities exist from our modeling alone that show alternative possibilities for long-term futures, and such civilizations could even be more likely or more numerous than longer-lived or galactic-spanning civilizations.”

Among the potential technosignatures these scenarios predicted, nitrogen dioxide emerges as a possible means of distinguishing between modern-day Earth, Earth before the introduction of agriculture, and a more industrial Earth in the future. They also found that the atmospheric spectra produced in three scenarios were “indistinguishable from nature,” meaning there was no discernible distance between a pre-agriculture and a more technologically advanced Earth.

“These three scenarios still include expansive technosphere, but much of the detectable technology is on Mars and other parts of the outer solar system,” said Haqq-Misra. “This raises an important possibility for false negatives in the search for technosignatures: a planet with no obvious technosignatures may not necessarily be devoid of technology, and the best places to look may even be elsewhere in the system.”

As always, the field of SETI and technosignature searches are constrained by the limits of our knowledge, where scientists must speculate about what we don’t know based on what we do. However, the process is becoming increasingly sophisticated thanks to advanced modeling and simulations that can account for various possibilities. In addition, scientists are questioning underlying assumptions regarding advanced civilizations and their motivations. The work of Haqq-Misra and his colleagues represents a first in a key way.

As he explained, futures studies methods tend to be applied to short-term projections of a few years or decades, while some climate science studies have looked ahead a few centuries:

“Our study is the first to use futures studies methods to develop projections across a 1000-year timescale, which requires us to focus on the longer-term trends that could shape different outcomes for civilization on Earth. This provides a solid theoretical basis for thinking about the range of technosignatures in planetary systems, and how to search for them, and much more work can be done from these scenarios alone to develop new search strategies. These scenarios also help us to imagine a broader range of possibilities for Earth’s future, which include numerous optimistic outcomes that avoid collapse or extinction. Our civilization may face numerous challenges, but studies like ours are important to remind us that the future remains open.”

Further Reading: arXiv

The post Projecting what Earth will Look Like 1000 years from now Could Assist in the Search for Advanced Civilizations appeared first on Universe Today.

Categories: Astronomy

The mathematics behind pouring a glass of wine

New Scientist Space - Cosmology - Wed, 09/11/2024 - 2:00pm
Katie Steckles enlists the help of fluid dynamics researcher Kat Phillips to explain the versatile piece of maths behind dispensing wine from a box
Categories: Astronomy

The mathematics behind pouring a glass of wine

New Scientist Space - Space Headlines - Wed, 09/11/2024 - 2:00pm
Katie Steckles enlists the help of fluid dynamics researcher Kat Phillips to explain the versatile piece of maths behind dispensing wine from a box
Categories: Astronomy

Documentary tells the fascinating story of a man wired to hear colour

New Scientist Space - Cosmology - Wed, 09/11/2024 - 2:00pm
Cyborg: A documentary tells the intriguing story of Neil Harbisson, who wears an antenna to “hear” colour, but it is lacking in depth and should have probed its subject more, says Simon Ings
Categories: Astronomy

Documentary tells the fascinating story of a man wired to hear colour

New Scientist Space - Space Headlines - Wed, 09/11/2024 - 2:00pm
Cyborg: A documentary tells the intriguing story of Neil Harbisson, who wears an antenna to “hear” colour, but it is lacking in depth and should have probed its subject more, says Simon Ings
Categories: Astronomy

New Scientist recommends new superhero drama Supacell

New Scientist Space - Cosmology - Wed, 09/11/2024 - 2:00pm
The books, TV, games and more that New Scientist staff have enjoyed this week
Categories: Astronomy

Cave diver explores a Mexican sinkhole in atmospheric photograph

New Scientist Space - Cosmology - Wed, 09/11/2024 - 2:00pm
This claustrophobia-inducing image is taken from photographer Martin Broen's new book Light in the Underworld, a collection of shots from the Yucatán’s cenotes, or sinkholes
Categories: Astronomy

Is life better as a dog? A philosopher investigates

New Scientist Space - Cosmology - Wed, 09/11/2024 - 2:00pm
What is it like to be a dog? And what can we learn from them? Mark Rowlands's take, in his book The Happiness of Dogs, is full of insights, finds Abigail Beall
Categories: Astronomy

How Star Trek-style replicators could lead to a food revolution

New Scientist Space - Cosmology - Wed, 09/11/2024 - 2:00pm
Our Future Chronicles column explores an imagined history of inventions and developments yet to come. This time, Rowan Hooper takes us to the early 2030s, when a technological step change enabled us to produce all the food we needed without the use of animals
Categories: Astronomy