The space of night is infinite,
The blackness and emptiness
Crossed only by thin bright fences
Of logic

— Kenneth Rexroth
"Theory of Numbers"

Feed aggregator

Coordinating an Airborne Lab Across the Globe with NASA’s Earth Science Project Office

NASA - Breaking News - Fri, 06/21/2024 - 11:25am
ASIA-AQ DC-8 aircraft flies over Bangkok, Thailand to monitor seasonal haze from fire smoke and urban pollution. Photo credit: Rafael Luis Méndez Peña.

Tracking the spread of harmful air pollutants across large regions requires aircraft, satellites, and diverse team of scientists. NASA’s global interest in the threat of air pollution extends into Asia, where it works with partners on the Airborne and Satellite Investigation of Asian Air Quality (ASIA-AQ).  This international mission integrates satellite data and aircraft measurements with local air quality ground monitoring and modeling efforts across Asia.

Orchestrating a mission of this scale requires complicated agreements between countries, the coordination of aircraft and scientific instrumentation, and the mobilization of scientists from across the globe. To make this possible, ARC’s Earth Science Project Office (ESPO) facilitated each phase of the campaign, from site preparation and aircraft deployment to sensitive data management and public outreach.

“Successfully meeting the ASIA-AQ mission logistics requirements was an incredible effort in an uncertainty-filled environment and a very constrained schedule to execute and meet those requirements,” explains ASIA-AQ Project Manager Jhony Zavaleta. “Such effort drew on the years long experience on international shipping expertise, heavy equipment operations, networking and close coordination with international service providers and all of the U.S. embassies at each of our basing locations.”

Map of planned ASIA-AQ operational regions. Yellow circles indicate the original areas of interest for flight sampling. The overlaid colormap shows annual average nitrogen dioxide (NO2) concentrations observed by the TROPOMI satellite with red colors indicating the most polluted locations.

Understanding Air Quality Globally

ASIA-AQ benefits our understanding of air quality and the factors controlling its daily variability by investigating the ways that air quality can be observed and quantified. The airborne measurements collected during the campaign are directly integrated with existing satellite observations of air quality, local air quality monitoring networks, other available ground assets, and models to provide a level of detail otherwise unavailable to advance understanding of regional air quality and improve future integration of satellite and ground monitoring information.

ESPO’s Mission-Critical Contributions

  • Facilitating collaboration between governmental agencies and the academic community by executing project plans, navigating bureaucratic hurdles, and consensus building.
  • Mission planning for two NASA aircraft. AFRC DC-8 completed 16 science flights, totaling 125 flight hours. The LaRC GIII completed 35 science flights, totaling 157.7 flight hours.
  • Enabling international fieldwork and workforce mobilization by coordinating travel, securing authorizations and documentation, and maintaining relationships with local research partners.
  • Managing outreach to local governments and schools. ASIA-AQ team members showcased tools used for air quality science to elementary/middle/high school students. Recent news feature here.
View of ASIA-AQ aircraft in Bangkok, Thailand. ESPO staff from left to right: Dan Chirica, Marilyn Vasques, Sam Kim, Jhony Zavaleta, and Andrian Liem. Aircraft from left to right: Korean Meteorological Agency/National Institute of Meteorological Sciences, NASA LaRC GIII, NSASA DC-8, (2) Hanseo University, Sunny Air (private aircraft contracted by Korean Meteorological Agency). Photo: Rafael Mendez Peña.

The flying laboratory of NASA’s DC-8

NASA flew its DC-8 aircraft, picture above, equipped with instrumentation to monitor the quality, source, and movement of harmful air pollutants. Scientists onboard used the space as a laboratory to analyze data in real-time and share it with a network of researchers who aim to tackle this global issue.

“Bringing the DC-8 flying laboratory and US researchers to Asian countries not only advances atmospheric research but also fosters international scientific collaboration and education,” said ESPO Project Specialist Vidal Salazar. “Running a campaign like ASIA AQ also opens doors for shared knowledge and exposes local communities to cutting-edge research.”

Fostering Partnerships Through Expertise and Goodwill

International collaboration fostered through this campaign contributes to an ongoing dialogue about air pollution between Asian countries.

“NASA’s continued scientific and educational activities around the world are fundamental to building relationships with partnering countries,” said ESPO Director Marilyn Vasques. “NASA’s willingness to share data and provide educational opportunities to locals creates goodwill worldwide.”

The role of ESPO in identifying, strategizing, and executing on project plans across the globe created a path for multi-sectoral community engagement on air quality. These global efforts to improve air quality science directly inform efforts to save lives from this hazard that affects all.

Categories: NASA

Why smaller planets are better at building large moons

Space.com - Fri, 06/21/2024 - 11:00am
The energy of moon-forming can have a big say in whether large or doomed smaller moons are built.
Categories: Astronomy

Heat Dome Causes Surge in Emergency Room Visits

Scientific American.com - Fri, 06/21/2024 - 11:00am

With a heat dome baking the eastern U.S., emergency departments in New England and the Midwest have seen a spike in heat-related cases

Categories: Astronomy

How to Stay Safe Outdoors in Extreme Heat

Scientific American.com - Fri, 06/21/2024 - 10:30am

Sizzling summer days can be a dangerous time to be outside. Here’s what to think about before heading into the heat and how to stay safe

Categories: Astronomy

HuskyWorks During Rover Testing

NASA Image of the Day - Fri, 06/21/2024 - 10:12am
“HuskyWorks,” a team from Michigan Technological University’s Planetary Surface Technology Development Lab, tests the excavation tools of a robot on a concrete slab, held by a gravity-offloading crane on June 12 at NASA’s Break the Ice Lunar Challenge at Alabama A&M’s Agribition Center in Huntsville, Alabama. Led by Professor Paul van Susante, the team aimed to mimic the conditions of the lunar South Pole, winning an invitation to use the thermal vacuum chambers at NASA’s Marshall Space Flight Center to continue robotic testing.
Categories: Astronomy, NASA

Einstein’s Time Dilation Calculated More Precisely Than Ever with Exploding Stars

Scientific American.com - Fri, 06/21/2024 - 10:00am

Analyzing 1,504 supernovae into the distant universe, astronomers have shown the clearest evidence yet for cosmological time dilation as predicted by Einstein

Categories: Astronomy

Ariane 6 pre-show: wet dress rehearsal complete

ESO Top News - Fri, 06/21/2024 - 10:00am

Yesterday, the first Ariane 6 rocket to launch into space went through its last full ‘wet dress rehearsal’ at Europe’s Spaceport in French Guiana – it provided an exciting sneak peek of what’s to come, stopping just a few seconds before engine ignition and of course, lift-off.

Categories: Astronomy

Space photo of the week: 'Earthrise,' the Christmas Eve image that changed the world

Space.com - Fri, 06/21/2024 - 9:59am
Snapped from lunar orbit in 1968 by NASA astronaut Bill Anders, who died this week at age 90, 'Earthrise' is perhaps the most iconic image of our planet ever taken.
Categories: Astronomy

The JWST Peers into the Heart of Star Formation

Universe Today - Fri, 06/21/2024 - 9:51am

The James Webb Space Telescope has unlocked another achievement. This time, the dynamic telescope has peered into the heart of a nearby star-forming region and imaged something astronomers have longed to see: aligned bipolar jets.

JWST observing time is in high demand, and when one group of researchers got their turn, they pointed the infrared telescope at the Serpens Nebula. It’s a young, nearby star-forming region known for being the home of the famous Pillars of Creation. (The Hubble Space Telescope made the pillars famous, and the JWST followed that up with its own stunning image.)

But these researchers weren’t focusing on the Pillars. As a nearby star-forming region, Serpens Nebula is a natural laboratory to study how stars form and to try to answer some outstanding questions about the process. The JWST delivered.

A team of astronomers from the USA, India, and Taiwan examined the region and published their results in a paper titled “Why are (almost) all the protostellar outflows aligned in Serpens Main?” The lead author is Joel Green from the Space Science Telescope Institute.

Stars form when Giant Molecular Clouds of hydrogen collapse. They start out as protostars, objects that haven’t begun fusion yet and are still acquiring mass. As they grow, gas from the cloud gathers in a swirling accretion ring around the star. As it moves, the gas heats up and emits light.

As the cloud collapses into a protostar, some of the energy is converted into angular momentum and the young star spins. For the young star to keep acquiring mass, some of the spin needs to be removed. That happens as the swirling accretion disk emits some of the gas from bipolar jets, also called protostellar outflows. They’re part of how stars regulate themselves as they grow, and they come from the young star’s poles, perpendicular to the spin. The magnetic fields around the star drive the jets out of the poles.

This artist’s illustration shows a young protostar and its protostellar jets. Image Credit: NASA/JPL-Caltech/R. Hurt (SSC)

But there’s a lot more detail in the process and some outstanding questions. Stars don’t form in isolation; they usually form in clusters or groups, and there are intermingling magnetic fields at work. At only 1300 light-years away, Serpens Nebula is a good place to try to spy some of this detail. Until the JWST came along, the detail was hidden from even our most powerful telescopes, and astrophysicists were left to theorize with what they could observe.

“Star formation is thought to be partly regulated by magnetic fields with coherence scales of a few parsecs – smaller than Giant Molecular Clouds, but larger than individual protostars,” the authors write in their paper. “Magnetic fields likely play a key role in the collapse of cloud cores distributed in elongated structures called filaments.”

Cloud cores are the precursors to star clusters, and the filaments are filaments of gas inside giant molecular clouds. Cloud cores cluster along these filaments where the gas density is higher. Much of what goes inside these environments is shrouded by gas and dust, so theories were based on what astronomers were able to observe prior to the JWST.

“While theory often assumes idealized alignment of protostellar disks, cores, and associated magnetic fields, feedback may lead to misalignment on the smallest scales (1000 au) as the protostar evolves,” the authors write. To understand what happens when protostars form in these environments, astrophysicists wanted to know if the angular momentum in a group of stars that form together correlates with each other and with the magnetic field of the filament they form in.

The key to understanding this is the protostellar jets that come from young protostars since their direction is governed by magnetic fields. Protostellar outflows are a signature of young, still-forming stars, and when these outflows collide with the surrounding gas, they create “striking structures of shocked ionized, atomic, and molecular gas,” the authors write.

“Since the jets are likely accelerated and collimated by a rapidly rotating poloidal magnetic field in the inner star-disk system, they emerge along the stellar rotation axis and thus trace the angular momentum vector of the star itself,” the authors explain.

That leads us to the significance of the new JWST image of Serpens Nebula. The researchers found a group of young protostars in the Serpens Nebula with aligned jets. These stars are only about 100,000 years old, making them desirable observational targets in the effort to understand star formation.

This image from the NASA/ESA/CSA James Webb Space Telescope shows a portion of the Serpens Nebula, where astronomers have discovered a grouping of aligned protostellar outflows. These jets are signified by bright, clumpy streaks that appear red, which are shock waves from the jet hitting surrounding gas and dust. Here, the red colour represents the presence of molecular hydrogen and carbon monoxide. Image Credit: NASA, ESA, CSA, STScI, K. Pontoppidan (NASA’s Jet Propulsion Laboratory), J. Green (Space Telescope Science Institute)

The jets in a group of young protostars are usually misaligned. Previous research, including research based on JWST images, found only misaligned jets among groups of stars in the same clusters and clouds. Many things can misalign the jets in associated stars, but the outstanding question is if stars that form together start out with the same magnetic field alignment.

Webb found something different in the Serpens Nebula. The telescope found a group of 12 protostars whose jets are lined up with the magnetic field of the filament they formed in.

“The axes of the 12 outflows in the NW region are inconsistent with random orientations and align with the filament direction from NW to SE,” the researchers write in their paper. They say the probability of this happening randomly is extremely low. “We estimate <0.005% probability of the observed alignments if sampled from a uniform distribution in position angle,” they write.

The stars along the filament in the northwest region are aligned, but stars along other filaments in other regions of Serpens are not aligned.

“It appears that star formation proceeded along a magnetically confined filament that set the initial spin for most of the protostars,” the authors write in their conclusion. “We hypothesize that in the NW region, which may be younger, the alignment is preserved, whereas the spin axes have had time to precess or dissociate through dynamic interactions in the SE region.”

The JWST needed only two NIRCam images of the Serpens Nebula to answer a question that’s foundational to star formation. Its work won’t end here.

“We anticipate more detailed studies of star-forming filaments with JWST in the future,” the authors conclude.

The post The JWST Peers into the Heart of Star Formation appeared first on Universe Today.

Categories: Astronomy

Strawberry Solstice Moon of June 2024 shines tonight for summer stargazers (video)

Space.com - Fri, 06/21/2024 - 9:00am
This month, let's turn our attention to two celestial objects that can readily be seen even from bright cities. One is our nearest neighbor in space, while the other is a familiar pattern of stars.
Categories: Astronomy

Cheaper Versions of Popular New Weight-Loss Drugs Are Being Developed

Scientific American.com - Fri, 06/21/2024 - 8:30am

As the patents on various weight-loss drugs near expiration, companies in India and China are vying to make lower-cost versions that will widen access to such treatments

Categories: Astronomy

Saharan dust over the Strait of Messina

ESO Top News - Fri, 06/21/2024 - 8:18am
Image: Saharan dust over the Strait of Messina
Categories: Astronomy

Pentagon picks SpaceX, Blue Origin and ULA for $5.6 billion launch deal

Space.com - Fri, 06/21/2024 - 8:00am
SpaceX, Blue Origin and United Launch Alliance will compete for National Security Space Launch contracts worth up to $5.6 billion across fiscal years 2025 through 2029.
Categories: Astronomy

Electricity prices in Europe are going negative - and that's bad

New Scientist Space - Cosmology - Fri, 06/21/2024 - 8:00am
Periods of excess electricity production are on the rise thanks to the growth of renewable energy, forcing commercial power generators to sell for negative prices. Unfortunately, this doesn't mean lower household bills
Categories: Astronomy

Electricity prices in Europe are going negative - and that's bad

New Scientist Space - Space Headlines - Fri, 06/21/2024 - 8:00am
Periods of excess electricity production are on the rise thanks to the growth of renewable energy, forcing commercial power generators to sell for negative prices. Unfortunately, this doesn't mean lower household bills
Categories: Astronomy

Remote Island of Great Nicobar Threatened by Container Terminal

Scientific American.com - Fri, 06/21/2024 - 8:00am

A container port the Indian government plans for this remote island threatens unique Indigenous cultures and biodiversity

Categories: Astronomy

Mysterious ‘Dark Fungi’ Are Lurking Everywhere

Scientific American.com - Fri, 06/21/2024 - 7:30am

The land, water and air around us are chock-full of DNA from fungi that scientists can’t identify

Categories: Astronomy

The Best Strategy for Learning May Depend on What You’re Trying to Remember

Scientific American.com - Fri, 06/21/2024 - 7:00am

Different approaches can support varied forms of memory

Categories: Astronomy

What Are Constellations, and Where Do They Come From?

Scientific American.com - Fri, 06/21/2024 - 6:45am

Cosmic happenstance and biological evolution come together to create a road map to the stars

Categories: Astronomy

Cloud geoengineering could push heatwaves from US to Europe

New Scientist Space - Cosmology - Fri, 06/21/2024 - 6:00am
Climate models suggest that a possible scheme to cool the western US by making clouds brighter could work under current conditions, but may have severe unintended consequences in a future scenario
Categories: Astronomy