Feed aggregator
New Sungrazer Comet A1 MAPS Could Be Bright in Early April If It Survives Perihelion
In a clockwork predictable Universe, comets and how they will ultimately perform is always a big wild card. A new sungrazer comet discovered at the start of this year has given astronomers pause. C/2026 A1 MAPS could put on a memorable if brief show in early April, if it doesn’t join the long list of comets that failed to live up to expectations.
I Am Artemis: Jesse Berdis
Listen to this audio excerpt from Jesse Berdis, Artemis II mobile launcher 1 deputy project manager:
0:00 / 0:00
Your browser does not support the audio element.Jesse Berdis’s dream of becoming a structural engineer began with visions of skyscrapers rising above the Dallas and Oklahoma skyline. Today, that dream has soared beyond city limits, reaching towering heights at the agency’s Kennedy Space Center in Florida.
Berdis, the deputy project manager for mobile launcher 1 for the agency’s Artemis II mission, had a path to NASA which was anything but planned. While attending an engineering leadership conference in Orlando, he left a copy of his resume with NASA recruiters. Four weeks later, that simple gesture turned into a life-changing opportunity: a role at Kennedy as a launch infrastructure engineer with the Exploration Ground Systems Program, working on Artemis I, the uncrewed test flight of SLS and Orion.
Anyone I talk to, that’s what’s on my mind, getting ready for the Artemis campaign. It can go from technical issues we’re solving to the passion we have for launching the crew and taking the next step in humanity of going back to the Moon.Jesse Berdis
Artemis II mobile launcher 1 deputy project manager
The mobile launcher serves as a backbone to the SLS (Space Launch System) rocket and Orion spacecraft for the Artemis missions before and during launch. It is designed to support the integration, testing, and checkouts of the rocket and spacecraft, in addition to serving as the structural platform, or as Berdis calls it, “the shoulders, at liftoff.” Standing more than 400 feet tall, the mobile launcher houses the umbilicals that provide power, communications, coolant, fuel, and stabilization prior to launch, as well as access for the Artemis II crew to safely board Orion.
When Berdis first arrived on center, the sight of massive ground systems left an unforgettable impression. To him, these weren’t just structures, they were skyscrapers for space exploration.
Jesse Berdis, Artemis II mobile launcher 1 deputy project manager, poses for a photo near the emergency egress system at Launch Complex 39B at NASA’s Kennedy Space Center in Florida on Friday, Feb. 6, 2026. The emergency egress system is an abort system for personnel to climb into four baskets of the mobile launcher to the base of the pad in the unlikely event of an emergency at the launch pad. Mobile launcher 1 supports the integration, testing, and checkouts of the SLS (Space Launch System) rocket and Orion spacecraft for the Artemis II mission.Photo credit: NASA/Kim ShiflettNASA/Kim Shiflett
After the historic launch of Artemis I, Berdis and his team turned their focus to an even greater challenge: preparing for Artemis II, NASA’s first crewed Moon mission in more than 50 years.
One of the most critical upgrades for Artemis II is the emergency egress system, an abort system for personnel to use in the unlikely event of an emergency at the launch pad. Located on the 274-foot level of the mobile launcher, four baskets will provide a rapid escape route from the mobile launcher to the base of the pad in case of emergency, using electromagnetic braking technology.
“That is a true feat of humanity: someone putting all of their passion into these systems to make it all come together at T-0.Jesse Berdis
Artemis II mobile launcher 1 deputy project manager
Berdis recently set his sights on the Artemis human landing system lander ground operations, to develop and maintain an integrated schedule. Under his leadership, the team ensures accuracy of combined schedules, risks, and insights, ensuring the ground operations and human lander development remain in sync.
About the AuthorLaura SasaninejadStrategic Communications Specialist Share Details Last Updated Feb 11, 2026 Related Terms Explore More 4 min read Reaching Top Speed in the DolomitesCortina d’Ampezzo, flanked by steep-sided mountain peaks, is the site of several skiing and sliding…
Article 8 hours ago 4 min read NASA’s Hubble Captures Light Show Around Rapidly Dying StarThis stunning image from NASA’s Hubble Space Telescope reveals a dramatic interplay of light and…
Article 2 days ago 7 min read Core Survey by NASA’s Roman Mission Will Unveil Universe’s Dark Side Article 2 days ago Keep Exploring Discover More Topics From NASAMissions
Humans in Space
Climate Change
Solar System
I Am Artemis: Jesse Berdis
Listen to this audio excerpt from Jesse Berdis, Artemis II mobile launcher 1 deputy project manager:
0:00 / 0:00
Your browser does not support the audio element.Jesse Berdis’s dream of becoming a structural engineer began with visions of skyscrapers rising above the Dallas and Oklahoma skyline. Today, that dream has soared beyond city limits, reaching towering heights at the agency’s Kennedy Space Center in Florida.
Berdis, the deputy project manager for mobile launcher 1 for the agency’s Artemis II mission, had a path to NASA which was anything but planned. While attending an engineering leadership conference in Orlando, he left a copy of his resume with NASA recruiters. Four weeks later, that simple gesture turned into a life-changing opportunity: a role at Kennedy as a launch infrastructure engineer with the Exploration Ground Systems Program, working on Artemis I, the uncrewed test flight of SLS and Orion.
Anyone I talk to, that’s what’s on my mind, getting ready for the Artemis campaign. It can go from technical issues we’re solving to the passion we have for launching the crew and taking the next step in humanity of going back to the Moon.Jesse Berdis
Artemis II mobile launcher 1 deputy project manager
The mobile launcher serves as a backbone to the SLS (Space Launch System) rocket and Orion spacecraft for the Artemis missions before and during launch. It is designed to support the integration, testing, and checkouts of the rocket and spacecraft, in addition to serving as the structural platform, or as Berdis calls it, “the shoulders, at liftoff.” Standing more than 400 feet tall, the mobile launcher houses the umbilicals that provide power, communications, coolant, fuel, and stabilization prior to launch, as well as access for the Artemis II crew to safely board Orion.
When Berdis first arrived on center, the sight of massive ground systems left an unforgettable impression. To him, these weren’t just structures, they were skyscrapers for space exploration.
Jesse Berdis, Artemis II mobile launcher 1 deputy project manager, poses for a photo near the emergency egress system at Launch Complex 39B at NASA’s Kennedy Space Center in Florida on Friday, Feb. 6, 2026. The emergency egress system is an abort system for personnel to climb into four baskets of the mobile launcher to the base of the pad in the unlikely event of an emergency at the launch pad. Mobile launcher 1 supports the integration, testing, and checkouts of the SLS (Space Launch System) rocket and Orion spacecraft for the Artemis II mission.Photo credit: NASA/Kim ShiflettNASA/Kim Shiflett
After the historic launch of Artemis I, Berdis and his team turned their focus to an even greater challenge: preparing for Artemis II, NASA’s first crewed Moon mission in more than 50 years.
One of the most critical upgrades for Artemis II is the emergency egress system, an abort system for personnel to use in the unlikely event of an emergency at the launch pad. Located on the 274-foot level of the mobile launcher, four baskets will provide a rapid escape route from the mobile launcher to the base of the pad in case of emergency, using electromagnetic braking technology.
“That is a true feat of humanity: someone putting all of their passion into these systems to make it all come together at T-0.Jesse Berdis
Artemis II mobile launcher 1 deputy project manager
Berdis recently set his sights on the Artemis human landing system lander ground operations, to develop and maintain an integrated schedule. Under his leadership, the team ensures accuracy of combined schedules, risks, and insights, ensuring the ground operations and human lander development remain in sync.
About the AuthorLaura SasaninejadStrategic Communications Specialist Share Details Last Updated Feb 11, 2026 Related Terms Explore More 4 min read Reaching Top Speed in the DolomitesCortina d’Ampezzo, flanked by steep-sided mountain peaks, is the site of several skiing and sliding…
Article 2 hours ago 4 min read NASA’s Hubble Captures Light Show Around Rapidly Dying StarThis stunning image from NASA’s Hubble Space Telescope reveals a dramatic interplay of light and…
Article 2 days ago 7 min read Core Survey by NASA’s Roman Mission Will Unveil Universe’s Dark Side Article 2 days ago Keep Exploring Discover More Topics From NASAMissions
Humans in Space
Climate Change
Solar System
Putting a price tag on nature failed. Can radical tactics save it?
Putting a price tag on nature failed. Can radical tactics save it?
The surprising origins of Britain's Bronze Age immigrants revealed
The surprising origins of Britain's Bronze Age immigrants revealed
Crew-12 Members and Insignia
Crew-12 Members and Insignia
From left, Roscosmos cosmonaut Andrey Fedyaev, NASA astronauts Jack Hathaway and Jessica Meir, and ESA (European Space Agency) astronaut Sophie Adenot pose next to their mission insignia inside the Astronaut Crew Quarters in the Neil A. Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida on Monday, Feb. 9, 2026. NASA’s SpaceX Crew-12 crew members will launch aboard a SpaceX Dragon spacecraft and Falcon 9 to the International Space Station no earlier than 5:15 a.m. EST on Friday, Feb. 13, from Cape Canaveral Space Force Station’s Space Launch Complex 40.
During their eight-month mission, Crew-12 will conduct a variety of science experiments to advance research and technology for future Moon and Mars missions and benefit humanity back on Earth. This research includes studies of pneumonia-causing bacteria to improve treatments, on-demand intravenous fluid generation for future space missions, automated plant health monitoring, investigations of plant and nitrogen-fixing microbe interactions to enhance food production in space, and research on how physical characteristics may affect blood flow during spaceflight.
Image credit: NASA/Kim Shiflett
Crew-12 Members and Insignia
From left, Roscosmos cosmonaut Andrey Fedyaev, NASA astronauts Jack Hathaway and Jessica Meir, and ESA (European Space Agency) astronaut Sophie Adenot pose next to their mission insignia inside the Astronaut Crew Quarters in the Neil A. Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida on Monday, Feb. 9, 2026. NASA’s SpaceX Crew-12 crew members will launch aboard a SpaceX Dragon spacecraft and Falcon 9 to the International Space Station no earlier than 5:15 a.m. EST on Friday, Feb. 13, from Cape Canaveral Space Force Station’s Space Launch Complex 40.
During their eight-month mission, Crew-12 will conduct a variety of science experiments to advance research and technology for future Moon and Mars missions and benefit humanity back on Earth. This research includes studies of pneumonia-causing bacteria to improve treatments, on-demand intravenous fluid generation for future space missions, automated plant health monitoring, investigations of plant and nitrogen-fixing microbe interactions to enhance food production in space, and research on how physical characteristics may affect blood flow during spaceflight.
Image credit: NASA/Kim Shiflett
FDA won’t consider a new mRNA vaccine for flu, despite the technology’s life-saving promise
America’s drug safety agency declined to review a next-gen flu vaccine that uses the same tech as the coronavirus shots
NASA Marks Milestone in Preparation for Artemis IV Testing
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA Stennis teams complete a water system activation milestone on Jan. 30 at the Thad Cochran Test Stand (B-2). The milestone tested new cooling systems added to the stand for the future Green Run test series of NASA’s exploration upper stage that is expected to fly on the Artemis IV mission.NASA/Danny NowlinWater flowing out. Data flowing in.
A water system activation at the Thad Cochran Test Stand (B-2) on Jan. 30 at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, helped capture critical data to support testing a new SLS (Space Launch System) stage expected to fly on the Artemis IV mission.
The activation milestone tested new cooling systems that were added for the future Green Run test series of NASA’s exploration upper stage (EUS). The more powerful upper stage is a four-engine liquid hydrogen/liquid oxygen in-space stage for the evolved Block 1B version of SLS.
NASA Stennis teams complete a water system activation milestone on Jan. 30 at the Thad Cochran Test Stand (B-2). The milestone tested new cooling systems added to the stand for the future Green Run test series of NASA’s exploration upper stage that is expected to fly on the Artemis IV mission.NASA/Danny Nowlin NASA Stennis teams complete a water system activation milestone on Jan. 30 at the Thad Cochran Test Stand (B-2). The milestone tested new cooling systems added to the stand for the future Green Run test series of NASA’s exploration upper stage that is expected to fly on the Artemis IV mission.NASA/Danny Nowlin NASA Stennis teams complete a water system activation milestone on Jan. 30 at the Thad Cochran Test Stand (B-2). The milestone tested new cooling systems added to the stand for the future Green Run test series of NASA’s exploration upper stage that is expected to fly on the Artemis IV mission.NASA/Danny NowlinFor Green Run, teams at NASA Stennis will activate and test all systems to ensure the stage is ready to fly. It will culminate with a hot fire of the stage’s four RL10 engines, just as during an actual mission.
As part of the test stand modification, crews have added water-cooled diffusers to act as a heat shield to manage the super-hot exhaust from all four RL10 engines; water-cooled fairings to direct engine exhaust to align with the diffuser walls; and a purge ring that supplies cooling water and gaseous nitrogen to protect a flexible seal that allows the engines to move, or gimbal, during testing.
These three systems all were integrated by the NASA Stennis team with the existing flame deflector and acoustic suppression equipment used during previous core stage testing for NASA’s SLS rocket ahead of the successful Artemis I launch.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
NASA/StennisThe exercise also pushed the high pressure industrial water system to maximum capacity. While a typical RS-25 engine test at NASA Stennis runs a subset of the 10 diesel pumps and one electric pump, testing the exploration upper stage will require all eleven pumps running simultaneously.
The 14-million gallons of water used during the exercise on Jan. 30 was recycled throughout the test complex. A 66-million-gallon reservoir feeds water to the test stand through an underground 96-inch diameter pipe, with water distributed to various cooling components. The water ultimately flows into the flame deflector, then through a concrete flume to the stand’s catch pond. When the catch pond fills up, the excess water drains back to the canal through a drainage ditch, ready to be recycled for future use.
“We will use the data gathered to set the final timing of when valves are cycled, determine our redline pressures, and select the operating pressure,” said Nick Nugent, NASA Stennis project engineer. “This exercise also put the water system under a full load prior to the final stress test. It is always good to give the system a good shake down run prior.”
NASA Stennis teams complete a water system activation milestone on Jan. 30 at the Thad Cochran Test Stand (B-2). The milestone tested new cooling systems added to the stand for the future Green Run test series of NASA’s exploration upper stage that is expected to fly on the Artemis IV mission.NASA/Danny NowlinThe exploration upper stage is being built by Boeing at NASA’s Michoud Assembly Facility in New Orleans. The four RL10 engines for the upper stage are manufactured by L3Harris Technologies. Before it all arrives at NASA Stennis, crews will perform a final 24-hour check, or stress test, across all test complex facilities to demonstrate readiness for the test series.
Explore More 5 min read A Look Back at NASA Stennis in 2025 Article 2 months ago 2 min read NASA Makes Webby 30s List of Most Iconic, Influential on Internet Article 5 months ago 5 min read Crossroads to the Future – NASA Stennis Grows into a Model Federal City Article 5 months agoNASA Marks Milestone in Preparation for Artemis IV Testing
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA Stennis teams complete a water system activation milestone on Jan. 30 at the Thad Cochran Test Stand (B-2). The milestone tested new cooling systems added to the stand for the future Green Run test series of NASA’s exploration upper stage that is expected to fly on the Artemis IV mission.NASA/Danny NowlinWater flowing out. Data flowing in.
A water system activation at the Thad Cochran Test Stand (B-2) on Jan. 30 at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, helped capture critical data to support testing a new SLS (Space Launch System) stage expected to fly on the Artemis IV mission.
The activation milestone tested new cooling systems that were added for the future Green Run test series of NASA’s exploration upper stage (EUS). The more powerful upper stage is a four-engine liquid hydrogen/liquid oxygen in-space stage for the evolved Block 1B version of SLS.
NASA Stennis teams complete a water system activation milestone on Jan. 30 at the Thad Cochran Test Stand (B-2). The milestone tested new cooling systems added to the stand for the future Green Run test series of NASA’s exploration upper stage that is expected to fly on the Artemis IV mission.NASA/Danny Nowlin NASA Stennis teams complete a water system activation milestone on Jan. 30 at the Thad Cochran Test Stand (B-2). The milestone tested new cooling systems added to the stand for the future Green Run test series of NASA’s exploration upper stage that is expected to fly on the Artemis IV mission.NASA/Danny Nowlin NASA Stennis teams complete a water system activation milestone on Jan. 30 at the Thad Cochran Test Stand (B-2). The milestone tested new cooling systems added to the stand for the future Green Run test series of NASA’s exploration upper stage that is expected to fly on the Artemis IV mission.NASA/Danny NowlinFor Green Run, teams at NASA Stennis will activate and test all systems to ensure the stage is ready to fly. It will culminate with a hot fire of the stage’s four RL10 engines, just as during an actual mission.
As part of the test stand modification, crews have added water-cooled diffusers to act as a heat shield to manage the super-hot exhaust from all four RL10 engines; water-cooled fairings to direct engine exhaust to align with the diffuser walls; and a purge ring that supplies cooling water and gaseous nitrogen to protect a flexible seal that allows the engines to move, or gimbal, during testing.
These three systems all were integrated by the NASA Stennis team with the existing flame deflector and acoustic suppression equipment used during previous core stage testing for NASA’s SLS rocket ahead of the successful Artemis I launch.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
NASA/StennisThe exercise also pushed the high pressure industrial water system to maximum capacity. While a typical RS-25 engine test at NASA Stennis runs a subset of the 10 diesel pumps and one electric pump, testing the exploration upper stage will require all eleven pumps running simultaneously.
The 14-million gallons of water used during the exercise on Jan. 30 was recycled throughout the test complex. A 66-million-gallon reservoir feeds water to the test stand through an underground 96-inch diameter pipe, with water distributed to various cooling components. The water ultimately flows into the flame deflector, then through a concrete flume to the stand’s catch pond. When the catch pond fills up, the excess water drains back to the canal through a drainage ditch, ready to be recycled for future use.
“We will use the data gathered to set the final timing of when valves are cycled, determine our redline pressures, and select the operating pressure,” said Nick Nugent, NASA Stennis project engineer. “This exercise also put the water system under a full load prior to the final stress test. It is always good to give the system a good shake down run prior.”
NASA Stennis teams complete a water system activation milestone on Jan. 30 at the Thad Cochran Test Stand (B-2). The milestone tested new cooling systems added to the stand for the future Green Run test series of NASA’s exploration upper stage that is expected to fly on the Artemis IV mission.NASA/Danny NowlinThe exploration upper stage is being built by Boeing at NASA’s Michoud Assembly Facility in New Orleans. The four RL10 engines for the upper stage are manufactured by L3Harris Technologies. Before it all arrives at NASA Stennis, crews will perform a final 24-hour check, or stress test, across all test complex facilities to demonstrate readiness for the test series.
Explore More 5 min read A Look Back at NASA Stennis in 2025 Article 2 months ago 2 min read NASA Makes Webby 30s List of Most Iconic, Influential on Internet Article 5 months ago 5 min read Crossroads to the Future – NASA Stennis Grows into a Model Federal City Article 5 months agoThe Radical Propulsion Needed to Catch the Solar Gravitational Lens
Sending a mission to the Solar Gravitational Lens (SGL) is the most effective way of actually directly imaging a potentially habitable planet, as well as its atmosphere, and even possibly some of its cities. But, the SGL is somewhere around 650-900 AU away, making it almost 4 times farther than even Voyager 1 has traveled - and that’s the farthest anything human has made it so far. It will take Voyager 1 another 130+ years to reach the SGL, so obviously traditional propulsion methods won’t work to get any reasonably sized craft there in any reasonable timeframe. A new paper by an SGL mission’s most vocal proponent, Dr. Slava Turyshev of NASA’s Jet Propulsion Laboratory, walks through the different types of propulsion methods that might eventually get us there - and it looks like we would have a lot of work to do if we plan to do it anytime soon.
First ever inhalable gene therapy for cancer gets fast-tracked by FDA
First ever inhalable gene therapy for cancer gets fast-tracked by FDA
This state’s power prices are plummeting as it nears 100% renewables
This state’s power prices are plummeting as it nears 100% renewables
Can Life Begin on a Moon Without a Sun?
Free-Floating Planets, or as they are more commonly known, Rogue Planets, wander interstellar space completely alone. Saying there might be a lot of them is a bit of an understatement. Recent estimates put the number of Rogue Planets at something equivalent to the number of stars in our galaxy. Some of them, undoubtedly, are accompanied by moons - and some of those might even be the size of Earth. A new paper, accepted for publication into the Monthly Notices of the Royal Astronomical Society, and also available in pre-print on arXiv, by David Dahlbüdding of the Ludwig Maximilian University of Munich and his co-authors, describes how some of those rogue exo-moons might even have liquid water on their surfaces.
How ‘effectively zero-knowledge’ proofs could transform cryptography
A new tool expands the ways people can prove they’ve solved a problem without revealing the solution