Behold, directly overhead, a certain strange star was suddenly seen...
Amazed, and as if astonished and stupefied, I stood still.

— Tycho Brahe

Feed aggregator

Amazon's Kuiper 1 internet satellites get new April 28 launch date on Atlas V rocket after delay

Space.com - Mon, 04/21/2025 - 4:34pm
The first 27 satellites of Amazon's Project Kuiper internet constellation are now scheduled to lift off atop an Atlas V rocket on April 28 from Florida.
Categories: Astronomy

Did we actually find signs of alien life on K2-18b? 'We should expect some false alarms and this may be one'

Space.com - Mon, 04/21/2025 - 4:16pm
Last week, scientists announced they found the "strongest evidence yet" of alien life beyond our solar system. However, the scientific community remains skeptical.
Categories: Astronomy

<p><a href="https://apod.nasa.gov/apod

APOD - Mon, 04/21/2025 - 4:00pm

What happens when a star runs out of


Categories: Astronomy, NASA

The New Tornado Alley Has Been Hyperactive this Year

Scientific American.com - Mon, 04/21/2025 - 3:52pm

More tornadoes than usual have already struck the U.S. in 2025—and many of them have been touching down farther east than they had in the past

Categories: Astronomy

Did the Moon's Water Come From the Solar Wind?

Universe Today - Mon, 04/21/2025 - 3:43pm

Where did the water we believe is on the Moon come from? Most scientists think they know the answer - from the solar wind. They believed the hydrogen atoms that make up the solar wind bombarded the lunar surface, which is made up primarily of silica. When that hydrogen hits the oxygen atoms in that silica, the oxygen is sometimes released and freed to bond with the incoming hydrogen, which in some cases creates water. But no one has ever attempted to replicate that process to prove its feasibility. A new paper by Li Hsia Yeo and their colleagues at NASA's Goddard Space Flight Center describes the first experimental evidence of that reaction.

Categories: Astronomy

Blue Skies Space to build satellite fleet around the moon to map the ancient universe

Space.com - Mon, 04/21/2025 - 3:30pm
A fleet of cubesats will act as a radio telescope to map the cosmic Dark Ages, its builders say.
Categories: Astronomy

What is the Most Powerful Telescope in the World?

Universe Today - Mon, 04/21/2025 - 3:16pm

Just how powerful is the world’s most powerful telescope?

Categories: Astronomy

'The Fantastic Four: First Steps' trailer shown at CinemaCon now arrives for us all (video)

Space.com - Mon, 04/21/2025 - 3:00pm
This new teaser is packed with pregnancy, the power of family, plus the Silver Surfer.
Categories: Astronomy

Twinkling star reveals the secrets of turbulent plasma in our cosmic neighborhood

Space.com - Mon, 04/21/2025 - 2:00pm
Astronomers have observed a twinkling star and discovered an abundance of mysterious plasma structures in our cosmic neighborhood.
Categories: Astronomy

NASA’s Lucy Spacecraft Images Asteroid Donaldjohanson

NASA News - Mon, 04/21/2025 - 1:56pm

4 min read

NASA’s Lucy Spacecraft Images Asteroid Donaldjohanson

In its second asteroid encounter, NASA’s Lucy spacecraft obtained a close look at a uniquely shaped fragment of an asteroid that formed about 150 million years ago. The spacecraft has begun returning images that were collected as it flew approximately 600 miles (960 km) from the asteroid Donaldjohanson on April 20, 2025.

The asteroid Donaldjohanson as seen by the Lucy Long-Range Reconnaissance Imager (L’LORRI) on NASA’s Lucy spacecraft during its flyby. This timelapse shows images captured approximately every 2 seconds beginning at 1:50 p.m. EDT (17:50 UTC), April 20, 2025. The asteroid rotates very slowly; its apparent rotation here is due to the spacecraft’s motion as it flies by Donaldjohanson at a distance of 1,000 to 660 miles (1,600 to 1,100 km). The spacecraft’s closest approach distance was 600 miles (960 km), but the images shown were taken approximately 40 seconds beforehand, the nearest ones at a distance of 660 miles (1100 km). NASA/Goddard/SwRI/Johns Hopkins APL

The asteroid was previously observed to have large brightness variations over a 10-day period, so some of Lucy team members’ expectations were confirmed when the first images showed what appeared to be an elongated contact binary (an object formed when two smaller bodies collide). However, the team was surprised by the odd shape of the narrow neck connecting the two lobes, which looks like two nested ice cream cones.

“Asteroid Donaldjohanson has strikingly complicated geology,” says Hal Levison, principal investigator for Lucy at Southwest Research Institute, Boulder, Colorado. “As we study the complex structures in detail, they will reveal important information about the building blocks and collisional processes that formed the planets in our Solar System.”

From a preliminary analysis of the first available images collected by the spacecraft’s L’LORRI imager, the asteroid appears to be larger than originally estimated, about 5 miles (8 km) long and 2 miles (3.5 km) wide at the widest point. In this first set of high-resolution images returned from the spacecraft, the full asteroid is not visible as the asteroid is larger than the imager’s field of view. It will take up to a week for the team to downlink the remainder of the encounter data from the spacecraft; this dataset will give a more complete picture of the asteroid’s overall shape.

Like Lucy’s first asteroid flyby target, Dinkinesh, Donaldjohanson is not a primary science target of the Lucy mission. As planned, the Dinkinesh flyby was a system’s test for the mission, while this encounter was a full dress rehearsal, in which the team conducted a series of dense observations to maximize data collection. Data collected by Lucy’s other scientific instruments, the L’Ralph color imager and infrared spectrometer and the L’TES thermal infrared spectrometer, will be retrieved and analyzed over the next few weeks.

The Lucy spacecraft will spend most of the remainder of 2025 travelling through the main asteroid belt. Lucy will encounter the mission’s first main target, the Jupiter Trojan asteroid Eurybates, in August 2027.

“These early images of Donaldjohanson are again showing the tremendous capabilities of the Lucy spacecraft as an engine of discovery,” said Tom Statler, program scientist for the Lucy mission at NASA Headquarters in Washington. “The potential to really open a new window into the history of our solar system when Lucy gets to the Trojan asteroids is immense.”

The asteroid Donaldjohanson as seen by the Lucy Long-Range Reconnaissance Imager (L’LORRI). This is one of the most detailed images returned by NASA’s Lucy spacecraft during its flyby. This image was taken at 1:51 p.m. EDT (17:51 UTC), April 20, 2025, near closest approach, from a range of approximately 660 miles (1,100 km). The spacecraft’s closest approach distance was 600 miles (960 km), but the image shown was taken approximately 40 seconds beforehand. The image has been sharpened and processed to enhance contrast. NASA/Goddard/SwRI/Johns Hopkins APL/NOIRLab

NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering and the safety and mission assurance for Lucy, as well as the designing and building the L’Ralph instrument. Hal Levison of the Boulder, Colorado, office of SwRI is the principal investigator. SwRI is headquartered in San Antonio and also leads the mission’s science team, science observation planning, and data processing. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering, and the safety and mission assurance for Lucy, as well as the L’Ralph instrument. Lockheed Martin Space in Littleton, Colorado, built the spacecraft, designed the orbital trajectory, and provides flight operations. Goddard and KinetX Aerospace are responsible for navigating the Lucy spacecraft. The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, designed and built the L’LORRI (Lucy Long Range Reconnaissance Imager) instrument. Arizona State University designed and built the L’TES (Lucy Thermal Emission Spectrometer). Lucy is the thirteenth mission in NASA’s Discovery Program, which is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama.

By Katherine Kretke
Southwest Research Institute

Media Contact:
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

Nancy N. Jones
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share

Details

Last Updated

Apr 21, 2025

Editor Jamie Adkins Contact Molly Wasser molly.l.wasser@nasa.gov

Related Terms
Categories: NASA

NASA’s Lucy Spacecraft Images Asteroid Donaldjohanson

NASA - Breaking News - Mon, 04/21/2025 - 1:56pm

4 min read

NASA’s Lucy Spacecraft Images Asteroid Donaldjohanson

In its second asteroid encounter, NASA’s Lucy spacecraft obtained a close look at a uniquely shaped fragment of an asteroid that formed about 150 million years ago. The spacecraft has begun returning images that were collected as it flew approximately 600 miles (960 km) from the asteroid Donaldjohanson on April 20, 2025.

The asteroid Donaldjohanson as seen by the Lucy Long-Range Reconnaissance Imager (L’LORRI) on NASA’s Lucy spacecraft during its flyby. This timelapse shows images captured approximately every 2 seconds beginning at 1:50 p.m. EDT (17:50 UTC), April 20, 2025. The asteroid rotates very slowly; its apparent rotation here is due to the spacecraft’s motion as it flies by Donaldjohanson at a distance of 1,000 to 660 miles (1,600 to 1,100 km). The spacecraft’s closest approach distance was 600 miles (960 km), but the images shown were taken approximately 40 seconds beforehand, the nearest ones at a distance of 660 miles (1100 km). NASA/Goddard/SwRI/Johns Hopkins APL

The asteroid was previously observed to have large brightness variations over a 10-day period, so some of Lucy team members’ expectations were confirmed when the first images showed what appeared to be an elongated contact binary (an object formed when two smaller bodies collide). However, the team was surprised by the odd shape of the narrow neck connecting the two lobes, which looks like two nested ice cream cones.

“Asteroid Donaldjohanson has strikingly complicated geology,” says Hal Levison, principal investigator for Lucy at Southwest Research Institute, Boulder, Colorado. “As we study the complex structures in detail, they will reveal important information about the building blocks and collisional processes that formed the planets in our Solar System.”

From a preliminary analysis of the first available images collected by the spacecraft’s L’LORRI imager, the asteroid appears to be larger than originally estimated, about 5 miles (8 km) long and 2 miles (3.5 km) wide at the widest point. In this first set of high-resolution images returned from the spacecraft, the full asteroid is not visible as the asteroid is larger than the imager’s field of view. It will take up to a week for the team to downlink the remainder of the encounter data from the spacecraft; this dataset will give a more complete picture of the asteroid’s overall shape.

Like Lucy’s first asteroid flyby target, Dinkinesh, Donaldjohanson is not a primary science target of the Lucy mission. As planned, the Dinkinesh flyby was a system’s test for the mission, while this encounter was a full dress rehearsal, in which the team conducted a series of dense observations to maximize data collection. Data collected by Lucy’s other scientific instruments, the L’Ralph color imager and infrared spectrometer and the L’TES thermal infrared spectrometer, will be retrieved and analyzed over the next few weeks.

The Lucy spacecraft will spend most of the remainder of 2025 travelling through the main asteroid belt. Lucy will encounter the mission’s first main target, the Jupiter Trojan asteroid Eurybates, in August 2027.

“These early images of Donaldjohanson are again showing the tremendous capabilities of the Lucy spacecraft as an engine of discovery,” said Tom Statler, program scientist for the Lucy mission at NASA Headquarters in Washington. “The potential to really open a new window into the history of our solar system when Lucy gets to the Trojan asteroids is immense.”

The asteroid Donaldjohanson as seen by the Lucy Long-Range Reconnaissance Imager (L’LORRI). This is one of the most detailed images returned by NASA’s Lucy spacecraft during its flyby. This image was taken at 1:51 p.m. EDT (17:51 UTC), April 20, 2025, near closest approach, from a range of approximately 660 miles (1,100 km). The spacecraft’s closest approach distance was 600 miles (960 km), but the image shown was taken approximately 40 seconds beforehand. The image has been sharpened and processed to enhance contrast. NASA/Goddard/SwRI/Johns Hopkins APL/NOIRLab

NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering and the safety and mission assurance for Lucy, as well as the designing and building the L’Ralph instrument. Hal Levison of the Boulder, Colorado, office of SwRI is the principal investigator. SwRI is headquartered in San Antonio and also leads the mission’s science team, science observation planning, and data processing. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering, and the safety and mission assurance for Lucy, as well as the L’Ralph instrument. Lockheed Martin Space in Littleton, Colorado, built the spacecraft, designed the orbital trajectory, and provides flight operations. Goddard and KinetX Aerospace are responsible for navigating the Lucy spacecraft. The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, designed and built the L’LORRI (Lucy Long Range Reconnaissance Imager) instrument. Arizona State University designed and built the L’TES (Lucy Thermal Emission Spectrometer). Lucy is the thirteenth mission in NASA’s Discovery Program, which is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama.

By Katherine Kretke
Southwest Research Institute

Media Contact:
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

Nancy N. Jones
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share

Details

Last Updated

Apr 21, 2025

Editor Jamie Adkins Contact Molly Wasser molly.l.wasser@nasa.gov

Related Terms
Categories: NASA

Fuzzy Rings of a Dying Star

NASA Image of the Day - Mon, 04/21/2025 - 1:41pm
NASA’s James Webb Space Telescope has taken the most detailed image of planetary nebula NGC 1514 to date thanks to its unique mid-infrared observations. Webb shows its rings as intricate clumps of dust. It’s also easier to see holes punched through the bright pink central region.
Categories: Astronomy, NASA

Fuzzy Rings of a Dying Star

NASA News - Mon, 04/21/2025 - 1:39pm
NASA’s James Webb Space Telescope has taken the most detailed image of planetary nebula NGC 1514 to date thanks to its unique mid-infrared observations. Webb shows its rings as intricate clumps of dust. It’s also easier to see holes punched through the bright pink central region.NASA, ESA, CSA, STScI, Michael Ressler (NASA-JPL), Dave Jones (IAC)

In this photo released on April 14, 2025, NASA’s James Webb Space Telescope revealed the gas and dust ejected by a dying star at the heart of NGC 1514. Using mid-infrared data showed the “fuzzy” clumps arranged in tangled patterns, and a network of clearer holes close to the central stars shows where faster material punched through.

This scene has been forming for at least 4,000 years — and will continue to change over many more millennia. At the center are two stars that appear as one in Webb’s observation, and are set off with brilliant diffraction spikes. The stars follow a tight, elongated nine-year orbit and are draped in an arc of dust represented in orange.

One of these stars, which used to be several times more massive than our Sun, took the lead role in producing this scene. “As it evolved, it puffed up, throwing off layers of gas and dust in in a very slow, dense stellar wind,” said David Jones, a senior scientist at the Institute of Astrophysics on the Canary Islands, who proved there is a binary star system at the center in 2017.

Learn more about planetary nebula NGC 1514.

Image credit: NASA, ESA, CSA, STScI, Michael Ressler (NASA-JPL), Dave Jones (IAC)

Categories: NASA

Fuzzy Rings of a Dying Star

NASA - Breaking News - Mon, 04/21/2025 - 1:39pm
NASA’s James Webb Space Telescope has taken the most detailed image of planetary nebula NGC 1514 to date thanks to its unique mid-infrared observations. Webb shows its rings as intricate clumps of dust. It’s also easier to see holes punched through the bright pink central region.NASA, ESA, CSA, STScI, Michael Ressler (NASA-JPL), Dave Jones (IAC)

In this photo released on April 14, 2025, NASA’s James Webb Space Telescope revealed the gas and dust ejected by a dying star at the heart of NGC 1514. Using mid-infrared data showed the “fuzzy” clumps arranged in tangled patterns, and a network of clearer holes close to the central stars shows where faster material punched through.

This scene has been forming for at least 4,000 years — and will continue to change over many more millennia. At the center are two stars that appear as one in Webb’s observation, and are set off with brilliant diffraction spikes. The stars follow a tight, elongated nine-year orbit and are draped in an arc of dust represented in orange.

One of these stars, which used to be several times more massive than our Sun, took the lead role in producing this scene. “As it evolved, it puffed up, throwing off layers of gas and dust in in a very slow, dense stellar wind,” said David Jones, a senior scientist at the Institute of Astrophysics on the Canary Islands, who proved there is a binary star system at the center in 2017.

Learn more about planetary nebula NGC 1514.

Image credit: NASA, ESA, CSA, STScI, Michael Ressler (NASA-JPL), Dave Jones (IAC)

Categories: NASA

Trump Cuts Threaten Key NOAA Work to Improve Weather Forecasts and Monitor Toxic Algal Blooms

Scientific American.com - Mon, 04/21/2025 - 1:00pm

The Trump administration has proposed gutting NOAA’s cooperative institutes, which study everything from improving lifesaving weather forecasts to monitoring fish stocks

Categories: Astronomy

Reducing high blood pressure can cut risk of dementia

New Scientist Space - Cosmology - Mon, 04/21/2025 - 12:00pm
Common medications for keeping blood pressure down, including ACE inhibitors, diuretics and calcium channel blockers, also lower the risk of dementia and cognitive impairment
Categories: Astronomy

Reducing high blood pressure can cut risk of dementia

New Scientist Space - Space Headlines - Mon, 04/21/2025 - 12:00pm
Common medications for keeping blood pressure down, including ACE inhibitors, diuretics and calcium channel blockers, also lower the risk of dementia and cognitive impairment
Categories: Astronomy

How Pope Francis Influenced Global Climate Change Action

Scientific American.com - Mon, 04/21/2025 - 12:00pm

The late Pope Francis supported global climate agreements, advocated for Indigenous people and inspired activism

Categories: Astronomy

A dramatic rethink of Parkinson’s offers new hope for treatment

New Scientist Space - Cosmology - Mon, 04/21/2025 - 12:00pm
Mounting evidence suggests there might be two separate types of the world’s fastest-growing neurological condition. Can this fresh understanding lead to much-needed new treatments?
Categories: Astronomy

A dramatic rethink of Parkinson’s offers new hope for treatment

New Scientist Space - Space Headlines - Mon, 04/21/2025 - 12:00pm
Mounting evidence suggests there might be two separate types of the world’s fastest-growing neurological condition. Can this fresh understanding lead to much-needed new treatments?
Categories: Astronomy