"I never think about the future. It comes soon enough."

— Albert Einstein

NASA

Helicopter Training for Artemis Missions

NASA News - Mon, 09/15/2025 - 10:30am
NASA/Michael DeMocker

NASA astronauts Matthew Dominick (left) and Mark Vande Hei (right) prepare to fly out to a landing zone in the Rocky Mountains as part of the certification run for the NASA Artemis course on Aug. 26, 2025. The mountains in northern Colorado offer similar visual illusions and flight environments to the Moon.

The newly certified lander flight training course marks a key milestone in crew training for Artemis missions to the Moon. Through Artemis, NASA will explore the lunar South Pole, paving the way for human exploration farther into the solar system, including Mars.

Learn more about the training course.

Image credit: NASA/Michael DeMocker

Categories: NASA

Helicopter Training for Artemis Missions

NASA - Breaking News - Mon, 09/15/2025 - 10:30am
NASA/Michael DeMocker

NASA astronauts Matthew Dominick (left) and Mark Vande Hei (right) prepare to fly out to a landing zone in the Rocky Mountains as part of the certification run for the NASA Artemis course on Aug. 26, 2025. The mountains in northern Colorado offer similar visual illusions and flight environments to the Moon.

The newly certified lander flight training course marks a key milestone in crew training for Artemis missions to the Moon. Through Artemis, NASA will explore the lunar South Pole, paving the way for human exploration farther into the solar system, including Mars.

Learn more about the training course.

Image credit: NASA/Michael DeMocker

Categories: NASA

Avatars for Astronaut Health to Fly on NASA’s Artemis II

NASA News - Mon, 09/15/2025 - 7:56am

5 min read

Avatars for Astronaut Health to Fly on NASA’s Artemis II An organ chip for conducting bone marrow experiments in space. Emulate

NASA announced a trailblazing experiment that aims to take personalized medicine to new heights. The experiment is part of a strategic plan to gather valuable scientific data during the Artemis II mission, enabling NASA to “know before we go” back to the lunar surface and on to Mars.

The AVATAR (A Virtual Astronaut Tissue Analog Response) investigation will use organ-on-a-chip devices, or organ chips, to study the effects of deep space radiation and microgravity on human health. The chips will contain cells from Artemis II astronauts and fly side-by-side with crew on their approximately 10-day journey around the Moon. This research, combined with other studies on the health and performance of Artemis II astronauts, will give NASA insight into how to best protect astronauts as exploration expands to the surface of the Moon, Mars, and beyond. 

AVATAR is NASA’s visionary tissue chip experiment that will revolutionize the very way we will do science, medicine, and human multi-planetary exploration.”

Nicky Fox

Associate Administrator, NASA Science Mission Directorate

AVATAR is NASA’s visionary tissue chip experiment that will revolutionize the very way we will do science, medicine, and human multi-planetary exploration,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Each tissue chip is a tiny sample uniquely created so that we can examine how the effects of deep space act on each human explorer before we go to ensure we pack the appropriate medical supplies tailored to each individual’s needs as we travel back to the Moon, and onward to Mars.”

The investigation is a collaboration between NASA, government agencies, and industry partners, leveraging commercial expertise to gain a deeper understanding of human biology and disease. This research could accelerate innovations in personalized healthcare, both for astronauts in space and patients on Earth.

Organ-on-a-chip: mimic for human health

Organ chips, also referred to as tissue chips or microphysiological systems, are roughly the size of a USB thumb drive and used to help understand — and then predict — how an individual might respond to a variety of stressors, such as radiation or medical treatments, including pharmaceuticals. Essentially, these small devices serve as “avatars” for human organs. 

Organ chips contain living human cells that are grown to model the structures and functions of specific regions in human organs, such as the brain, lungs, heart, pancreas, and liver — they can beat like a heart, breathe like a lung, or metabolize like a liver. Tissue chips can be linked together to mimic how organs interact with each other, which is important for understanding how the whole human body responds to stressors or treatments.

Researchers and oncologists use human tissue chips today to understand how a specific patient’s cancer might react to different drugs or radiation treatments. To date, a standard milestone for organs-on-chips has been to keep human cells healthy for 30 days. However, NASA and other research institutions are pushing these boundaries by increasing the longevity of organ chips to a minimum of six months so that scientists can observe diseases and drug therapies over a longer period.

Bone marrow as bellwether

The Artemis II mission will use organ chips created using blood-forming stem and progenitor cells, which originate in the bone marrow, from Artemis II crew members.

Bone marrow is among the organs most sensitive to radiation exposure and, therefore, of central importance to human spaceflight. It also plays a vital role in the immune system, as it is the origin of all adult red and white blood cells, which is why researchers aim to understand how deep space radiation affects this organ.

Studies have shown that microgravity affects the development of bone marrow cells. Although the International Space Station operates in low Earth orbit, which is shielded from most cosmic and solar radiation by the Earth’s magnetosphere, astronauts often experience a loss of bone density. Given that Artemis II crew will be flying beyond this protective layer, AVATAR researchers also seek to understand how the combined stressors of deep space radiation and microgravity affect the developing cells.

To make the bone marrow organ chips, Artemis II astronauts will first donate platelets to a local healthcare system. The cells remaining from their samples will contain a small percentage of bone marrow-derived stem and progenitor cells. NASA-funded scientists at Emulate, Inc., which developed the organ chip technology used in AVATAR, will purify these cells with magnetic beads that bind specifically to them. The purified cells will then be placed in the bone marrow chips next to blood vessel cells and other supporting cells to model the structure and function of the bone marrow.

Investigating how radiation affects the bone marrow can provide insights into how radiation therapy and other DNA-damaging agents, such as chemotherapeutic drugs, impair blood cell formation. Its significance for both spaceflight and medicine on Earth makes the bone marrow an ideal organ to study in the Artemis II AVATAR project.

Passenger for research

“For NASA, organ chips could provide vital data for protecting astronaut health on deep space missions,” said Lisa Carnell, director of NASA’s Biological and Physical Sciences division at NASA Headquarters. “As we go farther and stay longer in space, crew will have only limited access to on-site clinical healthcare. Therefore, it’ll be critical to understand if there are unique and specific healthcare needs of each astronaut, so that we can send the right supplies with them on future missions.”

During the Artemis II mission, the organ chips will be secured in a custom payload developed by Space Tango and mounted inside the capsule during the mission. The battery-powered payload will maintain automated environmental control and media delivery to the organ chips throughout the flight.

For NASA, organ chips could provide vital data for protecting astronaut health on deep space missions.”

Lisa Carnell

Director of NASA’s Biological and Physical Sciences Division

Upon return, researchers at Emulate will examine how spaceflight affected the bone marrow chips by performing single-cell RNA sequencing, a powerful technique that measures how thousands of genes change within individual cells. The scientists will compare data from the flight samples to measurements of crew cells used in a ground-based immunology study happening simultaneously. This will provide the most detailed look at the impact of spaceflight and deep space radiation on developing blood cells to date.

Keep Exploring BPS Scientific Goals

Goals


Precision Health


AVATAR


Quantum Leaps

Biological & Physical Sciences Division (BPS)
  • NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth.

Categories: NASA

Avatars for Astronaut Health to Fly on NASA’s Artemis II

NASA - Breaking News - Mon, 09/15/2025 - 7:56am

5 min read

Avatars for Astronaut Health to Fly on NASA’s Artemis II An organ chip for conducting bone marrow experiments in space. Emulate

NASA announced a trailblazing experiment that aims to take personalized medicine to new heights. The experiment is part of a strategic plan to gather valuable scientific data during the Artemis II mission, enabling NASA to “know before we go” back to the lunar surface and on to Mars.

The AVATAR (A Virtual Astronaut Tissue Analog Response) investigation will use organ-on-a-chip devices, or organ chips, to study the effects of deep space radiation and microgravity on human health. The chips will contain cells from Artemis II astronauts and fly side-by-side with crew on their approximately 10-day journey around the Moon. This research, combined with other studies on the health and performance of Artemis II astronauts, will give NASA insight into how to best protect astronauts as exploration expands to the surface of the Moon, Mars, and beyond. 

AVATAR is NASA’s visionary tissue chip experiment that will revolutionize the very way we will do science, medicine, and human multi-planetary exploration.”

Nicky Fox

Associate Administrator, NASA Science Mission Directorate

AVATAR is NASA’s visionary tissue chip experiment that will revolutionize the very way we will do science, medicine, and human multi-planetary exploration,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Each tissue chip is a tiny sample uniquely created so that we can examine how the effects of deep space act on each human explorer before we go to ensure we pack the appropriate medical supplies tailored to each individual’s needs as we travel back to the Moon, and onward to Mars.”

The investigation is a collaboration between NASA, government agencies, and industry partners, leveraging commercial expertise to gain a deeper understanding of human biology and disease. This research could accelerate innovations in personalized healthcare, both for astronauts in space and patients on Earth.

Organ-on-a-chip: mimic for human health

Organ chips, also referred to as tissue chips or microphysiological systems, are roughly the size of a USB thumb drive and used to help understand — and then predict — how an individual might respond to a variety of stressors, such as radiation or medical treatments, including pharmaceuticals. Essentially, these small devices serve as “avatars” for human organs. 

Organ chips contain living human cells that are grown to model the structures and functions of specific regions in human organs, such as the brain, lungs, heart, pancreas, and liver — they can beat like a heart, breathe like a lung, or metabolize like a liver. Tissue chips can be linked together to mimic how organs interact with each other, which is important for understanding how the whole human body responds to stressors or treatments.

Researchers and oncologists use human tissue chips today to understand how a specific patient’s cancer might react to different drugs or radiation treatments. To date, a standard milestone for organs-on-chips has been to keep human cells healthy for 30 days. However, NASA and other research institutions are pushing these boundaries by increasing the longevity of organ chips to a minimum of six months so that scientists can observe diseases and drug therapies over a longer period.

Bone marrow as bellwether

The Artemis II mission will use organ chips created using blood-forming stem and progenitor cells, which originate in the bone marrow, from Artemis II crew members.

Bone marrow is among the organs most sensitive to radiation exposure and, therefore, of central importance to human spaceflight. It also plays a vital role in the immune system, as it is the origin of all adult red and white blood cells, which is why researchers aim to understand how deep space radiation affects this organ.

Studies have shown that microgravity affects the development of bone marrow cells. Although the International Space Station operates in low Earth orbit, which is shielded from most cosmic and solar radiation by the Earth’s magnetosphere, astronauts often experience a loss of bone density. Given that Artemis II crew will be flying beyond this protective layer, AVATAR researchers also seek to understand how the combined stressors of deep space radiation and microgravity affect the developing cells.

To make the bone marrow organ chips, Artemis II astronauts will first donate platelets to a local healthcare system. The cells remaining from their samples will contain a small percentage of bone marrow-derived stem and progenitor cells. NASA-funded scientists at Emulate, Inc., which developed the organ chip technology used in AVATAR, will purify these cells with magnetic beads that bind specifically to them. The purified cells will then be placed in the bone marrow chips next to blood vessel cells and other supporting cells to model the structure and function of the bone marrow.

Investigating how radiation affects the bone marrow can provide insights into how radiation therapy and other DNA-damaging agents, such as chemotherapeutic drugs, impair blood cell formation. Its significance for both spaceflight and medicine on Earth makes the bone marrow an ideal organ to study in the Artemis II AVATAR project.

Passenger for research

“For NASA, organ chips could provide vital data for protecting astronaut health on deep space missions,” said Lisa Carnell, director of NASA’s Biological and Physical Sciences division at NASA Headquarters. “As we go farther and stay longer in space, crew will have only limited access to on-site clinical healthcare. Therefore, it’ll be critical to understand if there are unique and specific healthcare needs of each astronaut, so that we can send the right supplies with them on future missions.”

During the Artemis II mission, the organ chips will be secured in a custom payload developed by Space Tango and mounted inside the capsule during the mission. The battery-powered payload will maintain automated environmental control and media delivery to the organ chips throughout the flight.

For NASA, organ chips could provide vital data for protecting astronaut health on deep space missions.”

Lisa Carnell

Director of NASA’s Biological and Physical Sciences Division

Upon return, researchers at Emulate will examine how spaceflight affected the bone marrow chips by performing single-cell RNA sequencing, a powerful technique that measures how thousands of genes change within individual cells. The scientists will compare data from the flight samples to measurements of crew cells used in a ground-based immunology study happening simultaneously. This will provide the most detailed look at the impact of spaceflight and deep space radiation on developing blood cells to date.

Keep Exploring BPS Scientific Goals

Goals


Precision Health


AVATAR


Quantum Leaps

Biological & Physical Sciences Division (BPS)
  • NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth.

Categories: NASA

Weird Ways to Observe the Moon

NASA - Breaking News - Mon, 09/15/2025 - 6:00am

3 min read

Weird Ways to Observe the Moon Sun Funnels in action! Starting clockwise from the bottom left, a standalone Sun Funnel; attached to a small refractor to observe the transit of Mercury in 2019; attached to a large telescope in preparation for evening lunar observing; projection of the Moon on a funnel from a medium-size scope (5 inches). Night Sky Network

International Observe the Moon Night is on October 4, 2025, this year– but you can observe the Moon whenever it’s up, day or night! While binoculars and telescopes certainly reveal incredible details of our neighbor’s surface, bringing out dark seas, bright craters, and numerous odd fissures and cracks, these tools are not the only way to observe details about our Moon. There are more ways to observe the Moon than you might expect, just using common household materials.

Put on a pair of sunglasses, especially polarized sunglasses! You may think this is a joke, but the point of polarized sunglasses is to dramatically reduce glare, and so they allow your eyes to pick out some lunar details! Surprisingly, wearing sunglasses even helps during daytime observations of the Moon.

One unlikely tool is the humble plastic bottle cap! John Goss from the Roanoke Valley Astronomical Society shared these directions on how to make your own bottle cap lunar viewer, which was suggested to him by Fred Schaaf many years ago as a way to also view the thin crescent of Venus when close to the Sun:

“The full Moon is very bright, so much that details are overwhelmed by the glare. Here is an easy way to see more! Start by drilling a 1/16-inch (1.5 mm) diameter hole in a plastic soft drink bottle cap. Make sure it is an unobstructed, round hole.  Now look through the hole at the bright Moon. The image brightness will be much dimmer than normal – over 90% dimmer – reducing or eliminating any lunar glare. The image should also be much sharper because the bottle cap blocks light from entering the outer portion of your pupil, where imperfections of the eye’s curving optical path likely lie.” Many report seeing a startling amount of lunar detail!

You can project the Moon! Have you heard of a “Sun Funnel”? It’s a way to safely view the Sun by projecting the image from an eyepiece to fabric stretched across a funnel mounted on top. It’s easy to make at home, too – directions are here: bit.ly/sunfunnel. Depending on your equipment, a Sun Funnel can view the Moon as well as the Sun– a full Moon gives off more than enough light to project from even relatively small telescopes. Large telescopes will project the full Moon and its phases with varying levels of detail; while not as crisp as direct eyepiece viewing, it’s still an impressive sight! You can also mount your smartphone or tablet to your eyepiece for a similar Moon-viewing experience, but the funnel doesn’t need batteries.

Of course, you can join folks in person or online to celebrate our Moon on October 4, 2025, with International Observe the Moon Night – find details at moon.nasa.gov/observe.

Originally posted by Dave Prosper: September 2021

Last Updated by Kat Troche: March 2025

Categories: NASA

NASA Science, Cargo Launches Aboard Northrop Grumman CRS-23

NASA News - Sun, 09/14/2025 - 7:59pm
A SpaceX Falcon 9 rocket carrying Northrop Grumman’s Cygnus XL spacecraft is launched on NASA’s Northrop Grumman Commercial Resupply Services 23 mission to the International Space Station on Sunday, Sept. 14, 2025.Credit: NASA

NASA is sending more science, technology demonstrations, and crew supplies to the International Space Station following the successful launch of the agency’s Northrop Grumman Commercial Resupply Services 23 mission, or Northrop Grumman CRS-23.

The company’s Cygnus XL spacecraft, carrying more than 11,000 pounds of cargo to the orbiting laboratory, lifted off at 6:11 p.m. EDT Sunday on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. This mission is the first flight of the larger, more cargo-capable version of the solar-powered spacecraft. 

Cygnus XL is scheduled to be captured at 6:35 a.m. on Wednesday, Sept. 17, by the Canadarm2 robotic arm, which NASA astronaut Jonny Kim will operate with assistance from NASA astronaut Zena Cardman. Following capture, the spacecraft will be installed to the Unity module’s Earth-facing port for cargo unloading.

The resupply mission is carrying dozens of research experiments that will be conducted during Expedition 73, including materials to produce semiconductor crystals in space and equipment to develop improvements for cryogenic fuel tanks. The spacecraft also will deliver a specialized UV light system to prevent the growth of microbe communities that form in water systems and supplies to produce pharmaceutical crystals that could treat cancer and other diseases.

These are just a sample of the hundreds of scientific investigations conducted aboard the station in the areas of biology and biotechnology, Earth and space science, physical sciences, as well as technology development and demonstrations. For nearly 25 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, where astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including Artemis missions to the Moon and American astronaut missions to Mars.

NASA’s arrival, capture, and installation coverage are as follows (all times Eastern and subject to change based on real-time operations):

Wednesday, Sept. 17

5 a.m. – Arrival coverage begins on NASA+, Amazon Prime, and more.

6:35 a.m. – Capture of Cygnus XL with the space station’s robotic arm.

8 a.m. – Installation coverage begins on NASA+, Amazon Prime, and more.

All coverage times are estimates and could be adjusted based on operations after launch. Follow the space station blog for the most up-to-date information.

Cygnus XL is scheduled to remain at the orbiting laboratory until March 2026, before it departs and disposes of several thousand pounds of trash through its re-entry into Earth’s atmosphere, where it will harmlessly burn up. The spacecraft is named the S.S. William “Willie” C. McCool, in honor of the NASA astronaut who perished in 2003 during the space shuttle Columbia accident.

Learn more about this NASA commercial resupply mission at:

https://www.nasa.gov/mission/nasas-northrop-grumman-crs-23/

-end-

Josh Finch / Jimi Russell
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / james.j.russell@nasa.gov

Steven Siceloff
Kennedy Space Center, Fla.
321-876-2468
steven.p.siceloff@nasa.gov

Sandra Jones / Joseph Zakrzewski
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov

Share Details Last Updated Sep 14, 2025 LocationNASA Headquarters Related Terms
Categories: NASA

NASA Science, Cargo Launches Aboard Northrop Grumman CRS-23

NASA - Breaking News - Sun, 09/14/2025 - 7:59pm
A SpaceX Falcon 9 rocket carrying Northrop Grumman’s Cygnus XL spacecraft is launched on NASA’s Northrop Grumman Commercial Resupply Services 23 mission to the International Space Station on Sunday, Sept. 14, 2025.Credit: NASA

NASA is sending more science, technology demonstrations, and crew supplies to the International Space Station following the successful launch of the agency’s Northrop Grumman Commercial Resupply Services 23 mission, or Northrop Grumman CRS-23.

The company’s Cygnus XL spacecraft, carrying more than 11,000 pounds of cargo to the orbiting laboratory, lifted off at 6:11 p.m. EDT Sunday on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. This mission is the first flight of the larger, more cargo-capable version of the solar-powered spacecraft. 

Cygnus XL is scheduled to be captured at 6:35 a.m. on Wednesday, Sept. 17, by the Canadarm2 robotic arm, which NASA astronaut Jonny Kim will operate with assistance from NASA astronaut Zena Cardman. Following capture, the spacecraft will be installed to the Unity module’s Earth-facing port for cargo unloading.

The resupply mission is carrying dozens of research experiments that will be conducted during Expedition 73, including materials to produce semiconductor crystals in space and equipment to develop improvements for cryogenic fuel tanks. The spacecraft also will deliver a specialized UV light system to prevent the growth of microbe communities that form in water systems and supplies to produce pharmaceutical crystals that could treat cancer and other diseases.

These are just a sample of the hundreds of scientific investigations conducted aboard the station in the areas of biology and biotechnology, Earth and space science, physical sciences, as well as technology development and demonstrations. For nearly 25 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, where astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including Artemis missions to the Moon and American astronaut missions to Mars.

NASA’s arrival, capture, and installation coverage are as follows (all times Eastern and subject to change based on real-time operations):

Wednesday, Sept. 17

5 a.m. – Arrival coverage begins on NASA+, Amazon Prime, and more.

6:35 a.m. – Capture of Cygnus XL with the space station’s robotic arm.

8 a.m. – Installation coverage begins on NASA+, Amazon Prime, and more.

All coverage times are estimates and could be adjusted based on operations after launch. Follow the space station blog for the most up-to-date information.

Cygnus XL is scheduled to remain at the orbiting laboratory until March 2026, before it departs and disposes of several thousand pounds of trash through its re-entry into Earth’s atmosphere, where it will harmlessly burn up. The spacecraft is named the S.S. William “Willie” C. McCool, in honor of the NASA astronaut who perished in 2003 during the space shuttle Columbia accident.

Learn more about this NASA commercial resupply mission at:

https://www.nasa.gov/mission/nasas-northrop-grumman-crs-23/

-end-

Josh Finch / Jimi Russell
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / james.j.russell@nasa.gov

Steven Siceloff
Kennedy Space Center, Fla.
321-876-2468
steven.p.siceloff@nasa.gov

Sandra Jones / Joseph Zakrzewski
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov

Share Details Last Updated Sep 14, 2025 LocationNASA Headquarters Related Terms
Categories: NASA

Mechele Elliott Safeguards Agency Information Systems at Johnson

NASA News - Sun, 09/14/2025 - 5:00pm

As an IT security administrator at NASA’s Johnson Space Center in Houston, Mechele Elliott protects the information systems that support astronaut health and mission readiness.

The encouragement of a family friend set her on this path, leading to a rewarding and somewhat unexpected career in human spaceflight.

Mechele Elliott stands in front of a space shuttle cockpit mockup in the lobby of the Mission Control Center at NASA’s Johnson Space Center in Houston. Image courtesy of Mechele Elliott

“While I was caring for my son during his cancer treatment—living in the hospital with him and supporting his recovery at home—a family friend who worked at NASA took notice,” Elliott said. “She quietly observed my strength, organization, and unwavering dedication to my son. One day she called and said, ‘Get your resume together.’”

Elliott doubted she was qualified for a position at NASA, though the friend was certain she could learn and handle anything after caring for her son. “Her belief in me gave me the courage to take that first step—and it changed the course of my life.”

The friend’s endorsement helped her land the position. Elliott was nervous at first, since she did not know much about NASA’s operations and had limited prior experience. With time and training, she grew more certain of the value she brought to the team.

“Reflecting on the numerous personal challenges I have encountered has reinforced my confidence in my ability to overcome obstacles while maintaining a positive outlook throughout my journey,” she said. “I am proud to have successfully adapted and become a productive member of my team.” In her role today, Elliott safeguards NASA’s information systems. She develops, implements, and maintains security policies, procedures, and systems in the Human Health and Performance Directorate, ensuring compliance with federal and NASA-specific security standards. Her work includes managing access control protocols and responding  to security incidents.

Mechele Elliott in the Neutral Buoyancy Laboratory at Johnson Space Center. Image courtesy of Mechele Elliott

One of her most challenging tasks involved assessing, revitalizing, and implementing four outdated security plans through collaboration with a diverse team. “We successfully aligned the security plans with established standards and garnered commendations from NASA leadership,” she said.

Outside of work, Elliott enjoys several hobbies that help her relax and maintain balance. She began painting at a young age and continues to find calm through her art. She is an avid gardener, in spite of the Houston summer heat, and feels fulfilled by the beauty of her flowers and sharing homegrown fruits and vegetables with her friends and family. She has also earned a reputation as an excellent baker. “I enjoy making cheesecakes for workplace celebrations and I’ve discovered that many of my coworkers enjoy this hobby of mine, as well!”

Elliott is profoundly grateful for the opportunity to serve at NASA for over 25 years. Looking ahead to the agency’s future, she offers an important piece of advice to up-and-coming team members. “Remain authentic to yourselves, pursue your aspirations with determination, and uphold a commitment to excellence in all your endeavors.”

Explore More 7 min read Life After Microgravity: Astronauts Reflect on Post-Flight Recovery  Article 6 days ago 3 min read Jeni Morrison Continues a Family Legacy of Service at NASA  Article 1 week ago 3 min read NASA Seeks Industry Input on Next Phase of Commercial Space Stations Article 1 week ago
Categories: NASA

Mechele Elliott Safeguards Agency Information Systems at Johnson

NASA - Breaking News - Sun, 09/14/2025 - 5:00pm

As an IT security administrator at NASA’s Johnson Space Center in Houston, Mechele Elliott protects the information systems that support astronaut health and mission readiness.

The encouragement of a family friend set her on this path, leading to a rewarding and somewhat unexpected career in human spaceflight.

Mechele Elliott stands in front of a space shuttle cockpit mockup in the lobby of the Mission Control Center at NASA’s Johnson Space Center in Houston. Image courtesy of Mechele Elliott

“While I was caring for my son during his cancer treatment—living in the hospital with him and supporting his recovery at home—a family friend who worked at NASA took notice,” Elliott said. “She quietly observed my strength, organization, and unwavering dedication to my son. One day she called and said, ‘Get your resume together.’”

Elliott doubted she was qualified for a position at NASA, though the friend was certain she could learn and handle anything after caring for her son. “Her belief in me gave me the courage to take that first step—and it changed the course of my life.”

The friend’s endorsement helped her land the position. Elliott was nervous at first, since she did not know much about NASA’s operations and had limited prior experience. With time and training, she grew more certain of the value she brought to the team.

“Reflecting on the numerous personal challenges I have encountered has reinforced my confidence in my ability to overcome obstacles while maintaining a positive outlook throughout my journey,” she said. “I am proud to have successfully adapted and become a productive member of my team.” In her role today, Elliott safeguards NASA’s information systems. She develops, implements, and maintains security policies, procedures, and systems in the Human Health and Performance Directorate, ensuring compliance with federal and NASA-specific security standards. Her work includes managing access control protocols and responding  to security incidents.

Mechele Elliott in the Neutral Buoyancy Laboratory at Johnson Space Center. Image courtesy of Mechele Elliott

One of her most challenging tasks involved assessing, revitalizing, and implementing four outdated security plans through collaboration with a diverse team. “We successfully aligned the security plans with established standards and garnered commendations from NASA leadership,” she said.

Outside of work, Elliott enjoys several hobbies that help her relax and maintain balance. She began painting at a young age and continues to find calm through her art. She is an avid gardener, in spite of the Houston summer heat, and feels fulfilled by the beauty of her flowers and sharing homegrown fruits and vegetables with her friends and family. She has also earned a reputation as an excellent baker. “I enjoy making cheesecakes for workplace celebrations and I’ve discovered that many of my coworkers enjoy this hobby of mine, as well!”

Elliott is profoundly grateful for the opportunity to serve at NASA for over 25 years. Looking ahead to the agency’s future, she offers an important piece of advice to up-and-coming team members. “Remain authentic to yourselves, pursue your aspirations with determination, and uphold a commitment to excellence in all your endeavors.”

Explore More 7 min read Life After Microgravity: Astronauts Reflect on Post-Flight Recovery  Article 7 days ago 3 min read Jeni Morrison Continues a Family Legacy of Service at NASA  Article 1 week ago 3 min read NASA Seeks Industry Input on Next Phase of Commercial Space Stations Article 1 week ago
Categories: NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Sun, 09/14/2025 - 8:00am

This butterfly can hatch planets.


Categories: Astronomy, NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Sat, 09/13/2025 - 4:00am

How much of planet Earth is made of water?


Categories: Astronomy, NASA

Curiosity Blog, Sols 4649-4654: Ridges, Hollows and Nodules, Oh My

NASA - Breaking News - Fri, 09/12/2025 - 6:57pm
Curiosity Navigation

2 min read

Curiosity Blog, Sols 4649-4654: Ridges, Hollows and Nodules, Oh My NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera, showing the transition from smoother ridge bedrock (right) to more nodular bedrock (bottom left to top middle) on the edge of a shallow hollow (top left). Curiosity, whose masthead shadow is also visible, captured this image on Sept. 5, 2025 — Sol 4650, or Martian day 4,650 of the Mars Science Laboratory mission — at 00:22:34 UTC. NASA/JPL-Caltech

Written by Lucy Thompson, Planetary Scientist and APXS Team Member, University of New Brunswick, Canada

Earth planning date: Friday, Sept. 5, 2025

Curiosity is in the midst of the boxwork campaign, trying to decipher why we see such pronounced ridges and hollows in this area of Mount Sharp. When this terrain was first identified from orbit it was hypothesized that the ridges may be the result of cementation by circulating fluids, followed by differential erosion of the less resistant bedrock in between (the hollows that we now observe). 

We have been exploring the boxwork terrain documenting textures, structures and composition to investigate potential differences between ridges and hollows. One of the textural features we have observed are nodules in varying abundance. The focus of our activities this week was to document the transition from smoother bedrock atop a boxwork ridge to more nodular bedrock associated with the edge of a shallow hollow. 

In Tuesday’s three-sol plan we analyzed the smoother bedrock within the ridge, documenting textures with MAHLI, Mastcam, and ChemCam RMI, and chemistry with ChemCam LIBS and APXS. Curiosity then successfully bumped towards the edge of the ridge/hollow to place the more nodular bedrock in our workspace. Friday’s three-sol plan was basically a repeat of the previous observations, but this time focused on the more nodular bedrock. The planned drive should take us to another boxwork ridge, and closer to the area where we plan to drill into one of the ridges.

As the APXS strategic planner this week, I helped to select the rock targets for analysis by our instrument, ensuring they were safe to touch and that they met the science intent of the boxwork campaign. I also communicated to the rest of the team the most recent results from our APXS compositional analyses and how they fit into our investigation of the boxwork terrain. This will help to inform our fast-approaching decision about where to drill.

Both plans included Mastcam and ChemCam long-distance RMI imaging of more distant features, including other boxwork ridges and hollows, buttes, the yardang unit, and Gale crater rim. Planned environmental activities continue to monitor dust in the atmosphere, dust-devil activity, and clouds. Standard REMS, RAD, and DAN activities round out the week’s activities.

NASA’s Mars rover Curiosity at the base of Mount Sharp NASA/JPL-Caltech/MSSS

Share

Details

Last Updated

Sep 12, 2025

Related Terms Explore More

2 min read Perseverance Meets the Megabreccia

Article


4 days ago

4 min read Curiosity Blog, Sols 4641-4648: Thinking Outside and Inside the ‘Boxwork’

Article


1 week ago

2 min read Over Soroya Ridge & Onward!

Article


2 weeks ago

Keep Exploring Discover More Topics From NASA

Mars

Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


All Mars Resources

Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


Rover Basics

Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


Mars Exploration: Science Goals

The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

Categories: NASA

Curiosity Blog, Sols 4649-4654: Ridges, Hollows and Nodules, Oh My

NASA News - Fri, 09/12/2025 - 6:57pm
Curiosity Navigation

2 min read

Curiosity Blog, Sols 4649-4654: Ridges, Hollows and Nodules, Oh My NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera, showing the transition from smoother ridge bedrock (right) to more nodular bedrock (bottom left to top middle) on the edge of a shallow hollow (top left). Curiosity, whose masthead shadow is also visible, captured this image on Sept. 5, 2025 — Sol 4650, or Martian day 4,650 of the Mars Science Laboratory mission — at 00:22:34 UTC. NASA/JPL-Caltech

Written by Lucy Thompson, Planetary Scientist and APXS Team Member, University of New Brunswick, Canada

Earth planning date: Friday, Sept. 5, 2025

Curiosity is in the midst of the boxwork campaign, trying to decipher why we see such pronounced ridges and hollows in this area of Mount Sharp. When this terrain was first identified from orbit it was hypothesized that the ridges may be the result of cementation by circulating fluids, followed by differential erosion of the less resistant bedrock in between (the hollows that we now observe). 

We have been exploring the boxwork terrain documenting textures, structures and composition to investigate potential differences between ridges and hollows. One of the textural features we have observed are nodules in varying abundance. The focus of our activities this week was to document the transition from smoother bedrock atop a boxwork ridge to more nodular bedrock associated with the edge of a shallow hollow. 

In Tuesday’s three-sol plan we analyzed the smoother bedrock within the ridge, documenting textures with MAHLI, Mastcam, and ChemCam RMI, and chemistry with ChemCam LIBS and APXS. Curiosity then successfully bumped towards the edge of the ridge/hollow to place the more nodular bedrock in our workspace. Friday’s three-sol plan was basically a repeat of the previous observations, but this time focused on the more nodular bedrock. The planned drive should take us to another boxwork ridge, and closer to the area where we plan to drill into one of the ridges.

As the APXS strategic planner this week, I helped to select the rock targets for analysis by our instrument, ensuring they were safe to touch and that they met the science intent of the boxwork campaign. I also communicated to the rest of the team the most recent results from our APXS compositional analyses and how they fit into our investigation of the boxwork terrain. This will help to inform our fast-approaching decision about where to drill.

Both plans included Mastcam and ChemCam long-distance RMI imaging of more distant features, including other boxwork ridges and hollows, buttes, the yardang unit, and Gale crater rim. Planned environmental activities continue to monitor dust in the atmosphere, dust-devil activity, and clouds. Standard REMS, RAD, and DAN activities round out the week’s activities.

NASA’s Mars rover Curiosity at the base of Mount Sharp NASA/JPL-Caltech/MSSS

Share

Details

Last Updated

Sep 12, 2025

Related Terms Explore More

2 min read Perseverance Meets the Megabreccia

Article


4 days ago

4 min read Curiosity Blog, Sols 4641-4648: Thinking Outside and Inside the ‘Boxwork’

Article


1 week ago

2 min read Over Soroya Ridge & Onward!

Article


2 weeks ago

Keep Exploring Discover More Topics From NASA

Mars

Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


All Mars Resources

Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


Rover Basics

Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


Mars Exploration: Science Goals

The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

Categories: NASA

NASA Awards Third Glenn Facility and Engineering Services Contract

NASA - Breaking News - Fri, 09/12/2025 - 4:20pm
Credit: NASA

NASA has selected Troy Sierra JV, LLC of Huntsville, Alabama, to provide engineering, research, and scientific support at the agency’s Glenn Research Center in Cleveland.  

The Test Facility Operations, Maintenance, and Engineering Services III contract is a cost-plus-fixed-fee, indefinite-delivery/indefinite-quantity contract with a maximum potential value of approximately $388.3 million. The performance period begins Jan. 1, 2026, with a three-year base period followed by a two-year option, and a potential six-month extension through June 2031.

This contract will provide and manage the engineering, technical, manufacturing, development, operations, maintenance, inspection, and certification support services needed to conduct aerospace testing in NASA Glenn’s facilities and laboratories.

For information about NASA and other agency programs, visit:

https://www.nasa.gov

-end-

Tiernan Doyle
Headquarters, Washington
202-358-1600
tiernan.doyle@nasa.gov

Jan Wittry
Glenn Research Center, Cleveland
216-433-5466
jan.m.wittry-1@nasa.gov

Share Details Last Updated Sep 12, 2025 LocationNASA Headquarters Related Terms
Categories: NASA

NASA Awards Third Glenn Facility and Engineering Services Contract

NASA News - Fri, 09/12/2025 - 4:20pm
Credit: NASA

NASA has selected Troy Sierra JV, LLC of Huntsville, Alabama, to provide engineering, research, and scientific support at the agency’s Glenn Research Center in Cleveland.  

The Test Facility Operations, Maintenance, and Engineering Services III contract is a cost-plus-fixed-fee, indefinite-delivery/indefinite-quantity contract with a maximum potential value of approximately $388.3 million. The performance period begins Jan. 1, 2026, with a three-year base period followed by a two-year option, and a potential six-month extension through June 2031.

This contract will provide and manage the engineering, technical, manufacturing, development, operations, maintenance, inspection, and certification support services needed to conduct aerospace testing in NASA Glenn’s facilities and laboratories.

For information about NASA and other agency programs, visit:

https://www.nasa.gov

-end-

Tiernan Doyle
Headquarters, Washington
202-358-1600
tiernan.doyle@nasa.gov

Jan Wittry
Glenn Research Center, Cleveland
216-433-5466
jan.m.wittry-1@nasa.gov

Share Details Last Updated Sep 12, 2025 LocationNASA Headquarters Related Terms
Categories: NASA

NASA’s X-59 Moves Toward First Flight at Speed of Safety

NASA News - Fri, 09/12/2025 - 2:37pm
5 Min Read NASA’s X-59 Moves Toward First Flight at Speed of Safety NASA’s X-59 quiet supersonic research aircraft is seen at dawn with firetrucks and safety personnel nearby during a hydrazine safety check at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. The operation highlights the extensive precautions built into the aircraft’s safety procedures for a system that serves as a critical safeguard, ensuring the engine can be restarted in flight as the X-59 prepares for its first flight. Credits: Lockheed Martin

As NASA’s one-of-a-kind X-59 quiet supersonic research aircraft approaches first flight, its team is mapping every step from taxi and takeoff to cruising and landing – and their decision-making is guided by safety.

First flight will be a lower-altitude loop at about 240 mph to check system integration, kicking off a phase of flight testing focused on verifying the aircraft’s airworthiness and safety. During subsequent test flights, the X-59 will go higher and faster, eventually exceeding the speed of sound. The aircraft is designed to fly supersonic while generating a quiet thump rather than a loud sonic boom.

To help ensure that first flight – and every flight after that – will begin and end safely, engineers have layered protection into the aircraft.

The X-59’s Flight Test Instrumentation System (FTIS) serves as one of its primary record keepers, collecting and transmitting audio, video, data from onboard sensors, and avionics information – all of which NASA will track across the life of the aircraft.

“We record 60 different streams of data with over 20,000 parameters on board,” said Shedrick Bessent, NASA X-59 instrumentation engineer. “Before we even take off, it’s reassuring to know the system has already seen more than 200 days of work.”

Through ground tests and system evaluations, the system has already generated more than 8,000 files over 237 days of recording. That record provides a detailed history that helps engineers verify the aircraft’s readiness for flight.

Maintainers perform a hydrazine safety check on the agency’s quiet supersonic X-59 aircraft at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. Hydrazine is a highly toxic chemical, but it serves as a critical backup to restart the engine in flight, if necessary, and is one of several safety features being validated ahead of the aircraft’s first flight.Credits: Lockheed Martin

“There’s just so much new technology on this aircraft, and if a system like FTIS can offer a bit of relief by showing us what’s working – with reliability and consistency – that reduces stress and uncertainty,” Bessent said. “I think that helps the project just as much as it helps our team.”

The aircraft also uses a digital fly-by-wire system that will keep the aircraft stable and limit unsafe maneuvers. First developed in the 1970s at NASA’s Armstrong Flight Research Center in Edwards, California, digital fly-by-wire replaced how aircraft were flown, moving away from traditional cables and pulleys to computerized flight controls and actuators.

On the X-59, the pilot’s inputs – such as movement of the stick or throttle – are translated into electronic signals and decoded by a computer. Those signals are then sent through fiber-optic wires to the aircraft’s surfaces, like its wings and tail.

Additionally, the aircraft uses multiple computers that back each other up and keep the system operating. If one fails, another takes over. The same goes for electrical and hydraulic systems, which also have independent backup systems to ensure the aircraft can fly safely.

Onboard batteries back up the X-59’s hydraulic and electrical systems, with thermal batteries driving the electric pump that powers hydraulics. Backing up the engine is an emergency restart system that uses hydrazine, a highly reactive liquid fuel. In the unlikely event of a loss of power, the hydrazine system would restart the engine in flight. The system would help restore power so the pilot could stabilize or recover the aircraft.

Maintainers perform a hydrazine safety check on NASA’s quiet supersonic X-59 aircraft at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. Hydrazine is a highly toxic chemical, but it serves as a critical backup to restart the engine in flight, if necessary, which is one of several safety features being validated ahead of the aircraft’s first flight. Credits: Lockheed Martin Protective Measures

Behind each of these systems is a team of engineers, technicians, safety and quality assurance experts, and others. The team includes a crew chief responsible for maintenance on the aircraft and ensuring the aircraft is ready for flight.

“I try to always walk up and shake the crew chief’s hand,” said Nils Larson, NASA X-59 lead test pilot. “Because it’s not your airplane – it’s the crew chief’s airplane – and they’re trusting you with it. You’re just borrowing it for an hour or two, then bringing it back and handing it over.”

Larson, set to serve as pilot for first flight, may only be borrowing the aircraft from the X-59’s crew chiefs – Matt Arnold from X-59 contractor Lockheed Martin and Juan Salazar from NASA – but plenty of the aircraft’s safety systems were designed specifically to protect the pilot in flight.

The X-59’s life support system is designed to deliver oxygen through the pilot’s mask to compensate for the decreased atmospheric pressure at the aircraft’s cruising altitude of 55,000 feet – altitudes more than twice as high as that of a typical airliner. In order to withstand high-altitude flight, Larson will also wear a counter-pressure garment, or g-suit, similar to what fighter pilots wear.

In the unlikely event it’s needed, the X-59 also features an ejection seat and canopy adapted from a U.S. Air Force T-38 trainer, which comes equipped with essentials like a first aid kit, radio, and water. Due to the design, build, and test rigor put into the X-59, the ejection seat is a safety measure.

All these systems form a network of safety, adding confidence to the pilot and engineers as they approach to the next milestone – first flight.

“There’s a lot of trust that goes into flying something new,” Larson said. “You’re trusting the engineers, the maintainers, the designers – everyone who has touched the aircraft. And if I’m not comfortable, I’m not getting in. But if they trust the aircraft, and they trust me in it, then I’m all in.”

Share Details Last Updated Sep 12, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.govLocationArmstrong Flight Research Center Related Terms Explore More 3 min read NASA, War Department Partnership Tests Boundaries of Autonomous Drone Operations Article 3 days ago 3 min read NASA, Embry-Riddle Enact Agreement to Advance Research, Educational Opportunities Article 4 days ago 4 min read NASA Glenn Tests Mini-X-Ray Technology to Advance Space Health Care   Article 2 weeks ago Keep Exploring Discover More Topics From NASA

Armstrong Flight Research Center

Humans in Space

Climate Change

Solar System

Categories: NASA

NASA’s X-59 Moves Toward First Flight at Speed of Safety

NASA - Breaking News - Fri, 09/12/2025 - 2:37pm
5 Min Read NASA’s X-59 Moves Toward First Flight at Speed of Safety NASA’s X-59 quiet supersonic research aircraft is seen at dawn with firetrucks and safety personnel nearby during a hydrazine safety check at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. The operation highlights the extensive precautions built into the aircraft’s safety procedures for a system that serves as a critical safeguard, ensuring the engine can be restarted in flight as the X-59 prepares for its first flight. Credits: Lockheed Martin

As NASA’s one-of-a-kind X-59 quiet supersonic research aircraft approaches first flight, its team is mapping every step from taxi and takeoff to cruising and landing – and their decision-making is guided by safety.

First flight will be a lower-altitude loop at about 240 mph to check system integration, kicking off a phase of flight testing focused on verifying the aircraft’s airworthiness and safety. During subsequent test flights, the X-59 will go higher and faster, eventually exceeding the speed of sound. The aircraft is designed to fly supersonic while generating a quiet thump rather than a loud sonic boom.

To help ensure that first flight – and every flight after that – will begin and end safely, engineers have layered protection into the aircraft.

The X-59’s Flight Test Instrumentation System (FTIS) serves as one of its primary record keepers, collecting and transmitting audio, video, data from onboard sensors, and avionics information – all of which NASA will track across the life of the aircraft.

“We record 60 different streams of data with over 20,000 parameters on board,” said Shedrick Bessent, NASA X-59 instrumentation engineer. “Before we even take off, it’s reassuring to know the system has already seen more than 200 days of work.”

Through ground tests and system evaluations, the system has already generated more than 8,000 files over 237 days of recording. That record provides a detailed history that helps engineers verify the aircraft’s readiness for flight.

Maintainers perform a hydrazine safety check on the agency’s quiet supersonic X-59 aircraft at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. Hydrazine is a highly toxic chemical, but it serves as a critical backup to restart the engine in flight, if necessary, and is one of several safety features being validated ahead of the aircraft’s first flight.Credits: Lockheed Martin

“There’s just so much new technology on this aircraft, and if a system like FTIS can offer a bit of relief by showing us what’s working – with reliability and consistency – that reduces stress and uncertainty,” Bessent said. “I think that helps the project just as much as it helps our team.”

The aircraft also uses a digital fly-by-wire system that will keep the aircraft stable and limit unsafe maneuvers. First developed in the 1970s at NASA’s Armstrong Flight Research Center in Edwards, California, digital fly-by-wire replaced how aircraft were flown, moving away from traditional cables and pulleys to computerized flight controls and actuators.

On the X-59, the pilot’s inputs – such as movement of the stick or throttle – are translated into electronic signals and decoded by a computer. Those signals are then sent through fiber-optic wires to the aircraft’s surfaces, like its wings and tail.

Additionally, the aircraft uses multiple computers that back each other up and keep the system operating. If one fails, another takes over. The same goes for electrical and hydraulic systems, which also have independent backup systems to ensure the aircraft can fly safely.

Onboard batteries back up the X-59’s hydraulic and electrical systems, with thermal batteries driving the electric pump that powers hydraulics. Backing up the engine is an emergency restart system that uses hydrazine, a highly reactive liquid fuel. In the unlikely event of a loss of power, the hydrazine system would restart the engine in flight. The system would help restore power so the pilot could stabilize or recover the aircraft.

Maintainers perform a hydrazine safety check on NASA’s quiet supersonic X-59 aircraft at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. Hydrazine is a highly toxic chemical, but it serves as a critical backup to restart the engine in flight, if necessary, which is one of several safety features being validated ahead of the aircraft’s first flight. Credits: Lockheed Martin Protective Measures

Behind each of these systems is a team of engineers, technicians, safety and quality assurance experts, and others. The team includes a crew chief responsible for maintenance on the aircraft and ensuring the aircraft is ready for flight.

“I try to always walk up and shake the crew chief’s hand,” said Nils Larson, NASA X-59 lead test pilot. “Because it’s not your airplane – it’s the crew chief’s airplane – and they’re trusting you with it. You’re just borrowing it for an hour or two, then bringing it back and handing it over.”

Larson, set to serve as pilot for first flight, may only be borrowing the aircraft from the X-59’s crew chiefs – Matt Arnold from X-59 contractor Lockheed Martin and Juan Salazar from NASA – but plenty of the aircraft’s safety systems were designed specifically to protect the pilot in flight.

The X-59’s life support system is designed to deliver oxygen through the pilot’s mask to compensate for the decreased atmospheric pressure at the aircraft’s cruising altitude of 55,000 feet – altitudes more than twice as high as that of a typical airliner. In order to withstand high-altitude flight, Larson will also wear a counter-pressure garment, or g-suit, similar to what fighter pilots wear.

In the unlikely event it’s needed, the X-59 also features an ejection seat and canopy adapted from a U.S. Air Force T-38 trainer, which comes equipped with essentials like a first aid kit, radio, and water. Due to the design, build, and test rigor put into the X-59, the ejection seat is a safety measure.

All these systems form a network of safety, adding confidence to the pilot and engineers as they approach to the next milestone – first flight.

“There’s a lot of trust that goes into flying something new,” Larson said. “You’re trusting the engineers, the maintainers, the designers – everyone who has touched the aircraft. And if I’m not comfortable, I’m not getting in. But if they trust the aircraft, and they trust me in it, then I’m all in.”

Share Details Last Updated Sep 12, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.govLocationArmstrong Flight Research Center Related Terms Explore More 3 min read NASA, War Department Partnership Tests Boundaries of Autonomous Drone Operations Article 2 days ago 3 min read NASA, Embry-Riddle Enact Agreement to Advance Research, Educational Opportunities Article 3 days ago 4 min read NASA Glenn Tests Mini-X-Ray Technology to Advance Space Health Care   Article 2 weeks ago Keep Exploring Discover More Topics From NASA

Armstrong Flight Research Center

Humans in Space

Climate Change

Solar System

Categories: NASA

NASA, War Department Partnership Tests Boundaries of Autonomous Drone Operations

NASA News - Fri, 09/12/2025 - 2:22pm

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Researchers in the Verification and Validation Lab at NASA’s Ames Research Center in California’s Silicon Valley monitor a simulated drone’s flight path during a test of the FUSE demonstration.NASA/Brandon Torres Navarrete

Through an ongoing collaboration, NASA and the Department of War are working to advance the future of modern drones to support long distance cargo transportation that could increase efficiency, reduce human workload, and enhance safety.  

Researchers from NASA’s Ames Research Center in California’s Silicon Valley recently participated in a live flight demonstration showcasing how drones can successfully fly without their operators being able to see them, a concept known as beyond visual line of sight (BVLOS).  

Cargo drones, a type of Unmanned Aerial Systems (UAS), carried various payloads more than 75 miles across North Dakota, between Grand Forks Air Force Base and Cavalier Space Force Station. This demonstration was conducted as part of the War Department’s UAS Logistics, Traffic, Research, and Autonomy (ULTRA) effort. 

NASA’s UAS Service Supplier (USS) technology helped to demonstrate that cargo drones could operate safely even in complex, shared airspace. During the tests, flight data including location, altitude, and other critical data were transmitted live to the NASA system, ensuring full situational awareness throughout the demonstration. 

Terrence Lewis and Sheryl Jurcak, members of the FUSE project team at NASA Ames, discuss the monitoring efforts of the FUSE demonstration at the Airspace Operations Lab. NASA/Brandon Torres Navarrete

The collaboration between NASA and the Department of War is known as the Federal USS Synthesis Effort (FUSE). The demonstration allowed FUSE researchers to test real-time tracking, situational awareness, and other factors important to safely integrating of drone traffic management into U.S. national airspace. The FUSE work marks an important step towards routine, scalable autonomous cargo drone operations and broader use for future military logistics. 

“NASA and the Department of War have a long and storied partnership, collaborating with one another to contribute to continued advancement of shared American ideals,” said Todd Ericson, senior advisor to the NASA administrator. “FUSE builds upon our interagency cooperation to contribute enhanced capabilities for drones flying beyond the visual line of sight. This mission is the next big step toward true autonomous flight and will yield valuable insights that we can leverage as both the commercial drone, cargo and urban air taxi industries continue to expand and innovate. As always, safety is of paramount importance at NASA, and we are working with our partners at the FAA and Department of Transportation to ensure we regulate this appropriately.” 

Autonomous and semi-autonomous drones could potentially support a broad range of tasks for commercial, military, and private users. They could transport critical medical supplies to remote locations, monitor wildfires from above, allow customers to receive deliveries directly in their backyards. NASA is researching technology to further develop the infrastructure needed for these operations to take place safely and effectively, without disrupting the existing U.S. airspace. 

“This system is crucial for enabling safe, routine BVLOS operations,” said Terrence Lewis, FUSE project manager at NASA Ames. “It ensures all stakeholders can see and respond to drone activity, which provides the operator with greater situational awareness.” 

NASA Ames is collaborating on the FUSE project with the War Department’s Office of the Undersecretary of War for Acquisition and Sustainment. The NASA FUSE effort is also collaborating with ULTRA, a multi-entity partnership including the Office of the Secretary of War, the County of Grand Forks, the Northern Plains UAS Test Site, the Grand Sky Development, the Air Force Research Laboratory, and several other commercial partners, aiming to bolster capabilities within the National Airspace System. 

Share Details Last Updated Sep 12, 2025 Related Terms Explore More 5 min read NASA’s X-59 Moves Toward First Flight at Speed of Safety Article 3 days ago 1 min read Drag Prediction Workshop Series Article 3 days ago 2 min read NASA Ames Science Directorate: Stars of the Month – September 2025 Article 4 days ago Keep Exploring Discover More Topics From NASA

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

NASA, War Department Partnership Tests Boundaries of Autonomous Drone Operations

NASA - Breaking News - Fri, 09/12/2025 - 2:22pm

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Researchers in the Verification and Validation Lab at NASA’s Ames Research Center in California’s Silicon Valley monitor a simulated drone’s flight path during a test of the FUSE demonstration.NASA/Brandon Torres Navarrete

Through an ongoing collaboration, NASA and the Department of War are working to advance the future of modern drones to support long distance cargo transportation that could increase efficiency, reduce human workload, and enhance safety.  

Researchers from NASA’s Ames Research Center in California’s Silicon Valley recently participated in a live flight demonstration showcasing how drones can successfully fly without their operators being able to see them, a concept known as beyond visual line of sight (BVLOS).  

Cargo drones, a type of Unmanned Aerial Systems (UAS), carried various payloads more than 75 miles across North Dakota, between Grand Forks Air Force Base and Cavalier Space Force Station. This demonstration was conducted as part of the War Department’s UAS Logistics, Traffic, Research, and Autonomy (ULTRA) effort. 

NASA’s UAS Service Supplier (USS) technology helped to demonstrate that cargo drones could operate safely even in complex, shared airspace. During the tests, flight data including location, altitude, and other critical data were transmitted live to the NASA system, ensuring full situational awareness throughout the demonstration. 

Terrence Lewis and Sheryl Jurcak, members of the FUSE project team at NASA Ames, discuss the monitoring efforts of the FUSE demonstration at the Airspace Operations Lab. NASA/Brandon Torres Navarrete

The collaboration between NASA and the Department of War is known as the Federal USS Synthesis Effort (FUSE). The demonstration allowed FUSE researchers to test real-time tracking, situational awareness, and other factors important to safely integrating of drone traffic management into U.S. national airspace. The FUSE work marks an important step towards routine, scalable autonomous cargo drone operations and broader use for future military logistics. 

“NASA and the Department of War have a long and storied partnership, collaborating with one another to contribute to continued advancement of shared American ideals,” said Todd Ericson, senior advisor to the NASA administrator. “FUSE builds upon our interagency cooperation to contribute enhanced capabilities for drones flying beyond the visual line of sight. This mission is the next big step toward true autonomous flight and will yield valuable insights that we can leverage as both the commercial drone, cargo and urban air taxi industries continue to expand and innovate. As always, safety is of paramount importance at NASA, and we are working with our partners at the FAA and Department of Transportation to ensure we regulate this appropriately.” 

Autonomous and semi-autonomous drones could potentially support a broad range of tasks for commercial, military, and private users. They could transport critical medical supplies to remote locations, monitor wildfires from above, allow customers to receive deliveries directly in their backyards. NASA is researching technology to further develop the infrastructure needed for these operations to take place safely and effectively, without disrupting the existing U.S. airspace. 

“This system is crucial for enabling safe, routine BVLOS operations,” said Terrence Lewis, FUSE project manager at NASA Ames. “It ensures all stakeholders can see and respond to drone activity, which provides the operator with greater situational awareness.” 

NASA Ames is collaborating on the FUSE project with the War Department’s Office of the Undersecretary of War for Acquisition and Sustainment. The NASA FUSE effort is also collaborating with ULTRA, a multi-entity partnership including the Office of the Secretary of War, the County of Grand Forks, the Northern Plains UAS Test Site, the Grand Sky Development, the Air Force Research Laboratory, and several other commercial partners, aiming to bolster capabilities within the National Airspace System. 

Share Details Last Updated Sep 12, 2025 Related Terms Explore More 5 min read NASA’s X-59 Moves Toward First Flight at Speed of Safety Article 2 days ago 1 min read Drag Prediction Workshop Series Article 3 days ago 2 min read NASA Ames Science Directorate: Stars of the Month – September 2025 Article 3 days ago Keep Exploring Discover More Topics From NASA

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

A Brief Outburst

NASA Image of the Day - Fri, 09/12/2025 - 11:37am
The Sun blew out a coronal mass ejection along with part of a solar filament over a three-hour period on Feb. 24, 2015. While some of the strands fell back into the Sun, a substantial part raced into space in a bright cloud of particles (as observed by the NASA-ESA Solar and Heliospheric Observatory spacecraft). Because this occurred way over near the edge of the Sun, it was unlikely to have any effect on Earth.
Categories: Astronomy, NASA