"For the sage, time is only of significance in that within it the steps of becoming can unfold in clearest sequence."

— I Ching

NASA

Advancing Single-Photon Sensing Image Sensors to Enable the Search for Life Beyond Earth

NASA News - Tue, 09/02/2025 - 10:00am
Advancing Single-Photon Sensing Image Sensors to Enable the Search for Life Beyond Earth

A NASA-sponsored team is advancing single-photon sensing Complementary Metal-Oxide-Semiconductor (CMOS) detector technology that will enable future NASA astrophysics space missions to search for life on other planets. As part of their detector maturation program, the team is characterizing sensors before, during, and after high-energy radiation exposure; developing novel readout modes to mitigate radiation-induced damage; and simulating a near-infrared CMOS pixel prototype capable of detecting individual photons.

Single-photon sensing and photon-number resolving CMOS image sensors: a 9.4 Mpixel sensor (left) and a 16.7 Mpixel sensor (right). Credit: CfD, RIT

Are we alone in the universe? This age-old question has inspired scientific exploration for centuries. If life on other planets evolves similarly to life on Earth, it can imprint its presence in atmospheric spectral features known asbiosignatures. They include absorption and emission lines in the spectrum produced by oxygen, carbon dioxide, methane, and other molecules that could indicate conditions which can support life. A future NASA astrophysics mission, the Habitable Worlds Observatory (HWO), will seek to find biosignatures in the ultraviolet, optical, and near-infrared (NIR) spectra of exoplanet atmospheres to look for evidence that life may exist elsewhere in the universe.

HWO will need highly sensitive detector technology to detect these faint biosignatures on distant exoplanets. The Single-Photon Sensing Complementary Metal-Oxide-Semiconductor (SPSCMOS) image sensor is a promising technology for this application. These silicon-based sensors can detect and resolve individual optical-wavelength photons using a low-capacitance, high-gain floating diffusion sense node. They operate effectively over a broad temperature range, including at room temperature. They have near-zero read noise, are tolerant to radiation, and generate very little unwanted signal—such as dark current. When cooled to 250 K, the dark current drops to just one electron every half-hour. If either the read noise or dark current is too high, the sensor will fail to detect the faint signals that biosignatures produce.

A research team at the Rochester Institute of Technology (RIT) Center for Detectors (CfD) is accelerating the readiness of these SPSCMOS sensors for use in space missions through detector technology maturation programs funded by NASA’s Strategic Astrophysics Technology and Early Stage Innovations solicitations. These development programs include several key goals:

  • Characterize critical detector performance metrics like dark current, quantum efficiency, and read noise before, during, and after exposure to high-energy radiation
  • Develop new readout modes for these sensors to mitigate effects from short-term and long-term radiation damage
  • Design a new NIR version of the sensor using Technology Computer-Aided Design (TCAD) software

SPSCMOS sensors operate similarly to traditional CMOS image sensors but are optimized to detect individual photons—an essential capability for ultra-sensitive space-based observations, such as measuring the gases in the atmospheres of exoplanets. Incoming photons enter the sensor and generate free charges (electrons) in the sensor material. These charges collect in a pixel’s storage well and eventually transfer to a low-capacitance component called the floating diffusion (FD) sense node where each free charge causes a large and resolved voltage shift. This voltage shift is then digitized to read the signal.

Experiments that measure sensor performance in a space relevant environment use a vacuum Dewar and a thermally-controlled mount to allow precise tuning of the sensors temperature. The Dewar enables testing at conditions that match the expected thermal environment of the HWO instrument, and can even cool the sensor and its on-chip circuits to temperatures colder than any prior testing reported for this detector family. These tests are critical for revealing performance limitations with respect to detector metrics like dark current, quantum efficiency, and read noise. As temperatures change, the electrical properties of on-chip circuits can also change, which affects the read out of charge in a pixel.

The two figures show results for SPSCMOS devices. The figure on the left shows a photon counting histogram with peaks that correspond to photon number. The figure on the right shows the dark current for a SPSCMOS device before and after exposure to 50 krad of 60 MeV protons. Credit: CfD, RIT

The radiation-rich environment for HWO will cause temporary and permanent effects in the sensor. These effects can corrupt the signal measured in a pixel, interrupt sensor clocking and digital logic, and can cause cumulative damage that gradually degrades sensor performance. To mitigate the loss of detector sensitivity throughout a mission lifetime, the RIT team is developing new readout modes that are not available in commercial CMOS sensors. These custom modes sample the signal over time (a “ramp” acquisition) to enable the detection and removal of cosmic ray artifacts. In one mode, when the system identifies an artifact, it segments the signal ramp and selectively averages the segments to reconstruct the original signal—preserving scientific data that would otherwise be lost. In addition, a real-time data acquisition system monitors the detector’s power consumption, which may change from the accumulation of damage throughout a mission. The acquisition system records these shifts and communicates with the detector electronics to adjust voltages and maintain nominal operation. These radiation damage mitigation strategies will be evaluated during a number of test programs at ground-based radiation facilities. The tests will help identify unique failure mechanisms that impact SPSCMOS technology when it is exposed to radiation equivalent to the dose expected for HWO.

Custom acquisition electronics (left) that will control the sensors during radiation tests, and an image captured using this system (right). Credit: CfD, RIT

While existing SPSCMOS sensors are limited to detecting visible light due to their silicon-based design, the RIT team is developing the world’s first NIR single-photon photodiode based on the architecture used in the optical sensors. The photodiode design starts as a simulation in TCAD software to model the optical and electrical properties of the low-capacitance CMOS architecture. The model simulates light-sensitive circuits using both silicon and Mercury Cadmium Telluride (HgCdTe or MCT) material to determine how well the pixel would measure photo-generated charge if a semiconductor foundry physically fabricated it. It has 2D and 3D device structures that convert light into electrical charge, and circuits to control charge transfer and signal readout with virtual probes that can measure current flow and electric potential. These simulations help to evaluate the key mechanisms like the conversion of light into electrons, storing and transferring the electrons, and the output voltage of the photodiode sampling circuit.

In addition to laboratory testing, the project includes performance evaluations at a ground-based telescope. These tests allow the sensor to observe astronomical targets that cannot be fully replicated in lab. Star fields and diffuse nebulae challenge the detector’s full signal chain under real sky backgrounds with faint flux levels, field-dependent aberrations, and varying seeing conditions. These observations help identify performance limitations that may not be apparent in controlled laboratory measurements.

In January 2025, a team of researchers led by PhD student Edwin Alexani used an SPSCMOS-based camera at the C.E.K. Mees Observatory in Ontario County, New York. They observed star cluster M36 to evaluate the sensor’s photometric precision, and the Bubble Nebula in a narrow-band H-alpha filter. The measured dark current and read noise were consistent with laboratory results.

The team observed photometric reference stars to estimate the quantum efficiency (QE) or the ability for the detector to convert photons into signal. The calculated QE agreed with laboratory measurements, despite differences in calibration methods.

The team also observed the satellite STARLINK-32727 as it passed through the telescope’s field of view and measured negligible persistent charge—residual signal that can remain in detector pixels after exposure to a bright source. Although the satellite briefly produced a bright streak across several pixels due to reflected sunlight, the average latent charge in affected pixels was only 0.03 e–/pix – well below both the sky-background and sensor’s read noise.

Images captured at the C.E.K. Mees Observatory. Left: The color image shows M36 in the Johnson color filters B (blue), V (green), and R (red) bands (left). Right: Edwin Alexani and the SPSCMOS camera (right). Credit: : CfD, RIT

As NASA advances and matures the HWO mission, SPSCMOS technology promises to be a game-changer for exoplanet and general astrophysics research. These sensors will enhance our ability to detect and analyze distant worlds, bringing us one step closer to answering one of humanity’s most profound questions: are we alone?

For additional details, see the entry for this project on NASA TechPort.

Project Lead(s): Dr. Donald F. Figer, Future Photon Initiative and Center for Detectors, Rochester Institute of Technology (RIT), supported by engineer Justin Gallagher and a team of students.

Sponsoring Organization(s): NASA Astrophysics Division, Strategic Astrophysics Technology (SAT) Program and NASA Space Technology Mission Directorate (STMD), Early Stage Innovations (ESI) Program

Share

Details

Last Updated

Sep 02, 2025

Related Terms Explore More

2 min read Hubble Homes in on Galaxy’s Star Formation

Article


4 days ago

5 min read From NASA Citizen Scientist to Astronaut Training: An Interview with Benedetta Facini

Article


1 week ago

5 min read Astronomers Map Stellar ‘Polka Dots’ Using NASA’s TESS, Kepler

Article


1 week ago

Categories: NASA

Tech From NASA’s Hurricane-hunting TROPICS Flies on Commercial Satellites

NASA - Breaking News - Tue, 09/02/2025 - 9:53am

NASA science and American industry have worked hand-in-hand for more than 60 years, transforming novel technologies created with NASA research into commercial products like cochlear implants, memory-foam mattresses, and more. Now, a NASA-funded device for probing the interior of storm systems has been made a key component of commercial weather satellites.

The novel atmospheric sounder was originally developed for NASA’s TROPICS (short for Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of SmallSats), which launched in 2023. Boston-based weather technology company Tomorrow.io integrated the same instrument design into some of its satellites.

NASA’s TROPICS instrument. TROPICS pioneered a novel, compact atmospheric sound now flying aboard a fleet of commercial small satellites created by the weather technology company Tomorrow.io.Credit: Blue Canyon Technologies

Atmospheric sounders allow researchers to gather data describing humidity, temperature, and wind speed — important factors for weather forecasting and atmospheric analysis. From low-Earth orbit, these devices help make air travel safer, shipping more efficient, and severe weather warnings more reliable.

Novel tools for Observing Storm Systems

In the early 2000s, meteorologists and atmospheric chemists were eager to find a new science tool that could peer deep inside storm systems and do so multiple times a day. At the same time, CubeSat constellations (groupings of satellites each no larger than a shoebox) were emerging as promising, low-cost platforms for increasing the frequency with which individual sensors could pass over fast-changing storms, which improves the accuracy of weather models.

The challenge was to create an instrument small enough to fit aboard a satellite the size of a toaster, yet powerful enough to observe the innermost mechanisms of storm development. Preparing these technologies required years of careful development that was primarily supported by NASA’s Earth Science Division.

William Blackwell and his team at MIT Lincoln Laboratory in Cambridge, Massachusetts, accepted this challenge and set out to miniaturize vital components of atmospheric sounders. “These were instruments the size of a washing machine, flying on platforms the size of a school bus,” said Blackwell, the principal investigator for TROPICS. “How in the world could we shrink them down to the size of a coffee mug?”

With a 2010 award from NASA’s Earth Science Technology Office (ESTO), Blackwell’s team created an ultra-compact microwave receiver, a component that can sense the microwave radiation within the interior of storms.

The Lincoln Lab receiver weighed about a pound and took up less space than a hockey puck. This innovation paved the way for a complete atmospheric sounder instrument small enough to fly aboard a CubeSat. “The hardest part was figuring out how to make a compact back-end to this radiometer,” Blackwell said. “So without ESTO, this would not have happened. That initial grant was critical.”

In 2023, that atmospheric sounder was sent into space aboard four TROPICS CubeSats, which have been collecting torrents of data on the interior of severe storms around the world.

Transition to Industry

By the time TROPICS launched, Tomorrow.io developers knew they wanted Blackwell’s microwave receiver technology aboard their own fleet of commercial weather satellites. “We looked at two or three different options, and TROPICS was the most capable instrument of those we looked at,” said Joe Munchak, a senior atmospheric data scientist at Tomorrow.io.

In 2022, the company worked with Blackwell to adapt his team’s design into a CubeSat platform about twice the size of the one used for TROPICS. A bigger platform, Blackwell explained, meant they could bolster the sensor’s capabilities.

“When we first started conceptualizing this, the 3-unit CubeSat was the only game in town. Now we’re using a 6-unit CubeSat, so we have room for onboard calibration,” which improves the accuracy and reliability of gathered data, Blackwell said.

Tomorrow.io’s first atmospheric sounders, Tomorrow-S1 and Tomorrow-S2, launched in 2024. By the end of 2025, the company plans to have a full constellation of atmospheric sounders in orbit. The company also has two radar instruments that were launched in 2023 and were influenced by NASA’s RainCube instrument — the first CubeSat equipped with an active precipitation radar.

More CubeSats leads to more accurate weather data because there are more opportunities each day — revisits — to collect data. “With a fleet size of 18, we can easily get our revisit rate down to under an hour, maybe even 40 to 45 minutes in most places. It has a huge impact on short-term forecasts,” Munchak said.

Having access to an atmospheric sounder that had already flown in space and had more than 10 years of testing was extremely useful as Tomorrow.io planned its fleet. “It would not have been possible to do this nearly as quickly or nearly as affordably had NASA not paved the way,” said Jennifer Splaingard, Tomorrow.io’s senior vice president for space and sensors.

A Cycle of Innovation

The relationship between NASA and industry is symbiotic. NASA and its grantees can drive innovation and test new tools, equipping American businesses with novel technologies they may otherwise be unable to develop on their own. In exchange, NASA gains access to low-cost data sets that can supplement information gathered through its larger science missions.

Tomorrow.io was among eight companies selected by NASA’s Commercial SmallSat Data Acquisition (CSDA) program in September 2024 to equip NASA with data that will help improve weather forecasting models. “It really is a success story of technology transfer. It’s that sweet spot, where the government partners with tech companies to really take an idea, a proven concept, and run with it,” Splaingard said.

By Gage Taylor

NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share Details Last Updated Sep 02, 2025 Related Terms
Categories: NASA

Tech From NASA’s Hurricane-hunting TROPICS Flies on Commercial Satellites

NASA News - Tue, 09/02/2025 - 9:53am

NASA science and American industry have worked hand-in-hand for more than 60 years, transforming novel technologies created with NASA research into commercial products like cochlear implants, memory-foam mattresses, and more. Now, a NASA-funded device for probing the interior of storm systems has been made a key component of commercial weather satellites.

The novel atmospheric sounder was originally developed for NASA’s TROPICS (short for Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of SmallSats), which launched in 2023. Boston-based weather technology company Tomorrow.io integrated the same instrument design into some of its satellites.

NASA’s TROPICS instrument. TROPICS pioneered a novel, compact atmospheric sound now flying aboard a fleet of commercial small satellites created by the weather technology company Tomorrow.io.Credit: Blue Canyon Technologies

Atmospheric sounders allow researchers to gather data describing humidity, temperature, and wind speed — important factors for weather forecasting and atmospheric analysis. From low-Earth orbit, these devices help make air travel safer, shipping more efficient, and severe weather warnings more reliable.

Novel tools for Observing Storm Systems

In the early 2000s, meteorologists and atmospheric chemists were eager to find a new science tool that could peer deep inside storm systems and do so multiple times a day. At the same time, CubeSat constellations (groupings of satellites each no larger than a shoebox) were emerging as promising, low-cost platforms for increasing the frequency with which individual sensors could pass over fast-changing storms, which improves the accuracy of weather models.

The challenge was to create an instrument small enough to fit aboard a satellite the size of a toaster, yet powerful enough to observe the innermost mechanisms of storm development. Preparing these technologies required years of careful development that was primarily supported by NASA’s Earth Science Division.

William Blackwell and his team at MIT Lincoln Laboratory in Cambridge, Massachusetts, accepted this challenge and set out to miniaturize vital components of atmospheric sounders. “These were instruments the size of a washing machine, flying on platforms the size of a school bus,” said Blackwell, the principal investigator for TROPICS. “How in the world could we shrink them down to the size of a coffee mug?”

With a 2010 award from NASA’s Earth Science Technology Office (ESTO), Blackwell’s team created an ultra-compact microwave receiver, a component that can sense the microwave radiation within the interior of storms.

The Lincoln Lab receiver weighed about a pound and took up less space than a hockey puck. This innovation paved the way for a complete atmospheric sounder instrument small enough to fly aboard a CubeSat. “The hardest part was figuring out how to make a compact back-end to this radiometer,” Blackwell said. “So without ESTO, this would not have happened. That initial grant was critical.”

In 2023, that atmospheric sounder was sent into space aboard four TROPICS CubeSats, which have been collecting torrents of data on the interior of severe storms around the world.

Transition to Industry

By the time TROPICS launched, Tomorrow.io developers knew they wanted Blackwell’s microwave receiver technology aboard their own fleet of commercial weather satellites. “We looked at two or three different options, and TROPICS was the most capable instrument of those we looked at,” said Joe Munchak, a senior atmospheric data scientist at Tomorrow.io.

In 2022, the company worked with Blackwell to adapt his team’s design into a CubeSat platform about twice the size of the one used for TROPICS. A bigger platform, Blackwell explained, meant they could bolster the sensor’s capabilities.

“When we first started conceptualizing this, the 3-unit CubeSat was the only game in town. Now we’re using a 6-unit CubeSat, so we have room for onboard calibration,” which improves the accuracy and reliability of gathered data, Blackwell said.

Tomorrow.io’s first atmospheric sounders, Tomorrow-S1 and Tomorrow-S2, launched in 2024. By the end of 2025, the company plans to have a full constellation of atmospheric sounders in orbit. The company also has two radar instruments that were launched in 2023 and were influenced by NASA’s RainCube instrument — the first CubeSat equipped with an active precipitation radar.

More CubeSats leads to more accurate weather data because there are more opportunities each day — revisits — to collect data. “With a fleet size of 18, we can easily get our revisit rate down to under an hour, maybe even 40 to 45 minutes in most places. It has a huge impact on short-term forecasts,” Munchak said.

Having access to an atmospheric sounder that had already flown in space and had more than 10 years of testing was extremely useful as Tomorrow.io planned its fleet. “It would not have been possible to do this nearly as quickly or nearly as affordably had NASA not paved the way,” said Jennifer Splaingard, Tomorrow.io’s senior vice president for space and sensors.

A Cycle of Innovation

The relationship between NASA and industry is symbiotic. NASA and its grantees can drive innovation and test new tools, equipping American businesses with novel technologies they may otherwise be unable to develop on their own. In exchange, NASA gains access to low-cost data sets that can supplement information gathered through its larger science missions.

Tomorrow.io was among eight companies selected by NASA’s Commercial SmallSat Data Acquisition (CSDA) program in September 2024 to equip NASA with data that will help improve weather forecasting models. “It really is a success story of technology transfer. It’s that sweet spot, where the government partners with tech companies to really take an idea, a proven concept, and run with it,” Splaingard said.

By Gage Taylor

NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share Details Last Updated Sep 02, 2025 Related Terms
Categories: NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Mon, 09/01/2025 - 4:00pm

What's hovering above the Sun?


Categories: Astronomy, NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Sun, 08/31/2025 - 12:00pm

Sometimes even the sky surprises you.


Categories: Astronomy, NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Sat, 08/30/2025 - 8:00am

At the core of the


Categories: Astronomy, NASA

NASA Astronaut Megan McArthur Retires

NASA News - Fri, 08/29/2025 - 11:21am
NASA astronaut and Expedition 65 Flight Engineer Megan McArthur removes Kidney Cells-02 hardware inside the Space Automated Bioproduct Laboratory and swaps media inside the Microgravity Science Glovebox. The human research study seeks to improve treatments for kidney stones and osteoporosis

NASA astronaut Megan McArthur has retired, concluding a career spanning more than two decades. A veteran of two spaceflights, McArthur logged 213 days in space, including being the first woman to pilot a SpaceX Dragon spacecraft and the last person to “touch” the Hubble Space Telescope with the space shuttle’s robotic arm.

McArthur launched as pilot of NASA’s SpaceX Crew-2 mission in April 2021, marking her second spaceflight and her first long-duration stay aboard the International Space Station. During the 200-day mission, she served as a flight engineer for Expeditions 65/66, conducting a wide array of scientific experiments in human health, materials sciences, and robotics to advance exploration of the Moon under Artemis and prepare to send American astronauts to Mars.

Her first spaceflight was STS-125 in 2009, aboard the space shuttle Atlantis, the fifth and final servicing mission to Hubble. As a mission specialist, she was responsible for capturing the telescope with the robotic arm, as well as supporting five spacewalks to update and repair Hubble after its first 19 years in space. She also played a key role in supporting shuttle operations during launch, rendezvous with the telescope, and landing.

“Megan’s thoughtful leadership, operational excellence, and deep commitment to science and exploration have made a lasting impact,” said Steve Koerner, acting director of NASA’s Johnson Space Center in Houston. “Her contributions have helped shape the future of human space exploration, and we are incredibly grateful for her service.”

In addition to her flight experience, McArthur has served in various technical and leadership roles within NASA. In 2019, she became the deputy division chief of the Astronaut Office, supporting astronaut training, development, and ongoing spaceflight operations. She also served as the assistant director of flight operations for the International Space Station Program starting in 2017.

Since 2022, McArthur has served as the chief science officer at Space Center Houston, NASA Johnson’s official visitor center. Continuing in this role, she actively promotes public engagement with space exploration themes, aiming to increase understanding of the benefits to humanity and enhance science literacy.

“Megan brought a unique combination of technical skill and compassion to everything she did,” said Joe Acaba, chief of the Astronaut Office at NASA Johnson. “Whether in space or on the ground, she embodied the best of what it means to be an astronaut and a teammate. Her contributions will be felt by the next generation of explorers she helped train.”

McArthur was born in Honolulu and raised as a “Navy kid” in many different locations worldwide. She earned a Bachelor of Science in aerospace engineering from the University of California, Los Angeles, and a doctorate in oceanography from the Scripps Institution of Oceanography at the University of California, San Diego. Before being selected as an astronaut in 2000, she conducted oceanographic research focusing on underwater acoustics, which involved shipboard work and extensive scuba diving.

McArthur is married to former NASA astronaut Robert Behnken, who also flew aboard the Dragon Endeavour spacecraft during the agency’s SpaceX Demo-2 mission in 2020.

“It was an incredible privilege to serve as a NASA astronaut, working with scientists from around the world on cutting-edge research that continues to have a lasting impact here on Earth and prepares humanity for future exploration at the Moon and Mars,” said McArthur. “From NASA’s Hubble Space Telescope to the International Space Station, our research lab in low Earth orbit, humanity has developed incredible tools that help us answer important scientific questions, solve complex engineering challenges, and gain a deeper understanding of our place in the universe. Seeing our beautiful planet from space makes it so clear how fragile and precious our home is, and how vital it is that we protect it. I am grateful I had the opportunity to contribute to this work, and I’m excited to watch our brilliant engineers and scientists at NASA conquer new challenges and pursue further scientific discoveries for the benefit of all.”

To learn more about NASA’s astronauts and their contributions to space exploration, visit:

https://www.nasa.gov/astronauts

-end-

Shaneequa Vereen
Johnson Space Center, Houston
281-483-5111
shaneequa.y.vereen@nasa.gov

Categories: NASA

NASA Astronaut Megan McArthur Retires

NASA - Breaking News - Fri, 08/29/2025 - 11:21am
NASA astronaut and Expedition 65 Flight Engineer Megan McArthur removes Kidney Cells-02 hardware inside the Space Automated Bioproduct Laboratory and swaps media inside the Microgravity Science Glovebox. The human research study seeks to improve treatments for kidney stones and osteoporosis

NASA astronaut Megan McArthur has retired, concluding a career spanning more than two decades. A veteran of two spaceflights, McArthur logged 213 days in space, including being the first woman to pilot a SpaceX Dragon spacecraft and the last person to “touch” the Hubble Space Telescope with the space shuttle’s robotic arm.

McArthur launched as pilot of NASA’s SpaceX Crew-2 mission in April 2021, marking her second spaceflight and her first long-duration stay aboard the International Space Station. During the 200-day mission, she served as a flight engineer for Expeditions 65/66, conducting a wide array of scientific experiments in human health, materials sciences, and robotics to advance exploration of the Moon under Artemis and prepare to send American astronauts to Mars.

Her first spaceflight was STS-125 in 2009, aboard the space shuttle Atlantis, the fifth and final servicing mission to Hubble. As a mission specialist, she was responsible for capturing the telescope with the robotic arm, as well as supporting five spacewalks to update and repair Hubble after its first 19 years in space. She also played a key role in supporting shuttle operations during launch, rendezvous with the telescope, and landing.

“Megan’s thoughtful leadership, operational excellence, and deep commitment to science and exploration have made a lasting impact,” said Steve Koerner, acting director of NASA’s Johnson Space Center in Houston. “Her contributions have helped shape the future of human space exploration, and we are incredibly grateful for her service.”

In addition to her flight experience, McArthur has served in various technical and leadership roles within NASA. In 2019, she became the deputy division chief of the Astronaut Office, supporting astronaut training, development, and ongoing spaceflight operations. She also served as the assistant director of flight operations for the International Space Station Program starting in 2017.

Since 2022, McArthur has served as the chief science officer at Space Center Houston, NASA Johnson’s official visitor center. Continuing in this role, she actively promotes public engagement with space exploration themes, aiming to increase understanding of the benefits to humanity and enhance science literacy.

“Megan brought a unique combination of technical skill and compassion to everything she did,” said Joe Acaba, chief of the Astronaut Office at NASA Johnson. “Whether in space or on the ground, she embodied the best of what it means to be an astronaut and a teammate. Her contributions will be felt by the next generation of explorers she helped train.”

McArthur was born in Honolulu and raised as a “Navy kid” in many different locations worldwide. She earned a Bachelor of Science in aerospace engineering from the University of California, Los Angeles, and a doctorate in oceanography from the Scripps Institution of Oceanography at the University of California, San Diego. Before being selected as an astronaut in 2000, she conducted oceanographic research focusing on underwater acoustics, which involved shipboard work and extensive scuba diving.

McArthur is married to former NASA astronaut Robert Behnken, who also flew aboard the Dragon Endeavour spacecraft during the agency’s SpaceX Demo-2 mission in 2020.

“It was an incredible privilege to serve as a NASA astronaut, working with scientists from around the world on cutting-edge research that continues to have a lasting impact here on Earth and prepares humanity for future exploration at the Moon and Mars,” said McArthur. “From NASA’s Hubble Space Telescope to the International Space Station, our research lab in low Earth orbit, humanity has developed incredible tools that help us answer important scientific questions, solve complex engineering challenges, and gain a deeper understanding of our place in the universe. Seeing our beautiful planet from space makes it so clear how fragile and precious our home is, and how vital it is that we protect it. I am grateful I had the opportunity to contribute to this work, and I’m excited to watch our brilliant engineers and scientists at NASA conquer new challenges and pursue further scientific discoveries for the benefit of all.”

To learn more about NASA’s astronauts and their contributions to space exploration, visit:

https://www.nasa.gov/astronauts

-end-

Shaneequa Vereen
Johnson Space Center, Houston
281-483-5111
shaneequa.y.vereen@nasa.gov

Categories: NASA

Landsat 9 Sees Buccaneer Archipelago

NASA Image of the Day - Fri, 08/29/2025 - 11:09am
In the sparsely populated Kimberley region of Western Australia, jagged landforms reach like fingers into the turquoise-blue ocean waters. Along the coastline north of Derby, they used to reach even farther. But rising sea levels submerged part of the coastal landscape, giving rise to hundreds of islands and low-lying reefs that compose the Buccaneer Archipelago.
Categories: Astronomy, NASA

Landsat 9 Sees Buccaneer Archipelago

NASA News - Fri, 08/29/2025 - 11:08am
In the sparsely populated Kimberley region of Western Australia, jagged landforms reach like fingers into the turquoise-blue ocean waters. Along the coastline north of Derby, they used to reach even farther. But rising sea levels submerged part of the coastal landscape, giving rise to hundreds of islands and low-lying reefs that compose the Buccaneer Archipelago.NASA/Michala Garrison; U.S. Geological Survey

The Operational Land Imager on Landsat 9 captured this image of Buccaneer Archipelago on June 11, 2025. The scene encapsulates the striking interactions between land and water in the area where King Sound opens to the Indian Ocean.

The powerful tidal currents stir up sediment in shallow areas, producing the beautiful turquoise swirls visible in this image. This power, however, can be hazardous to seafarers and divers as water rips through the archipelago’s constricted passages. One infamous place of turbulence, known as “Hell’s Gate,” lies in the passage between Gerald Peninsula and Muddle Islands.

Learn more about this archipelago in Western Australia.

Text credit: Kathryn Hansen

Image credit: NASA/Michala Garrison; U.S. Geological Survey

Categories: NASA

Landsat 9 Sees Buccaneer Archipelago

NASA - Breaking News - Fri, 08/29/2025 - 11:08am
In the sparsely populated Kimberley region of Western Australia, jagged landforms reach like fingers into the turquoise-blue ocean waters. Along the coastline north of Derby, they used to reach even farther. But rising sea levels submerged part of the coastal landscape, giving rise to hundreds of islands and low-lying reefs that compose the Buccaneer Archipelago.NASA/Michala Garrison; U.S. Geological Survey

The Operational Land Imager on Landsat 9 captured this image of Buccaneer Archipelago on June 11, 2025. The scene encapsulates the striking interactions between land and water in the area where King Sound opens to the Indian Ocean.

The powerful tidal currents stir up sediment in shallow areas, producing the beautiful turquoise swirls visible in this image. This power, however, can be hazardous to seafarers and divers as water rips through the archipelago’s constricted passages. One infamous place of turbulence, known as “Hell’s Gate,” lies in the passage between Gerald Peninsula and Muddle Islands.

Learn more about this archipelago in Western Australia.

Text credit: Kathryn Hansen

Image credit: NASA/Michala Garrison; U.S. Geological Survey

Categories: NASA

Hubble Homes in on Galaxy’s Star Formation

NASA News - Fri, 08/29/2025 - 9:43am
Explore Hubble

2 min read

Hubble Homes in on Galaxy’s Star Formation This NASA/ESA Hubble Space Telescope image features the asymmetric spiral galaxy Messier 96. ESA/Hubble & NASA, F. Belfiore, D. Calzetti

This NASA/ESA Hubble Space Telescope image features a galaxy whose asymmetric appearance may be the result of a galactic tug of war. Located 35 million light-years away in the constellation Leo, the spiral galaxy Messier 96 is the brightest of the galaxies in its group. The gravitational pull of its galactic neighbors may be responsible for Messier 96’s uneven distribution of gas and dust, asymmetric spiral arms, and off-center galactic core.

This asymmetric appearance is on full display in the new Hubble image that incorporates data from observations made in ultraviolet, near infrared, and visible/optical light. Earlier Hubble images of Messier 96 were released in 2015 and 2018. Each successive image added new data, building up a beautiful and scientifically valuable view of the galaxy.

The 2015 image combined two wavelengths of optical light with one near infrared wavelength. The optical light revealed the galaxy’s uneven form of dust and gas spread asymmetrically throughout its weak spiral arms and its off-center core, while the infrared light revealed the heat of stars forming in clouds shaded pink in the image.

The 2018 image added two more optical wavelengths of light along with one wavelength of ultraviolet light that pinpointed areas where high-energy, young stars are forming.

This latest version offers us a new perspective on Messier 96’s star formation. It includes the addition of light that reveals regions of ionized hydrogen (H-alpha) and nitrogen (NII). This data helps astronomers determine the environment within the galaxy and the conditions in which stars are forming. The ionized hydrogen traces ongoing star formation, revealing regions where hot, young stars are ionizing the gas. The ionized nitrogen helps astronomers determine the rate of star formation and the properties of gas between stars, while the combination of the two ionized gasses helps researchers determine if the galaxy is a starburst galaxy or one with an active galactic nucleus.

The bubbles of pink gas in this image surround hot, young, massive stars, illuminating a ring of star formation in the galaxy’s outskirts. These young stars are still embedded within the clouds of gas from which they were born. Astronomers will use the new data in this image to study how stars are form within giant dusty gas clouds, how dust filters starlight, and how stars affect their environments.

Explore More:
Learn more about why astronomers study light in detail


Explore the different wavelengths of light Hubble sees


Explore the Night Sky: Messier 96

Facebook logo @NASAHubble

@NASAHubble

Instagram logo @NASAHubble

Media Contact:

Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight CenterGreenbelt, MD

Share

Details

Last Updated

Aug 29, 2025

Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center

Related Terms Keep Exploring Discover More Topics From Hubble

Hubble Space Telescope

Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


Hubble Science Highlights


Hubble’s 35th Anniversary


Hubble’s Night Sky Challenge

Categories: NASA

Hubble Homes in on Galaxy’s Star Formation

NASA - Breaking News - Fri, 08/29/2025 - 9:43am
Explore Hubble

2 min read

Hubble Homes in on Galaxy’s Star Formation This NASA/ESA Hubble Space Telescope image features the asymmetric spiral galaxy Messier 96. ESA/Hubble & NASA, F. Belfiore, D. Calzetti

This NASA/ESA Hubble Space Telescope image features a galaxy whose asymmetric appearance may be the result of a galactic tug of war. Located 35 million light-years away in the constellation Leo, the spiral galaxy Messier 96 is the brightest of the galaxies in its group. The gravitational pull of its galactic neighbors may be responsible for Messier 96’s uneven distribution of gas and dust, asymmetric spiral arms, and off-center galactic core.

This asymmetric appearance is on full display in the new Hubble image that incorporates data from observations made in ultraviolet, near infrared, and visible/optical light. Earlier Hubble images of Messier 96 were released in 2015 and 2018. Each successive image added new data, building up a beautiful and scientifically valuable view of the galaxy.

The 2015 image combined two wavelengths of optical light with one near infrared wavelength. The optical light revealed the galaxy’s uneven form of dust and gas spread asymmetrically throughout its weak spiral arms and its off-center core, while the infrared light revealed the heat of stars forming in clouds shaded pink in the image.

The 2018 image added two more optical wavelengths of light along with one wavelength of ultraviolet light that pinpointed areas where high-energy, young stars are forming.

This latest version offers us a new perspective on Messier 96’s star formation. It includes the addition of light that reveals regions of ionized hydrogen (H-alpha) and nitrogen (NII). This data helps astronomers determine the environment within the galaxy and the conditions in which stars are forming. The ionized hydrogen traces ongoing star formation, revealing regions where hot, young stars are ionizing the gas. The ionized nitrogen helps astronomers determine the rate of star formation and the properties of gas between stars, while the combination of the two ionized gasses helps researchers determine if the galaxy is a starburst galaxy or one with an active galactic nucleus.

The bubbles of pink gas in this image surround hot, young, massive stars, illuminating a ring of star formation in the galaxy’s outskirts. These young stars are still embedded within the clouds of gas from which they were born. Astronomers will use the new data in this image to study how stars are form within giant dusty gas clouds, how dust filters starlight, and how stars affect their environments.

Explore More:
Learn more about why astronomers study light in detail


Explore the different wavelengths of light Hubble sees


Explore the Night Sky: Messier 96

Facebook logo @NASAHubble

@NASAHubble

Instagram logo @NASAHubble

Media Contact:

Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight CenterGreenbelt, MD

Share

Details

Last Updated

Aug 29, 2025

Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center

Related Terms Keep Exploring Discover More Topics From Hubble

Hubble Space Telescope

Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


Hubble Science Highlights


Hubble’s 35th Anniversary


Hubble’s Night Sky Challenge

Categories: NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Fri, 08/29/2025 - 4:00am


Categories: Astronomy, NASA

NASA Awards Spaceflight Operations, Systems Organization Contract

NASA - Breaking News - Thu, 08/28/2025 - 4:52pm
Credit: NASA

NASA has awarded ASCEND Aerospace & Technology of Cape Canaveral, Florida, the Contract for Organizing Spaceflight Mission Operations and Systems (COSMOS), to provide services at the agency’s Johnson Space Center in Houston.

The COSMOS is a single award, indefinite-delivery/indefinite-quantity contract valued at $1.8 billion that begins its five-year base period no earlier than Dec. 1, with two option periods that could extend until 2034. The Aerodyne Company of Cape Canaveral, Florida, and Jacobs Technology Company of Tullahoma, Tennessee, are joint venture partners.

Work performed under the contract will support NASA’s Flight Operation Directorate including the Orion and Space Launch System Programs, the International Space Station, Commercial Crew Program, and the Artemis campaign. Services include Mission Control Center systems, training systems, mockup environments, and training for astronauts, instructors, and flight controllers.

For more information about NASA and agency programs, visit:

https://www.nasa.gov

-end-

Tiernan Doyle
Headquarters, Washington
202-358-1600
tiernan.doyle@nasa.gov

Chelsey Ballarte
Johnson Space Center, Houston
281-483-5111
chelsey.n.ballarte@nasa.gov

Share Details Last Updated Aug 28, 2025 LocationNASA Headquarters Related Terms
Categories: NASA

NASA Awards Spaceflight Operations, Systems Organization Contract

NASA News - Thu, 08/28/2025 - 4:52pm
Credit: NASA

NASA has awarded ASCEND Aerospace & Technology of Cape Canaveral, Florida, the Contract for Organizing Spaceflight Mission Operations and Systems (COSMOS), to provide services at the agency’s Johnson Space Center in Houston.

The COSMOS is a single award, indefinite-delivery/indefinite-quantity contract valued at $1.8 billion that begins its five-year base period no earlier than Dec. 1, with two option periods that could extend until 2034. The Aerodyne Company of Cape Canaveral, Florida, and Jacobs Technology Company of Tullahoma, Tennessee, are joint venture partners.

Work performed under the contract will support NASA’s Flight Operation Directorate including the Orion and Space Launch System Programs, the International Space Station, Commercial Crew Program, and the Artemis campaign. Services include Mission Control Center systems, training systems, mockup environments, and training for astronauts, instructors, and flight controllers.

For more information about NASA and agency programs, visit:

https://www.nasa.gov

-end-

Tiernan Doyle
Headquarters, Washington
202-358-1600
tiernan.doyle@nasa.gov

Chelsey Ballarte
Johnson Space Center, Houston
281-483-5111
chelsey.n.ballarte@nasa.gov

Share Details Last Updated Aug 28, 2025 LocationNASA Headquarters Related Terms
Categories: NASA

Portrait of an Astronaut

NASA Image of the Day - Thu, 08/28/2025 - 3:45pm
NASA astronaut Zena Cardman poses for a portrait in a photography studio at NASA’s Johnson Space Center in Houston, Texas.
Categories: Astronomy, NASA

NASA Invites Media to Learn About New Missions to Map Sun’s Influence

NASA News - Thu, 08/28/2025 - 3:44pm
NASA’s IMAP (Interstellar Mapping and Acceleration Probe) mission will map the boundaries of the heliosphere, the bubble created by the solar wind that protects our solar system from cosmic radiation. Credit: NASA/Princeton/Patrick McPike

NASA will hold a media teleconference at 12 p.m. EDT on Thursday, Sept. 4, to discuss the agency’s upcoming Sun and space weather missions, IMAP (Interstellar Mapping and Acceleration Probe) and Carruthers Geocorona Observatory. The two missions are targeting launch on the same rocket no earlier than Tuesday, Sept. 23.

The IMAP mission will map the boundaries of our heliosphere, the vast bubble created by the Sun’s wind that encapsulates our entire solar system. As a modern-day celestial cartographer, IMAP will explore how the heliosphere interacts with interstellar space, as well as chart the range of particles that fill the space between the planets. The IMAP mission also will support near real-time observations of the solar wind and energetic particles. These energetic particles can produce hazardous space weather that can impact spacecraft and other NASA hardware as the agency explores deeper into space, including at the Moon under the Artemis campaign.

NASA’s Carruthers Geocorona Observatory will image the ultraviolet glow of Earth’s exosphere, the outermost region of our planet’s atmosphere. This data will help scientists understand how space weather from the Sun shapes the exosphere and ultimately impacts our planet. The first observation of this glow – called the geocorona – was captured during Apollo 16, when a telescope designed and built by George Carruthers was deployed on the Moon.

Audio of the teleconference will stream live on the agency’s website at:

https://www.nasa.gov/live

Participants include:

  • Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington
  • Teresa Nieves-Chinchilla, director, Moon to Mars Space Weather Analysis Office, NASA’s Goddard Space Flight Center in Greenbelt, Maryland
  • David J. McComas, IMAP principal investigator, Princeton University
  • Lara Waldrop, Carruthers Geocorona Observatory principal investigator, University of Illinois Urbana-Champaign

To participate in the media teleconference, media must RSVP no later than 11 a.m. on Sept. 4 to Sarah Frazier at: sarah.frazier@nasa.gov. NASA’s media accreditation policy is available online.

The IMAP and Carruthers Geocorona Observatory missions will launch on a SpaceX Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Also launching on this flight will be the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow On – Lagrange 1 (SWFO-L1), which will monitor solar wind disturbances and detect and track coronal mass ejections before they reach Earth.

David McComas, professor, Princeton University, leads the IMAP mission with an international team of 27 partner institutions. The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, built the spacecraft and will operate the mission. NASA’s IMAP is the fifth mission in NASA’s Solar Terrestrial Probes Program portfolio.

The Carruthers Geocorona Observatory mission is led by Lara Waldrop from the University of Illinois Urbana-Champaign. Mission implementation is led by the Space Sciences Laboratory at University of California, Berkeley, which also designed and built the two ultraviolet imagers. BAE Systems designed and built the Carruthers spacecraft.

The Solar Terrestrial Probes Program Office, part of the Explorers and Heliophysics Project Division at NASA Goddard, manages the IMAP and Carruthers Geocorona Observatory missions for NASA’s Science Mission Directorate.

NASA’s Launch Services Program, based at NASA Kennedy, manages the launch service for the mission.

To learn more about IMAP, please visit:

https://www.nasa.gov/imap

-end-

Abbey Interrante / Karen Fox
Headquarters, Washington
301-201-0124 / 202-358-1600
abbey.a.interrante@nasa.gov / karen.c.fox@nasa.gov

Sarah Frazier
Goddard Space Flight Center, Greenbelt, Md.
202-853-7191
sarah.frazier@nasa.gov

Share Details Last Updated Aug 28, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
Categories: NASA

NASA Invites Media to Learn About New Missions to Map Sun’s Influence

NASA - Breaking News - Thu, 08/28/2025 - 3:44pm
NASA’s IMAP (Interstellar Mapping and Acceleration Probe) mission will map the boundaries of the heliosphere, the bubble created by the solar wind that protects our solar system from cosmic radiation. Credit: NASA/Princeton/Patrick McPike

NASA will hold a media teleconference at 12 p.m. EDT on Thursday, Sept. 4, to discuss the agency’s upcoming Sun and space weather missions, IMAP (Interstellar Mapping and Acceleration Probe) and Carruthers Geocorona Observatory. The two missions are targeting launch on the same rocket no earlier than Tuesday, Sept. 23.

The IMAP mission will map the boundaries of our heliosphere, the vast bubble created by the Sun’s wind that encapsulates our entire solar system. As a modern-day celestial cartographer, IMAP will explore how the heliosphere interacts with interstellar space, as well as chart the range of particles that fill the space between the planets. The IMAP mission also will support near real-time observations of the solar wind and energetic particles. These energetic particles can produce hazardous space weather that can impact spacecraft and other NASA hardware as the agency explores deeper into space, including at the Moon under the Artemis campaign.

NASA’s Carruthers Geocorona Observatory will image the ultraviolet glow of Earth’s exosphere, the outermost region of our planet’s atmosphere. This data will help scientists understand how space weather from the Sun shapes the exosphere and ultimately impacts our planet. The first observation of this glow – called the geocorona – was captured during Apollo 16, when a telescope designed and built by George Carruthers was deployed on the Moon.

Audio of the teleconference will stream live on the agency’s website at:

https://www.nasa.gov/live

Participants include:

  • Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington
  • Teresa Nieves-Chinchilla, director, Moon to Mars Space Weather Analysis Office, NASA’s Goddard Space Flight Center in Greenbelt, Maryland
  • David J. McComas, IMAP principal investigator, Princeton University
  • Lara Waldrop, Carruthers Geocorona Observatory principal investigator, University of Illinois Urbana-Champaign

To participate in the media teleconference, media must RSVP no later than 11 a.m. on Sept. 4 to Sarah Frazier at: sarah.frazier@nasa.gov. NASA’s media accreditation policy is available online.

The IMAP and Carruthers Geocorona Observatory missions will launch on a SpaceX Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Also launching on this flight will be the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow On – Lagrange 1 (SWFO-L1), which will monitor solar wind disturbances and detect and track coronal mass ejections before they reach Earth.

David McComas, professor, Princeton University, leads the IMAP mission with an international team of 27 partner institutions. The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, built the spacecraft and will operate the mission. NASA’s IMAP is the fifth mission in NASA’s Solar Terrestrial Probes Program portfolio.

The Carruthers Geocorona Observatory mission is led by Lara Waldrop from the University of Illinois Urbana-Champaign. Mission implementation is led by the Space Sciences Laboratory at University of California, Berkeley, which also designed and built the two ultraviolet imagers. BAE Systems designed and built the Carruthers spacecraft.

The Solar Terrestrial Probes Program Office, part of the Explorers and Heliophysics Project Division at NASA Goddard, manages the IMAP and Carruthers Geocorona Observatory missions for NASA’s Science Mission Directorate.

NASA’s Launch Services Program, based at NASA Kennedy, manages the launch service for the mission.

To learn more about IMAP, please visit:

https://www.nasa.gov/imap

-end-

Abbey Interrante / Karen Fox
Headquarters, Washington
301-201-0124 / 202-358-1600
abbey.a.interrante@nasa.gov / karen.c.fox@nasa.gov

Sarah Frazier
Goddard Space Flight Center, Greenbelt, Md.
202-853-7191
sarah.frazier@nasa.gov

Share Details Last Updated Aug 28, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
Categories: NASA

NASA Marsquake Data Reveals Lumpy Nature of Red Planet’s Interior

NASA News - Thu, 08/28/2025 - 2:09pm

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Scientists believe giant impacts — like the one depicted in this artist’s concept — occurred on Mars 4.5 billion years ago, injecting debris from the impact deep into the planet’s mantle. NASA’s InSight lander detected this debris before the mission’s end in 2022.NASA/JPL-Caltech

Rocky material that impacted Mars lies scattered in giant lumps throughout the planet’s mantle, offering clues about Mars’ interior and its ancient past.

What appear to be fragments from the aftermath of massive impacts on Mars that occurred 4.5 billion years ago have been detected deep below the planet’s surface. The discovery was made thanks to NASA’s now-retired InSight lander, which recorded the findings before the mission’s end in 2022. The ancient impacts released enough energy to melt continent-size swaths of the early crust and mantle into vast magma oceans, simultaneously injecting the impactor fragments and Martian debris deep into the planet’s interior.

There’s no way to tell exactly what struck Mars: The early solar system was filled with a range of different rocky objects that could have done so, including some so large they were effectively protoplanets. The remains of these impacts still exist in the form of lumps that are as large as 2.5 miles (4 kilometers) across and scattered throughout the Martian mantle. They offer a record preserved only on worlds like Mars, whose lack of tectonic plates has kept its interior from being churned up the way Earth’s is through a process known as convection.

A cutaway view of Mars in this artist’s concept (not to scale) reveals debris from ancient impacts scattered through the planet’s mantle. On the surface at left, a meteoroid impact sends seismic signals through the interior; at right is NASA’s InSight lander.NASA/JPL-Caltech

The finding was reported Thursday, Aug. 28, in a study published by the journal Science.

“We’ve never seen the inside of a planet in such fine detail and clarity before,” said the paper’s lead author, Constantinos Charalambous of Imperial College London. “What we’re seeing is a mantle studded with ancient fragments. Their survival to this day tells us Mars’ mantle has evolved sluggishly over billions of years. On Earth, features like these may well have been largely erased.”

InSight, which was managed by NASA’s Jet Propulsion Laboratory in Southern California, placed the first seismometer on Mars’ surface in 2018. The extremely sensitive instrument recorded 1,319 marsquakes before the lander’s end of mission in 2022.

NASA’s InSight took this selfie in 2019 using a camera on its robotic arm. The lander also used its arm to deploy the mission’s seismometer, whose data was used in a 2025 study showing impacts left chunks of debris deep in the planet’s interior.NASA/JPL-Caltech

Quakes produce seismic waves that change as they pass through different kinds of material, providing scientists a way to study the interior of a planetary body. To date, the InSight team has measured the size, depth, and composition of Mars’ crust, mantle, and core. This latest discovery regarding the mantle’s composition suggests how much is still waiting to be discovered within InSight’s data.

“We knew Mars was a time capsule bearing records of its early formation, but we didn’t anticipate just how clearly we’d be able to see with InSight,” said Tom Pike of Imperial College London, coauthor of the paper.

Quake hunting

Mars lacks the tectonic plates that produce the temblors many people in seismically active areas are familiar with. But there are two other types of quakes on Earth that also occur on Mars: those caused by rocks cracking under heat and pressure, and those caused by meteoroid impacts.

Of the two types, meteoroid impacts on Mars produce high-frequency seismic waves that travel from the crust deep into the planet’s mantle, according to a paper published earlier this year in Geophysical Research Letters. Located beneath the planet’s crust, the Martian mantle can be as much as 960 miles (1,550 kilometers) thick and is made of solid rock that can reach temperatures as high as 2,732 degrees Fahrenheit (1,500 degrees Celsius).

Scrambled signals

The new Science paper identifies eight marsquakes whose seismic waves contained strong, high-frequency energy that reached deep into the mantle, where their seismic waves were distinctly altered.

“When we first saw this in our quake data, we thought the slowdowns were happening in the Martian crust,” Pike said. “But then we noticed that the farther seismic waves travel through the mantle, the more these high-frequency signals were being delayed.”

Using planetwide computer simulations, the team saw that the slowing down and scrambling happened only when the signals passed through small, localized regions within the mantle. They also determined that these regions appear to be lumps of material with a different composition than the surrounding mantle.

With one riddle solved, the team focused on another: how those lumps got there.

Turning back the clock, they concluded that the lumps likely arrived as giant asteroids or other rocky material that struck Mars during the early solar system, generating those oceans of magma as they drove deep into the mantle, bringing with them fragments of crust and mantle.

Charalambous likens the pattern to shattered glass — a few large shards with many smaller fragments. The pattern is consistent with a large release of energy that scattered many fragments of material throughout the mantle. It also fits well with current thinking that in the early solar system, asteroids and other planetary bodies regularly bombarded the young planets.

On Earth, the crust and uppermost mantle is continuously recycled by plate tectonics pushing a plate’s edge into the hot interior, where, through convection, hotter, less-dense material rises and cooler, denser material sinks. Mars, by contrast, lacks tectonic plates, and its interior circulates far more sluggishly. The fact that such fine structures are still visible today, Charalambous said, “tells us Mars hasn’t undergone the vigorous churning that would have smoothed out these lumps.”

And in that way, Mars could point to what may be lurking beneath the surface of other rocky planets that lack plate tectonics, including Venus and Mercury.

More about InSight

JPL managed InSight for NASA’s Science Mission Directorate. InSight was part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. Lockheed Martin Space in Denver built the InSight spacecraft, including its cruise stage and lander, and supported spacecraft operations for the mission.

A number of European partners, including France’s Centre National d’Études Spatiales (CNES) and the German Aerospace Center (DLR), supported the InSight mission. CNES provided the Seismic Experiment for Interior Structure (SEIS) instrument to NASA, with the principal investigator at IPGP (Institut de Physique du Globe de Paris). Significant contributions for SEIS came from IPGP; the Max Planck Institute for Solar System Research (MPS) in Germany; the Swiss Federal Institute of Technology (ETH Zurich) in Switzerland; Imperial College London and Oxford University in the United Kingdom; and JPL. DLR provided the Heat Flow and Physical Properties Package (HP3) instrument, with significant contributions from the Space Research Center (CBK) of the Polish Academy of Sciences and Astronika in Poland. Spain’s Centro de Astrobiología (CAB) supplied the temperature and wind sensors.

News Media Contacts

Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov

Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

2025-110

Share Details Last Updated Aug 28, 2025 Related Terms Explore More 4 min read NASA: Ceres May Have Had Long-Standing Energy to Fuel Habitability Article 2 weeks ago 4 min read NASA’s Psyche Captures Images of Earth, Moon Article 2 weeks ago 4 min read US-French SWOT Satellite Measures Tsunami After Massive Quake Article 4 weeks ago Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA