Personally, I don't think there's intelligent life on other planets. Why should other planets be any different from this one?

— Bob Monkhouse

NASA

I Am Artemis: Lauren Fisher

NASA - Breaking News - Thu, 05/09/2024 - 3:22pm
Fisher stands in front of the launch vehicle stage adapter for NASA’s SLS (Space Launch System) rocket. The hardware will be used for the agency’s Artemis III mission that will land astronauts on the lunar surface. Fisher works with a number of teams across the agency and believes her background in music education has been an asset to her work as an engineer: “Teaching skills help you look at things from a different perspective and helps with understanding how others might approach a situation – all very helpful when I’m working with teams.”

Not many music majors get to be hands-on with building a Moon rocket, but Lauren Fisher has always enjoyed the unusual.

Now a structural materials engineer at NASA’s Marshall Space Flight Center in Huntsville, Alabama, Fisher works on a key adapter for NASA’s SLS (Space Launch System) rocket for the first crewed missions of NASA’s Artemis campaign.

Manufactured at Marshall by NASA, lead contractor Teledyne Brown Engineering, and the Jacobs Space Exploration Group’s ESSCA contract, the cone-shaped launch vehicle stage adapter partially encloses the rocket’s interim cryogenic propulsion stage and connects it to the core stage below and the Orion stage adapter above. The launch vehicle stage adapter also protects avionics and electrical devices from extreme vibration and acoustic conditions during launch and ascent.

Fisher and the thermal protection system team develop and apply the spray-on foam that acts as insulation and protects the adapter and all its systems from the extreme pressures and temperatures it’ll face during flight. The thermal protection system for the component, unlike other parts of the rocket, is applied by hand using a spray gun. When first applied, the insulation is yellow, but after time and exposure to the Sun, it turns orange.

“We’re taking the same stuff someone might use to insulate their attic, except making it for cryogenic atmospheres, and spraying it all over a giant piece of hardware that will help launch us to the Moon,” Fisher said. “With my work for NASA’s Space Launch System rocket, I get to play with foam and glue. I like to call it arts and crafts engineering!”

Although engineering runs in her family, Fisher initially graduated from University of Southern Mississippi with a Bachelor of Arts in music performance and an interest in music education. She developed an interest in carbon-based polymers, and decided to go back to school, completing a chemical engineering degree with a polymeric materials track from the University of Alabama in Huntsville. Her new degree led to an opportunity to work for the thermal protection system team at Marshall.

When Fisher isn’t in the office, she likes travelling to unusual places and checking items off her self-described “Bizarre Bucket List.” Recently, she went to Punxsutawney, Pennsylvania, to watch the famous groundhog predict an early spring.

Being part of the Artemis Generation is incredibly inspiring for Fisher, who takes pride in her work supporting the first three Artemis missions, including Artemis II, the first crewed mission under Artemis, in 2025.

“I’m literally building the hardware that will send the first woman to deep space,” Fisher says. “Watching our rocket take shape, I’m like ‘you see that thing? I did that; that’s mine. See that one? My team did that one. We did that, and see this?’” She beams with pride. “You can do that, too. Just being a part of the generation that’s changing the workforce and changing the space program — it gives me goosebumps.”

NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft and Gateway in orbit around the Moon and commercial human landing systems, next-generational spacesuits, and rovers on the lunar surface. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.

Categories: NASA

Spitzer Space Telescope Captures Galactic Snack

NASA Image of the Day - Thu, 05/09/2024 - 2:09pm
This image of the Andromeda galaxy uses data from NASA’s retired Spitzer Space Telescope. Multiple wavelengths are shown, revealing stars (in blue and cyan), dust (red), and areas of star formation.
Categories: Astronomy, NASA

Spitzer Space Telescope Captures Galactic Snack

NASA - Breaking News - Thu, 05/09/2024 - 2:07pm
NASA-JPL/Caltech; image processing by IPAC/Robert Hurt

This image, released on May 9, 2024, from NASA’s retired Spitzer Space Telescope shows streams of dust flowing toward the supermassive black hole at the heart of the Andromeda Galaxy. These dust streams can help explain how black holes billions of times the mass of our Sun can satiate their big appetites but remain “quiet” eaters.

Read on to learn how data from Spitzer helped shed light on how some black holes consume gas and dust.

Image Credit: NASA-JPL/Caltech

Categories: NASA

Arizona, New York Students to Hear from NASA Astronauts Aboard Station

NASA - Breaking News - Thu, 05/09/2024 - 1:56pm
(March 26, 2024) — Five NASA astronauts wear eye-protecting specs in anticipation of viewing the April 8 solar eclipse from the International Space Station’s cupola. Credits: NASA

Students from Arizona and New York will have separate opportunities next week to hear from astronauts aboard the International Space Station.

At 12:10 p.m. EDT on Tuesday, May 14, NASA astronauts Jeanette Epps and Tracy C. Dyson will answer prerecorded student questions from Sunnyside Unified School District in Tucson, Arizona, in partnership with the TRiO Upward Bound Program, PIMA Community College, Desert Vista Campus. Participating students are first-generation college bound students from underserved communities, and this opportunity is intended to help spread awareness of Science, Technology, Engineering, and Math (STEM) careers and inspire students to pursue related degrees.

The space-to-Earth call will stream live on NASA+, NASA Television, the NASA app, and the agency’s website.

Media interested in covering the Arizona event should RSVP no later than 5 p.m. on Friday, May 10, by contacting Danny Pacheco at dapacheco@pima.edu or 520-286-7771.

At 11:40 a.m. on Thursday, May 16, NASA astronaut Jeanette Epps will answer prerecorded student questions from P.S. 28 The Thomas Emanuel Early Childhood Center in Corona, New York, in partnership with the New York Hall of Science. Following the live event, the center will host 200 first and second grade students for a one-hour interactive “Living in Space” learning opportunity.

Media interested in covering the New York event should RSVP no later than 5 p.m. on Tuesday, May 14, by contacting Nicole Casamento at ncasamento@nysco.org or 917-302-9242.

The space-to-Earth call will air live on NASA+, NASA Television, the NASA app, and the agency’s website.

For more than 23 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts living aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN (Space Communications and Navigation) Near Space Network.

Important research and technology investigations taking place aboard the International Space station benefits people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars. Inspiring Artemis Generation explorers and ensuring the United States will continue to lead in space exploration and discovery.

See videos and lesson plans highlighting space station research at:

https://www.nasa.gov/stemonstation

-end-

Gerelle Dodson
Headquarters, Washington
202-384-4861
gerelle.q.dodson@nasa.gov

Sandra Jones 
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov

Share Details Last Updated May 09, 2024 LocationNASA Headquarters Related Terms
Categories: NASA

NASA Invites Media to Arizona Simulated Artemis Moonwalking Site  

NASA - Breaking News - Thu, 05/09/2024 - 1:12pm
NASA astronaut Kate Rubins (right) takes a photo of NASA astronaut Andre Douglas (left) as he raises an American flag during a simulated moonwalk in a rock yard at NASA’s Johnson Space Center. Credit: NASA/Josh Valcarcel

Media are invited to interact with the NASA team members practicing Artemis moonwalking operations Saturday, May 18, in the San Francisco Volcanic Fields near Flagstaff, Arizona. NASA’s in-person only event includes an opportunity to speak with subject matter experts and view various hardware stations.

The activities are the fifth in a series since April 2022 of simulated moonwalks for Artemis Generation astronauts and teams planning for future exploration of the lunar surface. The full training will take place Monday, May 13, through Monday, May 20, with NASA astronauts Kate Rubins and Andre Douglas serving as the crew.

There are four simulated moonwalks and six advanced technology runs scheduled for this set. The media day schedule includes (all times MST):

  • 2:30 p.m.: Arrival
  • 2:45 p.m.: Local overview news conference and demonstrations
  • 3:30 p.m.: Walk through stations and speak to subject matter experts

Reporters interested in attending must request accreditation by 5 p.m. CDT, Wednesday, May 15, by contacting Victoria Ugalde at 281-483-5111 or victoria.d.ugalde@nasa.gov.

Teams continue to evolve astronaut training, and crew will wear mockup spacesuits as they test hardware, capabilities, and technologies to conduct operations in a simulated lunar environment for the Artemis III mission and beyond.

Through Artemis, NASA will send astronauts – including the first woman, the first person of color, and the first international partner astronaut – to explore the Moon for scientific discovery, technology evolution, economic benefits, and to build the foundation for crewed missions to Mars. Mission simulations on Earth help prepare humans for the challenges of deep space exploration and journeying farther into the cosmos.

Learn more about NASA’s Artemis campaign:

https://www.nasa.gov/artemis/

-end-

Kathryn Hambleton
NASA Headquarters, Washington
301-286-0213
kathryn.hambleton@nasa.gov

Victoria Ugalde
NASA Johnson Space Center, Houston
281-483-5111
victoria.d.ugalde@nasa.gov

Share Details Last Updated May 09, 2024 LocationNASA Headquarters Related Terms
Categories: NASA

NASA Images Help Explain Eating Habits of Massive Black Hole

NASA - Breaking News - Thu, 05/09/2024 - 12:00pm

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) This image of the Andromeda galaxy uses data from NASA’s retired Spitzer Space Telescope. Multiple wavelengths are shown, revealing stars, dust, and areas of star formation.Credit: NASA/JPL-Caltech In this image of the Andromeda galaxy, also made with data from NASA’s retired Spitzer Space Telescope, only dust is visible, making it easier to see the galaxy’s underlying structure.Credit: NASA/JPL-Caltech

Data from NASA’s retired Spitzer Space Telescope has given scientists new insights into why some supermassive black holes shine differently than others.

In images from NASA’s retired Spitzer Space Telescope, streams of dust thousands of light-years long flow toward the supermassive black hole at the heart of the Andromeda galaxy. It turns out these streams can help explain how black holes billions of times the mass of our Sun satiate their big appetites but remain “quiet” eaters.

As supermassive black holes gobble up gas and dust, the material gets heated up just before it falls in, creating incredible light shows — sometimes brighter than an entire galaxy full of stars. When the material is consumed in clumps of different sizes, the brightness of the black hole fluctuates.

But the black holes at the center of the Milky Way (Earth’s home galaxy) and Andromeda (one of our nearest galactic neighbors) are among the quietest eaters in the universe. What little light they emit does not vary significantly in brightness, suggesting they are consuming a small but steady flow of food, rather than large clumps. The streams approach the black hole little by little, and in a spiral, similar to the way the water swirls down a drain.

Hunting for Andromeda’s Food Source

A study published earlier this year took the hypothesis that a quiet supermassive black hole feeds on a steady stream of gas and applied it to the Andromeda galaxy. Using computer models, the authors simulated how gas and dust in proximity to Andromeda’s supermassive black hole might behave over time. The simulation demonstrated that a small disk of hot gas could form close to the supermassive black hole and feed it continuously. The disk could be replenished and maintained by numerous streams of gas and dust.

But the researchers also found that those streams have to stay within a particular size and flow rate; otherwise, the matter would fall into the black hole in irregular clumps, causing more light fluctuation.

This close-up view of the center of the Andromeda galaxy, taken by NASA’s retired Spitzer Space Telescope, is annotated with blue dotted lines to highlight the path of two dust streams flowing toward the supermassive black hole at the galaxy’s center (indicated by a purple dot). Credit: NASA/JPL-Caltech

When the authors compared their findings to data from Spitzer and NASA’s Hubble Space Telescope, they found spirals of dust previously identified by Spitzer that fit within these constraints. From this, the authors concluded that the spirals are feeding Andromeda’s supermassive black hole.

“This is a great example of scientists reexamining archival data to reveal more about galaxy dynamics by comparing it to the latest computer simulations,” said Almudena Prieto, an astrophysicist at the Institute of Astrophysics of the Canary Islands and the University Observatory Munich, and a co-author on the study published this year. “We have 20-year-old data telling us things we didn’t recognize in it when we first collected it.”

A Deeper Look at Andromeda

Launched in 2003 and managed by NASA’s Jet Propulsion Laboratory, Spitzer studied the universe in infrared light, which is invisible to human eyes. Different wavelengths reveal different features of Andromeda, including hotter sources of light, like stars, and cooler sources, like dust.

By separating these wavelengths and looking at the dust alone, astronomers can see the galaxy’s “skeleton” — places where gas has coalesced and cooled, sometimes forming dust, creating conditions for stars to form. This view of Andromeda revealed a few surprises. For instance, although it is a spiral galaxy like the Milky Way, Andromeda is dominated by a large dust ring rather than distinct arms circling its center. The images also revealed a secondary hole in one portion of the ring where a dwarf galaxy passed through.

Andromeda’s proximity to the Milky Way means it looks larger than other galaxies from Earth: Seen with the naked eye, Andromeda would be about six times the width of the Moon (about 3 degrees). Even with a field of view wider than Hubble’s, Spitzer had to take 11,000 snapshots to create this comprehensive picture of Andromeda.

More About the Mission

JPL managed the Spitzer Space Telescope mission for NASA’s Science Mission Directorate in Washington until the mission was retired in January 2020. Science operations were conducted at the Spitzer Science Center at Caltech. Spacecraft operations were based at Lockheed Martin Space in Littleton, Colorado. Data are archived at the Infrared Science Archive operated by IPAC at Caltech. Caltech manages JPL for NASA.

For more information about Spitzer, visit:

https://www.nasa.gov/spitzer

News Media Contact

Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov

2024-063

Share Details Last Updated May 09, 2024 Related Terms Explore More 3 min read NASA Licenses 3D-Printable Superalloy to Benefit US Economy Article 7 hours ago 7 min read NASA’s Webb Hints at Possible Atmosphere Surrounding Rocky Exoplanet

Researchers using NASA’s James Webb Space Telescope may have detected atmospheric gases surrounding 55 Cancri…

Article 1 day ago
4 min read Johnson Celebrates AA and NHPI Heritage Month: Kimia Seyedmadani Article 1 day ago Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

A close-up of the head of the rover’s remote sensing mast. The mast head contains the SuperCam instrument. (Its lens is in the large circular opening.) In the gray boxes beneath mast head are the two Mastcam-Z imagers. On the exterior sides of those imagers are the rover’s two navigation cameras.NASA/JPL-Caltech The Navigation Cameras, or Navcams, aboard NASA’s Perseverance Mars rover captured this view of the rover’s deck on Feb. 20, 2021.NASA/JPL-Caltech
Categories: NASA

MAF EAP – Trauma-Informed Workplace

NASA - Breaking News - Thu, 05/09/2024 - 11:57am

Trauma-Informed Workplace

Organized by Health 4 Life.

In today’s dynamic professional landscape, understanding and addressing the impacts of trauma is essential for fostering a supportive and inclusive work culture. Join us as we explore the principles of trauma-informed care and their practical applications within organizational settings. We will share strategies for recognizing signs of trauma, implementing trauma-sensitive policies and practices, and cultivating resilience among employees. 

This webinar is open to ALL NASA employees. To join, please click here. 

Date: Thursday, May 9, 2024 

Time: 11:00 – 12:00 PM CST 

Speakers / POCs: EAP Clinicians Dr. Carla Randolph (carla.e.randolph@nasa.gov) and Dr. Sophia Sills-Tailor (sophia.c.sills-tailor@nasa.gov

________________________________________________________________________________ 

Microsoft Teams Need help?  

Join the meeting now  

Meeting ID: 274 509 040 356  

Passcode: MvY23f  

Dial-in by phone  

+1 256-715-9946,,732480476# United States, Huntsville  

Find a local number  

Phone conference ID: 732 480 476#  

For organizers: Meeting optionsReset dial-in PIN 

ALERT: All meeting participants consent to, and will abide by, the terms and conditions viewable at the LEGAL link below. No ITAR/EAR content display or sharing without consent from Export Control.  

Categories: NASA

NASA’s Chandra Notices the Galactic Center is Venting

NASA - Breaking News - Thu, 05/09/2024 - 10:08am
X-ray: NASA/CXC/Univ. of Chicago/S.C. Mackey et al.; Radio: NRF/SARAO/MeerKAT; Image Processing: NASA/CXC/SAO/N. Wolk

These images show evidence for an exhaust vent attached to a chimney releasing hot gas from a region around the supermassive black hole at the center of the Milky Way, as reported in our latest press release. In the main image of this graphic, X-rays from NASA’s Chandra X-ray Observatory (blue) have been combined with radio data from the MeerKAT telescope (red).

Previously, astronomers had identified a “chimney” of hot gas near the Galactic Center using X-ray data from Chandra and ESA’s XMM-Newton. Radio emission detected by MeerKAT shows the effect of magnetic fields enclosing the gas in the chimney.

The evidence for the exhaust vent is highlighted in the inset, which includes only Chandra data. Several X-ray ridges showing brighter X-rays appear in white, roughly perpendicular to the plane of the Galaxy. Researchers think these are the walls of a tunnel, shaped like a cylinder, which helps funnel hot gas as it moves upwards along the chimney and away from the Galactic Center.

A labeled version of the image gives the locations of the exhaust vent, the chimney, the supermassive black hole at the center of the Milky Way Galaxy (called Sagittarius A*, or Sgr A* for short) and the plane of the galaxy.

X-ray: NASA/CXC/Univ. of Chicago/S.C. Mackey et al.; Radio: NRF/SARAO/MeerKAT; Image Processing: NASA/CXC/SAO/N. Wolk

This newly discovered vent is located near the top of the chimney about 700 light-years from the center of the Galaxy. To emphasize the chimney and exhaust vent features the image has been rotated by 180 degrees from the conventional orientation used by astronomers, so that the chimney is pointed upwards.

The authors of the new study think that the exhaust vent formed when hot gas rising through the chimney struck cooler gas lying in its path. The brightness of the exhaust vent walls in X-rays is caused by shock waves — similar to sonic booms from supersonic planes — generated by this collision. The left side of the exhaust vent is likely particularly bright in X-rays because the gas flowing upwards is striking the tunnel wall at a more direct angle and with more force than other regions.

The researchers determined that the hot gas is most likely coming from a sequence of events involving material falling towards Sgr A*. They think eruptions from the black hole then drove the gas upwards along the chimneys, and out through the exhaust vent.

It is unclear how often material is falling onto Sgr A*. Previous studies have indicated that dramatic X-ray flares take place every few hundred years at or near the location of the central black hole, so those could play important roles in driving the hot gas upwards through the exhaust vent. Astronomers also estimate that the Galactic black hole rips apart and swallows a star every 20,000 years or so. Such events would lead to powerful, explosive releases of energy, much of which would be destined to rise through the chimney vent.

The paper describing these results is published in The Astrophysical Journal and a preprint is available online. The authors of the paper are Scott Mackey (University of Chicago), Mark Morris (University of California, Los Angeles), Gabriele Ponti (Italian National Institute of Astrophysics in Merate ), Konstantina Anastasopoulou (Italian National Institute of Astrophysics in Palermo), and Samaresh Mondal (Italian National Institute of Astrophysics in Merate).

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.

Read more from NASA’s Chandra X-ray Observatory.

For more Chandra images, multimedia and related materials, visit:

https://www.nasa.gov/mission/chandra-x-ray-observatory/

Visual Description:

This image shows a region near the center of our Milky Way galaxy in X-ray and radio light. At the bottom of the image, near the center, is a brilliant, tangled knot of material that resembles a paint splatter. This is the brightest region in the image, and it contains the supermassive black hole at center of our galaxy, known as Sagittarius A*.

The lower third of the image resembles an angry firestorm. Streaks of red and orange are scattered in every direction, as if a legion of embers from a fire crackled and popped into the air all at once. Flame-like structures lick toward the center from our right.

Much of the image is infused with wispy blue clouds showing X-rays detected by Chandra. At a few points, the wispy blue clouds seem to form into balls of teal colored light and are known as dust halos. They are caused by X-rays from bright X-ray sources reflecting off dust surrounding the sources. These dust halos resemble underwater lights glowing in a cloudy swimming pool at night.

Rising up from Sagittarius A* in the center of the image is a pillar of blue light referred to as a chimney. This chimney of hot gas is surrounded by red clouds that are filled with stars, presenting themselves as tiny red flecks. Near the top of the blue pillar is a streak of light blue, outlined by an illustrated, gray box. This streak is referred to as the chimney exhaust vent. Just to our left is another illustrated box that shows the close-up image of the chimney vent as observed by Chandra.

News Media Contact

Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998

Jonathan Deal
Marshall Space Flight Center
Huntsville, Ala.
256-544-0034

Categories: NASA

NASA Administrator to Engage Officials in Italy, Vatican, Saudi Arabia

NASA - Breaking News - Thu, 05/09/2024 - 9:56am
NASA Administrator Bill Nelson gives remarks during a NASA town hall event, Tuesday, Dec. 12, 2023, at NASA Headquarters in Washington. Credits: NASA/Bill Ingalls

Continuing his engagement to deepen international collaboration and the peaceful use of space, NASA Administrator Bill Nelson will travel to Italy and Vatican City, followed by Saudi Arabia, beginning Thursday.

Nelson will meet with key government and space officials in each country.

Italy is a longstanding partner in human spaceflight and Earth science. Nelson will meet with President Teodoro Valente, Italian Space Agency (ASI) and other officials to discuss current and future collaboration, including the Artemis campaign to return to the Moon, partnership on the International Space Station, the exploration of Mars and Venus, and Earth science missions to study our home planet.

In Saudi Arabia, Nelson will meet with Saudi Space Agency and other senior officials to discuss future collaboration and underscore the importance of civil space cooperation for the broader United States and Saudi Arabia relationship. Students will interact with Nelson about the importance of science, technology, engineering, and mathematics education and their roles as members of the Artemis Generation.

For more information about NASA’s international partnerships, visit:

https://www.nasa.gov/oiir/

-end-

Faith McKie
Headquarters, Washington
202-358-1600
faith.d.mckie@nasa.gov

Share Details Last Updated May 09, 2024 LocationNASA Headquarters Related Terms
Categories: NASA

NASA Licenses 3D-Printable Superalloy to Benefit US Economy

NASA - Breaking News - Thu, 05/09/2024 - 8:14am

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA superalloy GRX-810 will soon be available to aviation and space industry parts manufacturers as a result of new licensing agreements with four U.S. companies. Credit: NASA/Jef Janis

NASA’s investment in a breakthrough superalloy developed for the extreme temperatures and harsh conditions of air and spaceflight is on the threshold of paying commercial dividends.

The agency is licensing its invention, dubbed “GRX-810,” to four American companies, a practice that benefits the United States economy as a return on investment of taxpayer dollars.

GRX-810 is a 3D-printable high-temperature material that will lead to stronger, more durable airplane and spacecraft parts that can withstand more punishment before reaching their breaking point.

The co-exclusive license agreements will allow the companies to produce and market GRX-810 to airplane and rocket equipment manufacturers as well as the entire supply chain.

The four co-exclusive licensees are:

  • Carpenter Technology Corporation of Reading, Pennsylvania
  • Elementum 3D, Inc. of Erie, Colorado
  • Linde Advanced Material Technologies, Inc. of Indianapolis
  • Powder Alloy Corporation of Loveland, Ohio

GRX-810 is one example of many new technologies NASA’s Technology Transfer Program managers review and file for patent protection. The team also works with inventors to find partners interested in commercialization. 

“NASA invests tax dollars into research that demonstrates direct benefit to the U.S. and transfers its technologies to industry by licensing its patents,” said Amy Hiltabidel, licensing manager at NASA’s Glenn Research Center in Cleveland.

New Approach to Developing Materials

NASA engineers designed GRX-810 for aerospace applications, including liquid rocket engine injectors, combustors, turbines, and hot-section components capable of enduring temperatures over 2,000 degrees Fahrenheit.

“GRX-810 represents a new alloy design space and manufacturing technique that was impossible a few years ago,” said Dr. Tim Smith, materials researcher at NASA Glenn.

Smith co-invented the superalloy along with his Glenn colleague Christopher Kantzos using a time-saving computer modeling and laser 3D-printing process that fuses metals together, layer-by-layer. Tiny particles containing oxygen atoms spread throughout the alloy enhance its strength.

Impacts and Benefits

Compared to other nickel-base alloys, GRX-810 can endure higher temperatures and stress and can last up to 2,500 times longer. It’s also nearly four times better at flexing before breaking and twice as resistant to oxidation damage.

Adoption of this alloy will lead to more sustainable aviation and space exploration,” said Dale Hopkins, deputy project manager of NASA’s Transformational Tools and Technologies project. “This is because jet engine and rocket components made from GRX-810 will lower operating costs by lasting longer and improving overall fuel efficiency.”

Research and development teams include those from Glenn, NASA’s Ames Research Center in California’s Silicon Valley, The Ohio State University, and NASA’s Marshall Space Flight Center in Huntsville, Alabama, where the most recent testing included 3D-printed rocket engine parts.

NASA develops many technologies to solve the challenges of space exploration, advance the understanding of our home planet, and improve air transportation. Through patent licensing and other mechanisms, NASA has spun off more than 2,000 technologies for companies to develop into products and solutions supporting the American economy.

The NASA insignia is 3D printed using the GRX-810 superalloy. Credit: NASA/Jordan Salkin Explore More 4 min read NASA Images Help Explain Eating Habits of Massive Black Hole Article 4 hours ago 4 min read Johnson Celebrates AA and NHPI Heritage Month: Kimia Seyedmadani Article 1 day ago 3 min read 1942: Engine Roars to Life in First Test at Future NASA Glenn Article 1 day ago

Categories: NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Thu, 05/09/2024 - 4:00am

What would it look like to circle a black hole?


Categories: Astronomy, NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Thu, 05/09/2024 - 4:00am

What happens when a black hole devours a star?


Categories: Astronomy, NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Thu, 05/09/2024 - 4:00am

This is how the Sun disappeared from the daytime sky last month.


Categories: Astronomy, NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Thu, 05/09/2024 - 4:00am

What happens to a star that goes near a black hole?


Categories: Astronomy, NASA

3 ATs

APOD - Thu, 05/09/2024 - 4:00am

Despite their resemblance to


Categories: Astronomy, NASA

Temperatures on Exoplanet WASP 43b

APOD - Thu, 05/09/2024 - 4:00am

Temperatures on Exoplanet WASP 43b


Categories: Astronomy, NASA

The Galaxy, the Jet, and a Famous Black Hole

APOD - Thu, 05/09/2024 - 4:00am

The Galaxy, the Jet, and a Famous Black Hole


Categories: Astronomy, NASA

Sols 4180-4182: Imaging fest!

NASA - Breaking News - Wed, 05/08/2024 - 6:54pm

3 min read

Sols 4180-4182: Imaging fest! This Mars Hand Lens Imager (MAHLI) image shows all the features and textures we have in the area ranging from laminae to little nodules. The image was taken on May 7, 2024, Sol 4178 of the Mars Science Laboratory Mission, at 23:20:40 UTC.NASA/JPL-Caltech/MSSS

Earth planning date: Wednesday, May 8, 2024

What a wonderful sight to see all the sedimentary structures. I am a geochemist, but I hear the excitement in the voices of my sediment-specialist colleagues, discussing all those textures and things to see. Generally, it is those features that allow us to determine what has happened in terms of the physics: Was it water or wind that brought the grains here? How fast was the flow? And then… what happened next? Well, that might be in my area of expertise, as it takes new minerals to grow between grains to make a loose sediment into a rock. And that’s what we can learn from the chemical investigations. And today’s plan once again has it all, but it is especially an imaging fest looking at all the structures and textures. Stay tuned for the images to make their way from Mars to Earth in the coming days.

Today’s plan starts with the chemistry: APXS will use the cool hours of the early morning for its investigations on the brushed target “Happy Isles.” MAHLI will get images of Happy Isles and then move to start the imaging fest at a target named “Laurel Mountain.” This is to peak underneath a piece of overhanging rock to see how the layers below are actually connected – or not – to the layers that form the overhang. Spying on rocks? I guess so!

The imaging fest then continues with over 170 Mastcam frames divided into four investigations. These are mosaics on the surrounding hills and slopes, namely on “Pinnacle Ridge,” “Milestone Peak” and “Tamarack Flats.” And Mastcam looks at the area closer to the rover, off the starboard side, an area where all the structures I talked about above are nicely visible from the rover mast’s vantage point. And if that’s not enough imaging, we will add some special imaging after the drive. We always take navigation camera images for navigation and imaging purpose during the next planning, but this time, we will also take additional Mastcam images in the drive direction. It’s a complex landscape … and I am still happy I can watch the rover drive through it and don’t have to hike myself!

There are also plenty of environmental investigations in the plan. The atmospheric investigations include the usual cadence of REMS activities and DAN looks at the water in the subsurface with passive measurements. In addition to that, Curiosity will look at its top surface to look at the dust levels currently accumulated there, and a look to the crater rim will investigate the current opacity of the atmosphere (yes, that’s more images, too!). Finally, Curiosity will be on the lookout for some dust devils. We’ve managed to get a few really nice captures of those in the course of the mission, one of my favourites is this one here, taken on sol 2847, over 1300 sols ago! If you want to see some in motion, here you go: https://www.youtube.com/watch?v=k8lfJ0c7WQ8. Time flies when you are having fun!

Written by Susanne Schwenzer, Planetary Geologist at The Open University

Share Details Last Updated May 08, 2024 Related Terms Explore More 2 min read Sols 4178-4179: The Pinnacle Ridge Scarp Article 14 mins ago 3 min read Sols 4175-4177: Don’t Blink We’re Taking a Picture

Curiosity loves to drive so it’s pretty rare we stay at a location longer than…

Article 2 days ago
3 min read Sols 4173-4174: Reflections Article 6 days ago Keep Exploring Discover More Topics From NASA Mars

Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…

All Mars Resources

Rover Basics

Mars Exploration Science Goals

Categories: NASA

Sols 4178-4179: The Pinnacle Ridge Scarp

NASA - Breaking News - Wed, 05/08/2024 - 6:50pm

2 min read

Sols 4178-4179: The Pinnacle Ridge Scarp This image was taken by Left Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4176 (2024-05-05 22:50:10 UTC). NASA/JPL-Caltech

Earth planning date: Monday, May 6, 2024

Curiosity’s set of complex activities and drive over the weekend executed perfectly and we started our planning today directly in front of a scarp, or wall, along a section of the upper Gediz Valis ridge known as “Pinnacle Ridge.” The view along this scarp did not disappoint! 

Mastcam planned a large mosaic to image the top and bottom of the Pinnacle Ridge scarp, complementing the Mastcam mosaic that was acquired over the weekend. ChemCam included a long distance RMI image of the face of the ridge with intriguing tonal and textural variations. The targeted science block on sol 4178 also includes a MAHLI mosaic of an interesting layered rock in our workspace, “El Portal,” that will be characterized and imaged by ChemCam LIBS and Mastcam. Lastly, Mastcam will take a small mosaic of a rock in the workspace, “Bairs Creek,” to investigate interesting textures and features that were created by the wind. 

In the untargeted science block on sol 4179, the environmental theme group planned several activities including a Mastcam sky survey, a dust devil movie and survey, and a suprahorizon movie to observe dust and cloud activity in Gale. ChemCam included an AEGIS activity where the rover will pick and analyze a target in the workspace after Curiosity completes a ~32-meter drive. Although the large, tilted rocks ahead make for a challenging drive, excitement is running high as we continue our ascent along the margin of the upper Gediz Vallis ridge!

Written by Sharon Wilson Purdy, Planetary Geologist at Smithsonian National Air and Space Museum

Share

Details

Last Updated

May 08, 2024

Related Terms Explore More

3 min read Sols 4180-4182: Imaging fest!

Article


11 mins ago

3 min read Sols 4175-4177: Don’t Blink We’re Taking a Picture

Curiosity loves to drive so it’s pretty rare we stay at a location longer than…



Article


2 days ago

3 min read Sols 4173-4174: Reflections

Article


6 days ago

Keep Exploring Discover More Topics From NASA

Mars

Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…


All Mars Resources


Rover Basics


Mars Exploration Science Goals

Categories: NASA

OTPS seeks input from the lunar community to inform a framework for further work on non-interference of lunar activities

NASA - Breaking News - Wed, 05/08/2024 - 4:36pm

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) An artist’s rendering of astronauts working near NASA’s Artemis base camp, complete with a rover and RV.NASA Questionnaire responses due by June 7, 2024

NASA’s Office of Technology, Policy, and Strategy (OTPS) is asking members of the lunar community to respond to a new Lunar Non-Interference Questionnaire that will inform the development of a framework for further work on non-interference of lunar activities. There is no funding or solicitation expected to follow.

OTPS was created in November 2021 within the Office of the NASA Administrator to work transparently in collaboration across NASA and with the broader space community to provide NASA leadership with a trade space of data- and evidence-driven options to develop and shape NASA policy, strategy, and technology.

The purpose of the questionnaire 

As dozens of countries and private sector companies have expressed interest in establishing lunar operations by the end of the decade, including many in the South Pole region, it will be critical to determine how to minimize interference and contamination in lunar activities. Deconfliction has been identified as an area of further work in Section 11 of the Artemis Accords and will be an area of increasing importance as the number of commercial and international actors operating on the lunar surface grows. 

In 2016, the Lunar Exploration Analysis Group developed “The Lunar Exploration Roadmap: Exploring the Moon in the 21st Century: Themes, Goals, Objectives, Investigations, and Priorities, 2016”, which aimed to develop an “integrated and sustainable plan for lunar exploration.” The roadmap explored the prioritization of lunar science activities, and designated which science objectives could be adversely impacted by further lunar exploration. 

Although lunar interference and contamination concerns have been broadly identified and expanded beyond the initial findings of the 2016 report (e.g., plume surface interactions and dust, hazardous waste, propellant deposition from overflight, electromagnetic interference), there is not broad consensus in the lunar scientific or technical community on key questions such as how to understand the potential value of lunar sites, how to mitigate the impacts of interference or contamination at such sites, and how to determine the change in value of a lunar site should certain interference or contamination activities occur.

The data collected in this questionnaire will support NASA strategic decision-making on the protection needed for lunar activities. This questionnaire seeks feedback from the lunar community to determine the breadth of interference and contamination concerns and clarify community usage of the terms “interference,” “contamination,” and “deconfliction.” This questionnaire aims to contribute to the development of a framework for further deconfliction activity.

The questionnaire and how to submit responses

Please copy and paste the questions below into a searchable, unlocked Portable Document File (PDF) or Word (DocX) file with edit permissions enabled. Include electronic links to, or copies of, any comments containing references, studies, research, and other empirical data that are not widely published. Send the file via email to HQ-OTPS-Applications@nasa.gov with the subject line “Lunar Non-Interference” by Friday, June 7, 2024.

Questions
  • How do you define these terms?
    • Interference
    • Contamination
    • Deconfliction
  • Understanding the Potential Value of a Site
    • What attributes/characteristics are relevant to site selection in consideration of science objectives? Attributes may include time-sensitive orphysical characteristics, holds awaiting technology or science advancements, or other perspectives. Example scenarios are encouraged.
  • Impacting the Potential Value of a Site
    • What human or robotic actions/events may negatively impact the value of a lunar site? Such as chemical contamination, physical contact, hardware proximity (for example Apollo hardware causing localized ‘moon quakes’ due to heating and cooling differences vs surroundings), waste hazards, etc.
      • How do the impacts of those actions/events alter the value of a site (e.g., unusable for certain missions, usable for certain missions but not others)?
      • What detrimental impacts are permanent, temporary, or still unknown?
    • What data, models, or information is needed to inform the value? Such as how to understand where contaminants are going, what they are doing that impacts science, computational models validated with ground and flight data, etc.
  • Mitigation Mechanisms
    • What types of mitigation mechanisms exist to preserve the value of a site?
    • During what phases of operations are mitigation mechanisms needed? Examples include ascent/descent, overflight, traverse, contingency, experimental or construction phase, etc.
    • What technologies/capabilities need to be developed?
    • What types of communication and coordination efforts minimize concerns? Such as development/planned activity timelines for pre-coordination, operational timelines with time-critical communication mechanisms, list of materials, transparency, etc
Additional information and disclaimers

OTPS intends to use the responses to these questions to inform the development of a framework for future work. The use or inclusion of information in the development of any future OTPS work does not constitute endorsement of any entity, or any products, services, technologies, activities, or agency policy. The information contained in any future OTPS work will reflect solely the views and opinions of the authors.

Respondents are encouraged to provide information that is not constrained by limited or restricted data rights. No Personally Identifiable Information (PII) should be submitted with the response. Responses received will not be released in their submitted form outside of NASA. Anonymized information derived from the responses received (i.e., general information not attributable to any particular respondent) also may be shared within the government, but only as reasonably necessary and appropriate. Further, any anonymized, non-attributable information may also eventually be used to develop and refine the framework for future work on lunar non-interference, and therefore may be recognizable to one or more respondents. If respondents feel that proprietary or confidential/business-sensitive information is necessary for NASA’s informational purposes to be responsive to the questions presented below, and such information is provided and appropriately marked as such, NASA will not publicly disclose or disseminate it and will protect it in strict accordance with all applicable laws and agency policies. NASA will not disclose any specific feedback provided from one firm/respondent with any other interested entities.

Please note that NASA employees and its support contractors’ employees and/or their subcontractors working on behalf of NASA may review the responses. NASA contractors and subcontractors are governed by non-disclosure provisions in their applicable contracts and subcontracts, which protects the confidentiality of all information reviewed.

Respondents are solely responsible for all expenses associated with responses. Responses will not be returned, nor will respondents be contacted about their responses.

OTPS appreciates your participation and looks forward to your responses.

“The Lunar Exploration Roadmap: Exploring the Moon in the 21st Century: Themes, Goals, Objectives, Investigations, and Priorities, 2016,” Lunar Exploration Analysis Group, 2016 https://www.lpi.usra.edu/leag/LER-2016.pdf1

Share Details Last Updated May 08, 2024 EditorBill Keeter Related Terms
Categories: NASA