"If you wish to make an apple pie truly from scratch, you must first invent the universe."

— Carl Sagan

NASA

NASA Researchers Probe Tangled Magnetospheres of Merging Neutron Stars

NASA - Breaking News - Thu, 01/29/2026 - 11:15am

7 min read

NASA Researchers Probe Tangled Magnetospheres of Merging Neutron Stars

New simulations performed on a NASA supercomputer are providing scientists with the most comprehensive look yet into the maelstrom of interacting magnetic structures around city-sized neutron stars in the moments before they crash. The team identified potential signals emitted during the stars’ final moments that may be detectable by future observatories.  

“Just before neutron stars crash, the highly magnetized, plasma-filled regions around them, called magnetospheres, start to interact strongly. We studied the last several orbits before the merger, when the entwined magnetic fields undergo rapid and dramatic changes, and modeled potentially observable high-energy signals,” said lead scientist Dimitrios Skiathas, a graduate student at the University of Patras, Greece, who is conducting research for the Southeastern Universities Research Association in Washington at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

New supercomputer simulations explore the tangled magnetic structures around merging neutron stars. Called magnetospheres, the highly magnetized, plasma-filled regions start to interact as the city-sized stars close on each other toward their final orbits. Magnetic field lines can connect both stars, break, and reconnect, while currents surge through surrounding plasma moving at nearly the speed of light. The simulations show that as these systems merge to produce one kind of gamma-ray burst — the universe’s most powerful class of explosions — they emit tell-tale X-rays and gamma rays that future observatories should be able to detect. NASA’s Goddard Space Flight Center Download images and videos through NASA’s Scientific Visualization Studio

A paper describing the findings published Nov. 20, 2025, in the The Astrophysical Journal.

Neutron star mergers produce a particular type of GRB (gamma-ray burst), the most powerful class of explosions in the cosmos.

Most investigations have naturally concentrated on the spectacular mergers and their aftermaths, which produce near-light-speed jets that emit gamma rays, ripples in space-time called gravitational waves, and a so-called kilonova explosion that forges heavy elements like gold and platinum. A merger observed in 2017 dramatically confirmed the long-predicted connections between these phenomena — and remains the only event seen so far to exhibit all three.

Neutron stars pack more mass than our Sun into a ball about 15 miles (24 kilometers) across, roughly the length of Manhattan Island in New York City. They form when the core of a massive star runs out of fuel and collapses, crushing the core and triggering a supernova explosion that blasts away the rest of the star. The collapse also revs up the core’s rotation and amplifies its magnetic field.

In our simulations, the magnetosphere behaves like a magnetic circuit that continually rewires itself as the stars orbit.

Constantinos Kalapotharakos

Newborn neutron stars can spin dozens of times a second and wield some of the strongest magnetic fields known, up to 10 trillion times stronger than a refrigerator magnet. That’s strong enough to directly transform gamma-rays into electrons and positrons and rapidly accelerate them to energies far beyond anything achievable in particle accelerators on Earth. 

“In our simulations, the magnetosphere behaves like a magnetic circuit that continually rewires itself as the stars orbit. Field lines connect, break, and reconnect while currents surge through plasma moving at nearly the speed of light, and the rapidly varying fields can accelerate particles,” said co-author Constantinos Kalapotharakos at NASA Goddard. “Following that nonlinear evolution at high resolution is exactly why we need a supercomputer!”

Using the Pleiades supercomputer at NASA’s Ames Research Center in California’s Silicon Valley, the team ran more than 100 simulations of a system of two orbiting neutron stars, each with 1.4 solar masses. The goal was to explore how different magnetic field configurations affected the way electromagnetic energy — light in all of its forms — left the binary system. Most of the simulations describe the last 7.7 milliseconds before the merger, enabling a detailed study of the final orbits.

“Our work shows that the light emitted by these systems varies greatly in brightness and is not distributed evenly, so a far-away observer’s perspective on the merger matters a great deal,” said co-author Zorawar Wadiasingh at the University of Maryland, College Park and NASA Goddard. “The signals also get much stronger as the stars get closer and closer in a way that depends on the relative magnetic orientations of the neutron stars.”

Magnetic field lines anchored to the surfaces of each star sweep behind them as the stars orbit. Field lines may directly connect one star to the other as the orbits shrink, while lines already linking the stars may break and reconfigure.

One value of studies like this is to help us figure out what future observatories might be able to see and should be looking for in both gravitational waves and light.

Demosthenes Kazanas

Using the simulations, the team also computed electromagnetic forces acting on the stars’ surfaces. While the effects of gravity dominate, these magnetic stresses could accumulate in strongly magnetized systems. Future models may help reveal how magnetic interactions influence the last moments of the merger.

“Such behavior could be imprinted on gravitational wave signals that would be detectable in next-generation facilities. One value of studies like this is to help us figure out what future observatories might be able to see and should be looking for in both gravitational waves and light,” said Goddard’s Demosthenes Kazanas.

The team, which includes Alice Harding at the Los Alamos National Laboratory in New Mexico and Paul Kolbeck at the University of Washington in Seattle, then used the simulated fields to identify where the highest-energy emission would be produced and how it would propagate.

This view of a supercomputer simulation of merging, magnetized neutron stars highlights regions producing the highest-energy light. Brighter colors indicate stronger emission. These regions produce gamma rays with energies trillions of times greater than that of visible light, but likely none of it could escape. That’s because the highest-energy gamma rays quickly convert to particles in the presence of the stars’ powerful magnetic fields. However, gamma rays at lower energies, with millions of times the energy of visible light, can exit the merging system, and the resulting particles may also radiate at still lower energies, including X-rays. The emission varies rapidly and is highly directional, but it could potentially be detected by future facilities.NASA’s Goddard Space Flight Center/D. Skiathas et al. 2025

In the chaotic plasma surrounding the neutron stars, particles transform into radiation and vice versa. Speedy electrons emit gamma rays, the highest-energy form of light, through a process called curvature radiation. A gamma-ray photon can interact with a strong magnetic field in a way that transforms it into a pair of particles, an electron and a positron.

The study found regions producing gamma rays with energies trillions of times greater than that of visible light, but likely none of it could escape. The highest-energy gamma rays quickly converted to particles in the presence of powerful magnetic fields. However, gamma rays at lower energies, with millions of times the energy of visible light, can exit the merging system, and the resulting particles may also radiate at still lower energies, including X-rays.

The finding suggests that future medium-energy gamma-ray space telescopes, especially those with wide fields of view, may detect signals originating in the runup to the merger if gravitational-wave observatories can provide timely alerts and sky localization. Today, ground-based gravitational-wave observatories, such as LIGO (Laser Interferometer Gravitational-Wave Observatory) in Louisiana and Washington, and Virgo in Italy, detect neutron star mergers with frequencies between 10 and 1,000 hertz and can enable rapid electromagnetic follow-up.

ESA (European Space Agency) and NASA are collaborating on a space-based gravitational-wave observatory named LISA (Laser Interferometer Space Antenna), planned for launch in the 2030s. LISA will observe neutron-star binaries much earlier in their evolution at far lower gravitational-wave frequencies than ground-based observatories, typically long before they merge.

Future gravitational-wave observatories will be able to alert astronomers to systems on the verge of merging. Once such systems are found, wide-field gamma-ray and X-ray observatories could begin searching for the pre-merger emission highlighted by these simulations.

Routine observation of events like these using two different “messengers” — light and gravitational waves — will provide a major leap forward in understanding this class of GRBs, and NASA researchers are helping to lead the way.

By Francis Reddy
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media Contact:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share Details Last Updated Jan 29, 2026 Related Terms Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse
Categories: NASA

Webb Zooms into Helix Nebula

NASA Image of the Day - Thu, 01/29/2026 - 10:49am
A new image from NASA’s James Webb Space Telescope of a portion of the Helix Nebula highlights comet-like knots, fierce stellar winds, and layers of gas shed off by a dying star interacting with its surrounding environment. Webb’s image also shows the stark transition between the hottest gas to the coolest gas as the shell expands out from the central white dwarf.
Categories: Astronomy, NASA

Webb Zooms into Helix Nebula

NASA News - Thu, 01/29/2026 - 10:48am
A new image from NASA’s James Webb Space Telescope of a portion of the Helix Nebula highlights comet-like knots, fierce stellar winds, and layers of gas shed off by a dying star interacting with its surrounding environment. Webb’s image also shows the stark transition between the hottest gas to the coolest gas as the shell expands out from the central white dwarf.NASA, ESA, CSA, STScI; Image Processing: Alyssa Pagan (STScI)

NASA’s James Webb Space Telescope has zoomed into the Helix Nebula to give an up-close view of the possible eventual fate of our own Sun and planetary system. In Webb’s high-resolution look, the structure of the gas being shed off by a dying star comes into full focus. The image reveals how stars recycle their material back into the cosmos, seeding future generations of stars and planets, as NASA explores the secrets of the universe and our place in it.

In the image from Webb’s NIRCam (Near-Infrared Camera), pillars that look like comets with extended tails trace the circumference of the inner region of an expanding shell of gas. Here, blistering winds of fast-moving hot gas from the dying star are crashing into slower moving colder shells of dust and gas that were shed earlier in its life, sculpting the nebula’s remarkable structure.

Dive deeper into the Helix Nebula with Webb.

Image credit: NASA, ESA, CSA, STScI; Image Processing: Alyssa Pagan (STScI)

Categories: NASA

Building Roman

NASA News - Thu, 01/29/2026 - 10:20am
7 Min Read Building Roman

NASA’s Nancy Grace Roman Space Telescope is now assembled following the integration of its two major segments, shown in this time-lapse.

Credits:
NASA/Sophia Roberts

Technicians have completed the construction of NASA’s Nancy Grace Roman Space Telescope.

The Roman observatory is slated to launch no later than May 2027, with the team aiming for as early as fall 2026. The mission will revolutionize our understanding of the universe with its deep, crisp, sweeping views of space.

More than a thousand technicians and engineers assembled Roman from millions of individual components. Many parts were built and tested simultaneously to save time. Now that the observatory is assembled, it will undergo a spate of testing prior to shipping to NASA’s Kennedy Space Center in Florida in summer 2026.

NASA’s freshly assembled Nancy Grace Roman Space Telescope will revolutionize our understanding of the universe with its deep, crisp, sweeping infrared views of space. The mission will transform virtually every branch of astronomy and bring us closer to understanding the mysteries of dark energy, dark matter, and how common planets like Earth are throughout our galaxy. Roman is on track for launch by May 2027, with teams working toward a launch as early as fall 2026. Credit: NASA’s Goddard Space Flight Center Telescope

The Optical Telescope Assembly is the heart of the Roman observatory. It consists of a primary mirror, which was designed and built at L3Harris Technologies in Rochester, New York, plus nine additional mirrors and supporting structures and electronics.

The Roman team got a jumpstart by receiving the telescope’s primary mirror, which will collect and focus light from cosmic objects near and far, from another government agency and then modifying it to meet NASA’s needs. Using this mirror, Roman will capture stunning space vistas with a field of view at least 100 times larger than Hubble’s.

Roman will peer through dust and across vast stretches of space and time to study the universe using infrared light, which human eyes can’t see. The amount of detail these observations will reveal is directly related to the size of the telescope’s mirror, since a larger surface gathers more light and measures finer features. Roman’s primary mirror is 7.9 feet (2.4 meters) across, the same size as the Hubble Space Telescope’s main mirror but less than one-fourth the weight (410 pounds, or 186 kilograms) thanks to major improvements in technology.

“The telescope will be the foundation of all of the science Roman will do, so its design and performance are among the largest factors in the mission’s survey capability.”

Josh Abel

lead Optical Telescope Assembly systems engineer at NASA Goddard

NASA/Chris Gunn”>

The Roman team modified the inherited mirror’s shape and surface to meet the mission’s science objectives. The mirror sports a layer of silver less than 400 nanometers thick — about 200 times thinner than a human hair. The silver coating was specifically chosen for Roman because of how well it reflects near-infrared light. Roman’s mirror is so finely polished that the average bump on its surface is only 1.2 nanometers tall — more than twice as smooth as the mission requires. If the mirror were scaled to be Earth’s size, these bumps would be just a quarter of an inch high.
NASA/Chris Gunn

NASA/Chris Gunn”>

Roman’s secondary mirror, photographed here, is 22 inches across. It’s a critical part of the forward structure assembly, which also includes the support structure.
NASA/Chris Gunn

NASA/Chris Gunn”>

An optical technician lays on a diving board suspended between NASA’s Nancy Grace Roman Space Telescope’s primary and secondary mirrors. The photo is a projected reflection through the telescope’s optical path. The technician shines a beam of light through the optical system toward the future location of the Wide Field Instrument, showing how light from cosmic sources will travel through the telescope once the mission launches.
NASA/Chris Gunn

NASA/Chris Gunn”>

Optical engineer Bente Eegholm inspects the surface of Roman’s primary mirror.
NASA/Chris Gunn






The primary mirror, in concert with other optics, will send light to Roman’s two science instruments: the Wide Field Instrument and Coronagraph Instrument. When light enters Roman’s 2.4-meter aperture, it will be reflected and focused by the curved primary mirror and then reflected and focused once more by the secondary mirror. Then, light from different parts of the sky splits off toward each instrument, so Roman will be able to use both at once.

The telescope was delivered Nov. 7, 2024, to the largest clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

Upon arrival at NASA’s Goddard Space Flight Center, Roman’s Optical Telescope Assembly was lifted out of the shipping fixture and placed with other mission hardware in Goddard’s largest clean room. Then, it was installed onto Roman’s Instrument Carrier, a structure that will keep the telescope and Roman’s two instruments optically aligned.
Credit: NASA/Chris Gunn Detectors

Meanwhile, technicians at Goddard and Teledyne Scientific & Imaging were developing the detector array. This device will convert starlight into electrical signals, which will then be decoded into 288-megapixel images of large patches of the sky. The combination of Roman’s fine resolution and enormous images has never been possible on a space-based telescope before.

Roman uses state-of-the-art sensors that build on the legacy of the infrared detectors in NASA’s Hubble and Webb instruments. Roman’s focal plane, however, is much larger to capture a much larger field of view.

Greg Mosby

research astrophysicist at NASA Goddard

The detectors, each the size of a saltine cracker, have 16 million tiny pixels apiece, providing the mission with exquisite image resolution. Eighteen were incorporated into the focal plane array for Roman’s camera, and another six are reserved as flight-qualified spares.




Detector Array Detector Array

NASA/Chris Gunn

NASA/Chris Gunn Detector ArrayDetector Array

NASA/Chris Gunn

NASA/Chris Gunn


Detector Array
Detector Array

Roman’s Detectors

Mosaic Plate Assembly


CurtainToggle2-Up

Image Details

Most telescopes are designed to focus incoming light toward a central point, so their view is sharpest in the middle. By tweaking the curvatures and tilts of three mirrors, Roman focuses light instead onto a ring around the center. The detectors in Roman’s Wide Field Instrument are laid out in an arch shape to sit along part of that ring. This design helps Roman capture a much wider area with equally sharp imaging. And since the observatory’s Coronagraph is placed on another part of the ring, both instruments can operate simultaneously while benefiting from the telescope’s best resolution. Credit: NASA/Chris Gunn

Principal technician Billy Keim installs a cover plate over the detectors for NASA’s Nancy Grace Roman Space Telescope.
Credit: NASA/Chris Gunn

Once complete and tested, the detector array was inserted into the mission’s primary instrument: a sophisticated camera called the Wide Field Instrument, which was assembled and tested at Goddard and BAE Systems, Inc.

Wide Field Instrument

The Wide Field Instrument, or WFI, is an infrared camera that will give Roman the same angular resolution as Hubble but with a field of view at least 100 times larger. Its sweeping cosmic surveys will help scientists discover new and uniquely detailed information about planets beyond our solar system, untangle mysteries like dark energy, and map how matter is structured and distributed throughout the cosmos. The mission’s broad, crisp view will produce an extraordinary resource for a wide range of additional investigations.

Using this instrument, each Roman image will capture a patch of the sky bigger than the apparent size of a full moon. The mission will gather data hundreds of times faster than Hubble, adding up to 20,000 terabytes (20 petabytes) over the course of its five-year primary mission.

NASA/Chris Gunn”>

This photo shows Roman’s Wide Field Instrument arriving at the big clean room at NASA’s Goddard Space Flight Center. About the size of a commercial refrigerator, this instrument will help astronomers explore the universe’s evolution and the characteristics of worlds outside our solar system. Unlocking these cosmic mysteries and more will offer a better understanding of the nature of the universe and our place within it.
NASA/Chris Gunn

NASA/Chris Gunn”>

Technicians install Roman’s Wide Field Instrument in the biggest clean room at NASA’s Goddard Space Flight Center in Greenbelt, Md. This marked the final step to complete the Roman payload, which also includes a Coronagraph instrument and the Optical Telescope Assembly.
NASA/Chris Gunn

Ball Aerospace”>

After completing final integration, Ball Aerospace technicians transport the Nancy Grace Roman Space Telescope’s Wide Field Instrument (WFI) into Ball’s largest thermal vacuum chamber to begin environmental testing at a Ball facility in Boulder, Colorado.
Ball Aerospace






Technicians from both BAE and Goddard put the WFI together in a clean room in Boulder, Colorado. Then the team completed full environmental testing in space-like conditions and delivered the WFI to Goddard in summer 2024. It was joined to other observatory systems the following winter.

Coronagraph Instrument

Technicians at NASA’s Jet Propulsion Laboratory built the Coronagraph Instrument. The Coronagraph will demonstrate new technologies for directly imaging planets around other stars. It will block the glare from distant stars and make it easier for scientists to see the faint light from planets in orbit around them. The Coronagraph aims to photograph worlds and dusty disks around nearby stars in visible light to help us see giant worlds that are older, colder, and in closer orbits than the hot, young super-Jupiters direct imaging has mainly revealed so far.

The coronagraph team will conduct a series of pre-planned observations for three months spread across the mission’s first year-and-a-half of operations, after which the mission may conduct additional observations based on scientific community input.

Following testing JPL, the Coronagraph was delivered to Goddard in May 2024. It was integrated onto Roman’s Instrument Carrier, a piece of infrastructure that will hold the mission’s instruments, in October 2024. Then the instrument carrier was joined to the spacecraft in December 2024.

NASA/Sydney Rohde”>

The Roman Coronagraph was integrated with the Instrument Carrier in a clean room at NASA’s Goddard Space Flight Center in Greenbelt, Md., in October 2024.
NASA/Sydney Rohde

NASA/JPL-Caltech”>

April 9, 2025The Roman Coronagraph was peppered with radio waves to test its response to stray electrical signals. The test was performed inside a chamber lined with foam padding that absorbs the radio waves to prevent them from bouncing off the walls. Credit: NASA/JPL-Caltech.
NASA/JPL-Caltech PIA26273

NASA/JPL-Caltech”>

This photo features the optical bench for Roman’s Coronagraph Instrument. Light from the telescope will be directed to the optical bench and pass through series of lenses, filters, and other components that ultimately suppress light from a star while allowing the light from orbiting planets to pass through. Mirrors redirect the light and keep it contained within the optical bench. In this image, the bench was partly assembled at the start of the instrument’s integration and testing period. The large black circles are surrogate components that were standing in for the actual instrument hardware.
NASA/JPL-Caltech






By 2025, all of Roman’s components were complete and undergoing testing as subsystems. Technicians installed test versions of the Solar Array Sun Shield panels onto the Outer Barrel Assembly — a part of the observatory that will protect and shade the primary mirror — inside Goddard’s largest clean room in preparation for testing.

The team covered Roman’s telescope section in a protective tent and pushed it out of the clean room using pressurized air to float it like a hovercraft. Then they lifted it onto a shaker table for vibration testing to simulate launch stress. Then, technicians moved the components into the Space Environment Simulator chamber for a month of testing at low pressure and different temperatures, mimicking space-like conditions.

Solar Panels

Roman’s Solar Array Sun Shield is made up of six panels, each covered in solar cells. The two central panels will remain fixed to the Outer Barrel Assembly while the other four will deploy once Roman is in space, swinging up to align with the center panels.

The panels will spend the entirety of the mission facing the Sun to provide a steady supply of power to the observatory’s electronics. This orientation will also shade much of the observatory and help keep the instruments cool, which is critical for an infrared observatory. Since infrared light is detectable as heat, excess warmth from the spacecraft’s own components would saturate the detectors and effectively blind the telescope.

NASA/Sydney Rohde”>

In this photo, technicians install solar panels onto the outer portion of the Roman observatory. Roman’s inner portion is in the background just left of center.
NASA/Sydney Rohde

Credit: NASA/Sydney Rohde”>

The Roman solar panels are covered in a total of 3,902 solar cells that will convert sunlight directly into electricity much like plants convert sunlight to chemical energy. When tiny bits of light, called photons, strike the cells, some of their energy transfers to electrons within the material. This jolt excites the electrons, which start moving more or jump to higher energy levels. In a solar cell, excited electrons create electricity by breaking free and moving through a circuit, sort of like water flowing through a pipe. The panels are designed to channel that energy to power the observatory.
Credit: NASA/Sydney Rohde






Technicians installed Roman’s solar panels in June of 2025, followed by the Lower Instrument Sun Shield — a smaller set of panels that will play a critical role in keeping Roman’s instruments cool and stable. Technicians practiced deploying the solar panels and Deployable Aperture Cover — a visor-like sunshade.

By fall 2025, the observatory was in two major segments. The inner portion included the telescope, instrument carrier, two instruments, and spacecraft bus while the outer portion consisted of the outer barrel assembly, deployable aperture cover, and solar panels. The outer portion passed a shake test and an intense sound blast while the inner portion underwent a 65-day thermal vacuum test.

On November 25, 2025, technicians joined the two segments together and the observatory was complete.

To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video

Over the course of several hours, technicians meticulously connected the inner and outer segments of NASA’s Nancy Grace Roman Space Telescope, as shown in this time-lapse. Next, Roman will undergo final testing prior to moving to the launch site at NASA’s Kennedy Space Center in Florida for launch preparations in summer 2026. Credit: NASA/Sophia Roberts NASA/Sophia Roberts “With Roman’s construction complete, we are poised at the brink of unfathomable scientific discovery. In the mission’s first five years, it’s expected to unveil more than 100,000 distant worlds, hundreds of millions of stars, and billions of galaxies. We stand to learn a tremendous amount of new information about the universe very rapidly after Roman launches.”

Julie Mcenery

Roman senior project scientist at NASA Goddard

Now, Roman will undergo testing as a full observatory. Roman will move to the launch site at NASA’s Kennedy Space Center in Florida for launch preparations in summer 2026. Roman is slated to launch by May 2027, but the team is on track for launch as early as fall 2026. Follow along on the journey to launch at nasa.gov/roman.




Click and drag to rotate

Downloads

gltf-binary File (3D Model) 28.28 MB

Explore more Roman observatory photos: About the Author Ashley Balzer

Ashley is the lead science writer for NASA’s Nancy Grace Roman Space Telescope.

Share

Details

Last Updated

Jan 29, 2026

Editor jmbrill Contact jmbrill jennifer.m.brill@nasa.gov Location NASA Goddard Space Flight Center

Related Terms Explore More

8 min read NASA Completes Nancy Grace Roman Space Telescope Construction

NASA’s next big eye on the cosmos is now fully assembled. On Nov. 25, technicians…



Article


2 months ago

6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies

NASA’s Nancy Grace Roman Space Telescope team shared Thursday the designs for the three core…



Article


9 months ago

6 min read New Simulated Universe Previews Panoramas From NASA’s Roman Telescope

Astronomers have released a set of more than a million simulated images showcasing the cosmos…



Article


1 year ago

Keep Exploring Discover More Topics From NASA

Missions


Humans in Space


Climate Change


Solar System

Categories: NASA

LDN 1622: Dark Nebula in Orion

APOD - Wed, 01/28/2026 - 8:00pm

The silhouette of an intriguing


Categories: Astronomy, NASA

Networks Keeping NASA’s Artemis II Mission Connected

NASA News - Wed, 01/28/2026 - 12:02pm
5 Min Read Networks Keeping NASA’s Artemis II Mission Connected An artist’s conceptual image of network antennas supporting the Orion spacecraft. Credits: NASA / Dave Ryan

NASA’s Artemis II mission will transport four astronauts around the Moon, bringing the agency one step closer to sending the first astronauts to Mars. Throughout Artemis II, astronaut voice, images, video, and vital mission data must traverse thousands of miles, carried on signals from NASA’s communications systems.

Through Artemis, NASA is establishing an enduring presence in space and exploring more of the Moon than ever before. To achieve this, Artemis missions rely on both the Near Space Network and the Deep Space Network. These networks, with oversight by NASA’s SCaN (Space Communications and Navigation) Program office, use global infrastructure and relay satellites to ensure seamless communications and tracking as Orion launches, orbits Earth, travels to the Moon, and returns home.

“Robust space communications aren’t optional; they’re the essential link that unites the crew and the exploration team on Earth to ensure safety and mission success, as I learned firsthand living and working aboard the International Space Station,” said Ken Bowersox, associate administrator for NASA’s Space Operations Mission Directorate at the agency’s headquarters in Washington. “From real-time conversations with mission controllers, to the data that drives critical decisions and research, and even calls home — space communications keep astronauts connected to mission managers, technical experts, loved ones, and everyone on Earth who wants to share in the excitement of our exploration missions. As we push farther into deep space, reliable communications links will enable more challenging missions and maximize the benefit for all of us on Earth.”

"From real-time conversations with mission controllers, to the data that drives critical decisions, research, and even calls home, space communications keep astronauts connected."

Ken Bowersox

Associate Administrator for NASA's Space Operations Mission Directorate

Specialists will operate its networks in tandem to enable data exchange between spacecraft and mission controllers on Earth. NASA’s Mission Control Center at the agency’s Johnson Space Center in Houston will track the Space Launch System rocket, Interim Cryogenic Propulsion Stage, and Orion spacecraft through coordinated handoffs between the networks’ multiple assets on Earth and in space for the duration of the mission.

Using ground stations around the globe and a fleet of relay satellites, the Near Space Network will provide communications and navigation services during multiple stages of the Artemis II mission operations. The network, managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, has a long legacy of supporting human spaceflight missions near Earth.

After Orion’s translunar injection burn, which will set the spacecraft on its planned orbit around the Moon, primary communications support will transition to the Deep Space Network, managed by NASA’s Jet Propulsion Laboratory in Southern California. The network’s international array of giant radio antennas, located in California, Spain, and Australia, provides a near-continuous connection to Orion and its crew.

The Artemis II mission will use SCaN’s networks to send vital data down to mission controllers on Earth. This includes astronaut communications, mission health and safety information, images, video, and more.NASA / Dave Ryan

“Reliable communications are the lifeline of human spaceflight,” said Kevin Coggins, deputy associate administrator for the SCaN Program at NASA Headquarters. “Our networks help make missions like Artemis II possible and set the stage for even more ambitious space exploration in the years ahead. These achievements are driven not only by NASA’s infrastructure but also by strong collaboration with our commercial partners, who play a critical role in advancing the capabilities and resilience of space communications.”

The DSN Now tool displays real-time data in the Charles Elachi Mission Control Center at NASA’s Jet Propulsion Laboratory during the Artemis I launch on November 16, 2022.NASA/JPL-Caltech/Ryan Lannom

In addition to traditional radio network support, the spacecraft will host the Orion Artemis II Optical Communications System, a laser communications terminal that will transmit real science and crew data over laser links. Demonstrations like the recent Deep Space Optical Communications payload have proven laser communications systems can send more than 100 times more data than comparable radio networks, even millions of miles away from Earth. While laser communications will not be on Artemis III, the Orion Artemis II Optical Communications System could pave the way for future laser communications systems at the Moon and Mars.

To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

An artist's visualization concept of the O2O laser communications terminal sending data over infrared light links. NASA / Dave Ryan

The Orion Artemis II Optical Communications System payload is only one piece of NASA’s larger mission to improve lunar and deep space communications. Orion will experience a planned communications blackout lasting approximately 41 minutes. The blackout will occur as the spacecraft passes behind the Moon, blocking radio frequency signals to and from Earth. Similar blackouts occurred during the Apollo-era missions and are expected when using an Earth-based network infrastructure. When Orion reemerges from behind the Moon, the Deep Space Network will quickly reacquire Orion’s signal and restore communications with mission control. These planned blackouts remain an aspect of all missions operating on or around the Moon’s far side.

Each Artemis mission will build upon existing capabilities, including data processing and handling. For the Artemis II flight test, data from Orion will be compressed after it reaches Earth to manage the large amount of information. Data compression will reduce image and video quality and give priority to crew communications and mission data.

To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

An artist's concept of the lunar relay supporting future missions on the Moon. NASA / Dave Ryan

Looking ahead, NASA’s Lunar Communications Relay and Navigation Systems project is collaborating with industry to eliminate blackouts and support precise navigation by placing relay satellites around the Moon. This network of orbiting satellites will deliver persistent, high-bandwidth communications and navigation services for astronauts, landers, and orbiters on and around the lunar surface. In 2024, NASA selected Intuitive Machines to develop the first set of lunar relays for demonstration during the Artemis III lunar surface mission. 

 From liftoff to splashdown, NASA’s evolving networks will serve as the crew’s link home, ensuring that humanity’s return to the Moon stays connected every step of the way.

About the AuthorKatherine Schauer

Katherine Schauer is a writer for the Space Communications and Navigation (SCaN) Program office and covers emerging technologies, commercialization efforts, exploration activities, and more.

Share Details Last Updated Jan 29, 2026 EditorGoddard Digital TeamContactJimi Russelljames.j.russell@nasa.govLocationGoddard Space Flight Center Related Terms Keep Exploring Discover More Topics From NASA

Artemis

Communicating with Missions

Near Space Network

Deep Space Network

Categories: NASA

Networks Keeping NASA’s Artemis II Mission Connected

NASA - Breaking News - Wed, 01/28/2026 - 12:02pm
5 Min Read Networks Keeping NASA’s Artemis II Mission Connected An artist’s conceptual image of network antennas supporting the Orion spacecraft. Credits: NASA / Dave Ryan

NASA’s Artemis II mission will transport four astronauts around the Moon, bringing the agency one step closer to sending the first astronauts to Mars. Throughout Artemis II, astronaut voice, images, video, and vital mission data must traverse thousands of miles, carried on signals from NASA’s communications systems.

Through Artemis, NASA is establishing an enduring presence in space and exploring more of the Moon than ever before. To achieve this, Artemis missions rely on both the Near Space Network and the Deep Space Network. These networks, with oversight by NASA’s SCaN (Space Communications and Navigation) Program office, use global infrastructure and relay satellites to ensure seamless communications and tracking as Orion launches, orbits Earth, travels to the Moon, and returns home.

To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

NASA’s Artemis II mission will transport four astronauts around the Moon, bringing humanity closer to its journey to Mars. Throughout the mission, astronaut voice, images, video, and vital mission data must traverse thousands of miles, carried on signals from NASA’s powerful communications systems: the Near Space Network and Deep Space Network.NASA

“Robust space communications aren’t optional; they’re the essential link that unites the crew and the exploration team on Earth to ensure safety and mission success, as I learned firsthand living and working aboard the International Space Station,” said Ken Bowersox, associate administrator for NASA’s Space Operations Mission Directorate at the agency’s headquarters in Washington. “From real-time conversations with mission controllers, to the data that drives critical decisions and research, and even calls home — space communications keep astronauts connected to mission managers, technical experts, loved ones, and everyone on Earth who wants to share in the excitement of our exploration missions. As we push farther into deep space, reliable communications links will enable more challenging missions and maximize the benefit for all of us on Earth.”

"From real-time conversations with mission controllers, to the data that drives critical decisions, research, and even calls home, space communications keep astronauts connected."

Ken Bowersox

Associate Administrator for NASA's Space Operations Mission Directorate

Specialists will operate its networks in tandem to enable data exchange between spacecraft and mission controllers on Earth. NASA’s Mission Control Center at the agency’s Johnson Space Center in Houston will track the Space Launch System rocket, Interim Cryogenic Propulsion Stage, and Orion spacecraft through coordinated handoffs between the networks’ multiple assets on Earth and in space for the duration of the mission.

Using ground stations around the globe and a fleet of relay satellites, the Near Space Network will provide communications and navigation services during multiple stages of the Artemis II mission operations. The network, managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, has a long legacy of supporting human spaceflight missions near Earth.

After Orion’s translunar injection burn, which will set the spacecraft on its planned orbit around the Moon, primary communications support will transition to the Deep Space Network, managed by NASA’s Jet Propulsion Laboratory in Southern California. The network’s international array of giant radio antennas, located in California, Spain, and Australia, provides a near-continuous connection to Orion and its crew.

The Artemis II mission will use SCaN’s networks to send vital data down to mission controllers on Earth. This includes astronaut communications, mission health and safety information, images, video, and more.NASA / Dave Ryan

“Reliable communications are the lifeline of human spaceflight,” said Kevin Coggins, deputy associate administrator for the SCaN Program at NASA Headquarters. “Our networks help make missions like Artemis II possible and set the stage for even more ambitious space exploration in the years ahead. These achievements are driven not only by NASA’s infrastructure but also by strong collaboration with our commercial partners, who play a critical role in advancing the capabilities and resilience of space communications.”

The DSN Now tool displays real-time data in the Charles Elachi Mission Control Center at NASA’s Jet Propulsion Laboratory during the Artemis I launch on November 16, 2022.NASA/JPL-Caltech/Ryan Lannom

In addition to traditional radio network support, the spacecraft will host the Orion Artemis II Optical Communications System, a laser communications terminal that will transmit real science and crew data over laser links. Demonstrations like the recent Deep Space Optical Communications payload have proven laser communications systems can send more than 100 times more data than comparable radio networks, even millions of miles away from Earth. While laser communications will not be on Artemis III, the Orion Artemis II Optical Communications System could pave the way for future laser communications systems at the Moon and Mars.

To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

An artist's visualization concept of the O2O laser communications terminal sending data over infrared light links. NASA / Dave Ryan

The Orion Artemis II Optical Communications System payload is only one piece of NASA’s larger mission to improve lunar and deep space communications. Orion will experience a planned communications blackout lasting approximately 41 minutes. The blackout will occur as the spacecraft passes behind the Moon, blocking radio frequency signals to and from Earth. Similar blackouts occurred during the Apollo-era missions and are expected when using an Earth-based network infrastructure. When Orion reemerges from behind the Moon, the Deep Space Network will quickly reacquire Orion’s signal and restore communications with mission control. These planned blackouts remain an aspect of all missions operating on or around the Moon’s far side.

Each Artemis mission will build upon existing capabilities, including data processing and handling. For the Artemis II flight test, data from Orion will be compressed after it reaches Earth to manage the large amount of information. Data compression will reduce image and video quality and give priority to crew communications and mission data.

To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

An artist's concept of the lunar relay supporting future missions on the Moon. NASA / Dave Ryan

Looking ahead, NASA’s Lunar Communications Relay and Navigation Systems project is collaborating with industry to eliminate blackouts and support precise navigation by placing relay satellites around the Moon. This network of orbiting satellites will deliver persistent, high-bandwidth communications and navigation services for astronauts, landers, and orbiters on and around the lunar surface. In 2024, NASA selected Intuitive Machines to develop the first set of lunar relays for demonstration during the Artemis III lunar surface mission. 

 From liftoff to splashdown, NASA’s evolving networks will serve as the crew’s link home, ensuring that humanity’s return to the Moon stays connected every step of the way.

About the AuthorKatherine Schauer

Katherine Schauer is a writer for the Space Communications and Navigation (SCaN) Program office and covers emerging technologies, commercialization efforts, exploration activities, and more.

Share Details Last Updated Jan 28, 2026 EditorGoddard Digital TeamContactJimi Russelljames.j.russell@nasa.govLocationGoddard Space Flight Center Related Terms Keep Exploring Discover More Topics From NASA

Artemis

Communicating with Missions

Near Space Network

Deep Space Network

Categories: NASA

NASA Telescopes Spot Surprisingly Mature Cluster in Early Universe

NASA News - Wed, 01/28/2026 - 11:38am
X-ray: NASA/CXC/CfA/Á Bogdán; Infrared: NASA/ESA/CSA/STScI; Image Processing: NASA/CXC/SAO/P. Edmonds and L. Frattare X-ray: NASA/CXC/CfA/Á Bogdán; Infrared: NASA/ESA/CSA/STScI; Image Processing: NASA/CXC/SAO/P. Edmonds and L. Frattare

A new discovery captures the cosmic moment when a galaxy cluster – among the largest structures in the universe – started to assemble only about a billion years after the big bang, one or two billion years earlier than previously thought. This result, made using NASA’s Chandra X-ray Observatory and James Webb Space Telescope, will lead astronomers to rethink when and how the largest structures in the universe formed. The findings are described in a paper published [Wednesday] in the journal Nature.

The object, known as JADES-ID1 for its location in the “JWST Advanced Deep Extragalactic Survey” (JADES) has a mass about 20 trillion times that of the Sun. Astronomers classify JADES-ID1 as a “protocluster” because it is currently undergoing an early, violent phase of formation and will one day turn into a galaxy cluster. However, JADES-ID1 is found at a much larger distance – corresponding to a much earlier time in the universe – than astronomers expected for such systems, providing a new mystery of how it could form so quickly.

“This may be the most distant confirmed protocluster ever seen,” said Akos Bogdan of the Center for Astrophysics | Harvard & Smithsonian (CfA) who led the study. “JADES-ID1 is giving us new evidence that the universe was in a huge hurry to grow up.”

Galaxy clusters contain hundreds or even thousands of individual galaxies immersed in enormous pools of superheated gas, along with large amounts of unseen dark matter. Astronomers use galaxy clusters to measure the expansion of the universe and the roles of dark energy and dark matter, among other important cosmic studies.

“It’s very important to actually see when and how galaxy clusters grow,” said co-author Gerrit Schellenberger, also of CfA. “It’s like watching an assembly line make a car, rather than just trying to figure out how a car works by looking at the finished product.”

The Chandra and Webb data reveal that JADES-ID1 contains the two properties that confirm the presence of a protocluster: a large number of galaxies held together by gravity (Webb sees at least 66 potential members) that are also sitting in a huge cloud of hot gas (detected by Chandra). As a galaxy cluster forms, gas falls inward and is heated by shock waves, reaching temperatures of millions of degrees and glowing in X-rays.

What makes JADES-ID1 exceptional is the remarkably early time when it appears in cosmic history. Most models of the universe predict that there likely would not be enough time and a large enough density of galaxies for a protocluster of this size to form only a billion years after the big bang. The previous record holder for a protocluster with X-ray emission is seen much later, about three billion years after the big bang.

“We thought we’d find a protocluster like this two or three billion years after the big bang – not just one billion,” said co-author Qiong Li from the University of Manchester in the UK. “Before, astronomers found surprisingly large galaxies and black holes not long after the big bang, and now we’re finding that clusters of galaxies can also grow rapidly.”

After billions of years JADES-ID1 should evolve from a protocluster into a massive galaxy cluster like those we see much closer to Earth.

To find JADES-ID1, astronomers combined deep observations from both Chandra and Webb. By design, the JADES field overlaps with the Chandra Deep Field South, the site of the deepest X-ray observation ever conducted. This field is thus one of the few in the entire sky where a discovery such as this could be made. In an earlier study, a team of researchers led by Li and Conselice found five other proto-cluster candidates in the JADES field, but only in JADES-ID1 are the galaxies embedded in hot gas. Only JADES-ID1 possesses enough mass for an X-ray signal from hot gas to be expected.

“Discoveries like this are made when two powerful telescopes like Chandra and Webb stare at the same patch of sky at the limit of their observing capabilities,” said co-author Christopher Conselice, also from the University of Manchester. “A challenge for us now is to understand how this protocluster was able to form so quickly.”

NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.

To learn more about Chandra, visit:

https://science.nasa.gov/chandra

Read more from NASA’s Chandra X-ray Observatory

Learn more about the Chandra X-ray Observatory and its mission here:

https://www.nasa.gov/chandra

https://chandra.si.edu

Visual Description

This composite image features what may be the most distant protocluster ever found; a region of space where a large number of young galaxies are being held together by gravity and hot gas. The image is presented twice, once with, and once without, annotations.

The image includes scores of glowing dots and specks of light, in white and golden hues, set against the blackness of space. This layer of the composite visual is from a deep infrared imaging project undertaken by the James Webb Space Telescope. The specks range from relatively large oval galaxies with discernible spiral arms, and glowing balls with gleaming diffraction spikes, to minuscule pinpoints of distant light. Several of those pinpoints have been circled in the annotated image, as they are part of the distant protocluster.

Layered onto the center of this image is a neon blue cloud. This cloud represents hot X-ray gas discovered by Chandra in the deepest X-ray observation ever conducted. In the annotated image, a thin white square surrounds the blue cloud. This represents Chandra’s field of observation. The X-rays from the distant protocluster located within this box are included in the composite image.

The protocluster, dubbed JADES-1, has a mass of about 20 trillion suns. It is located some 12.7 billion light-years from Earth, or just a billion years after the big bang. The discovery of a protocluster of this size, at this epoch in the early universe, will lead scientists to re-examine their ideas for how galaxy clusters first appeared in the universe.

News Media Contact

Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu

Joel Wallace
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
joel.w.wallace@nasa.gov

Share Details Last Updated Jan 28, 2026 EditorLee MohonContactJoel Wallacejoel.w.wallace@nasa.govLocationMarshall Space Flight Center Related Terms Keep Exploring Discover More Topics From NASA Chandra

Space Telescope

Hubble Space Telescope

Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.

James Webb Space Telescope

Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…

Spitzer Space Telescope

Spitzer uses an ultra-sensitive infrared telescope to study asteroids, comets, planets and distant galaxies.

Categories: NASA

NASA Telescopes Spot Surprisingly Mature Cluster in Early Universe

NASA - Breaking News - Wed, 01/28/2026 - 11:38am
X-ray: NASA/CXC/CfA/Á Bogdán; Infrared: NASA/ESA/CSA/STScI; Image Processing: NASA/CXC/SAO/P. Edmonds and L. Frattare X-ray: NASA/CXC/CfA/Á Bogdán; Infrared: NASA/ESA/CSA/STScI; Image Processing: NASA/CXC/SAO/P. Edmonds and L. Frattare

A new discovery captures the cosmic moment when a galaxy cluster – among the largest structures in the universe – started to assemble only about a billion years after the big bang, one or two billion years earlier than previously thought. This result, made using NASA’s Chandra X-ray Observatory and James Webb Space Telescope, will lead astronomers to rethink when and how the largest structures in the universe formed. The findings are described in a paper published [Wednesday] in the journal Nature.

The object, known as JADES-ID1 for its location in the “JWST Advanced Deep Extragalactic Survey” (JADES) has a mass about 20 trillion times that of the Sun. Astronomers classify JADES-ID1 as a “protocluster” because it is currently undergoing an early, violent phase of formation and will one day turn into a galaxy cluster. However, JADES-ID1 is found at a much larger distance – corresponding to a much earlier time in the universe – than astronomers expected for such systems, providing a new mystery of how it could form so quickly.

“This may be the most distant confirmed protocluster ever seen,” said Akos Bogdan of the Center for Astrophysics | Harvard & Smithsonian (CfA) who led the study. “JADES-ID1 is giving us new evidence that the universe was in a huge hurry to grow up.”

Galaxy clusters contain hundreds or even thousands of individual galaxies immersed in enormous pools of superheated gas, along with large amounts of unseen dark matter. Astronomers use galaxy clusters to measure the expansion of the universe and the roles of dark energy and dark matter, among other important cosmic studies.

“It’s very important to actually see when and how galaxy clusters grow,” said co-author Gerrit Schellenberger, also of CfA. “It’s like watching an assembly line make a car, rather than just trying to figure out how a car works by looking at the finished product.”

The Chandra and Webb data reveal that JADES-ID1 contains the two properties that confirm the presence of a protocluster: a large number of galaxies held together by gravity (Webb sees at least 66 potential members) that are also sitting in a huge cloud of hot gas (detected by Chandra). As a galaxy cluster forms, gas falls inward and is heated by shock waves, reaching temperatures of millions of degrees and glowing in X-rays.

What makes JADES-ID1 exceptional is the remarkably early time when it appears in cosmic history. Most models of the universe predict that there likely would not be enough time and a large enough density of galaxies for a protocluster of this size to form only a billion years after the big bang. The previous record holder for a protocluster with X-ray emission is seen much later, about three billion years after the big bang.

“We thought we’d find a protocluster like this two or three billion years after the big bang – not just one billion,” said co-author Qiong Li from the University of Manchester in the UK. “Before, astronomers found surprisingly large galaxies and black holes not long after the big bang, and now we’re finding that clusters of galaxies can also grow rapidly.”

After billions of years JADES-ID1 should evolve from a protocluster into a massive galaxy cluster like those we see much closer to Earth.

To find JADES-ID1, astronomers combined deep observations from both Chandra and Webb. By design, the JADES field overlaps with the Chandra Deep Field South, the site of the deepest X-ray observation ever conducted. This field is thus one of the few in the entire sky where a discovery such as this could be made. In an earlier study, a team of researchers led by Li and Conselice found five other proto-cluster candidates in the JADES field, but only in JADES-ID1 are the galaxies embedded in hot gas. Only JADES-ID1 possesses enough mass for an X-ray signal from hot gas to be expected.

“Discoveries like this are made when two powerful telescopes like Chandra and Webb stare at the same patch of sky at the limit of their observing capabilities,” said co-author Christopher Conselice, also from the University of Manchester. “A challenge for us now is to understand how this protocluster was able to form so quickly.”

NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.

To learn more about Chandra, visit:

https://science.nasa.gov/chandra

Read more from NASA’s Chandra X-ray Observatory

Learn more about the Chandra X-ray Observatory and its mission here:

https://www.nasa.gov/chandra

https://chandra.si.edu

Visual Description

This composite image features what may be the most distant protocluster ever found; a region of space where a large number of young galaxies are being held together by gravity and hot gas. The image is presented twice, once with, and once without, annotations.

The image includes scores of glowing dots and specks of light, in white and golden hues, set against the blackness of space. This layer of the composite visual is from a deep infrared imaging project undertaken by the James Webb Space Telescope. The specks range from relatively large oval galaxies with discernible spiral arms, and glowing balls with gleaming diffraction spikes, to minuscule pinpoints of distant light. Several of those pinpoints have been circled in the annotated image, as they are part of the distant protocluster.

Layered onto the center of this image is a neon blue cloud. This cloud represents hot X-ray gas discovered by Chandra in the deepest X-ray observation ever conducted. In the annotated image, a thin white square surrounds the blue cloud. This represents Chandra’s field of observation. The X-rays from the distant protocluster located within this box are included in the composite image.

The protocluster, dubbed JADES-1, has a mass of about 20 trillion suns. It is located some 12.7 billion light-years from Earth, or just a billion years after the big bang. The discovery of a protocluster of this size, at this epoch in the early universe, will lead scientists to re-examine their ideas for how galaxy clusters first appeared in the universe.

News Media Contact

Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu

Joel Wallace
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
joel.w.wallace@nasa.gov

Share Details Last Updated Jan 28, 2026 EditorLee MohonContactJoel Wallacejoel.w.wallace@nasa.govLocationMarshall Space Flight Center Related Terms Keep Exploring Discover More Topics From NASA Chandra

Space Telescope

Hubble Space Telescope

Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.

James Webb Space Telescope

Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…

Spitzer Space Telescope

Spitzer uses an ultra-sensitive infrared telescope to study asteroids, comets, planets and distant galaxies.

Categories: NASA

Chandra, Webb Catch Twinkling Lights

NASA Image of the Day - Wed, 01/28/2026 - 11:27am
This stellar landscape is reminiscent of a winter vista in a view from NASA’s James Webb Space Telescope (red, green, and blue). Chandra data (red, green and blue) punctuate the scene with bursts of colored lights representing high-energy activity from the active stars.
Categories: Astronomy, NASA

Chandra, Webb Catch Twinkling Lights

NASA News - Wed, 01/28/2026 - 11:26am
This stellar landscape is reminiscent of a winter vista in a view from NASA’s James Webb Space Telescope (red, green, and blue). Chandra data (red, green and blue) punctuate the scene with bursts of colored lights representing high-energy activity from the active stars.Credit: X-ray: NASA/CXC/Penn State/G. Garmire; Infrared: NASA, ESA, CSA, and STScI; Image Processing: NASA/CXC/SAO/L. Frattare and NSA/ESA/CSA/STScI/A. Pagan

Data from Chandra adds red, green, and blue twinkling lights in this Dec. 22, 2025, image of Pismis 24 from NASA’s James Webb Space Telescope. Pismis 24 is a young cluster of stars in the core of the nearby Lobster Nebula, approximately 5,500 light-years from Earth in the constellation Scorpius. Home to a vibrant stellar nursery and one of the closest sites of massive star birth, Pismis 24 provides rare insight into large and massive stars. This region is one of the best places to explore the properties of hot young stars and how they evolve.

Image credit: Credit: X-ray: NASA/CXC/Penn State/G. Garmire; Infrared: NASA, ESA, CSA, and STScI; Image Processing: NASA/CXC/SAO/L. Frattare and NSA/ESA/CSA/STScI/A. Pagan

Categories: NASA

Chandra, Webb Catch Twinkling Lights

NASA - Breaking News - Wed, 01/28/2026 - 11:26am
This stellar landscape is reminiscent of a winter vista in a view from NASA’s James Webb Space Telescope (red, green, and blue). Chandra data (red, green and blue) punctuate the scene with bursts of colored lights representing high-energy activity from the active stars.Credit: X-ray: NASA/CXC/Penn State/G. Garmire; Infrared: NASA, ESA, CSA, and STScI; Image Processing: NASA/CXC/SAO/L. Frattare and NSA/ESA/CSA/STScI/A. Pagan

Data from Chandra adds red, green, and blue twinkling lights in this Dec. 22, 2025, image of Pismis 24 from NASA’s James Webb Space Telescope. Pismis 24 is a young cluster of stars in the core of the nearby Lobster Nebula, approximately 5,500 light-years from Earth in the constellation Scorpius. Home to a vibrant stellar nursery and one of the closest sites of massive star birth, Pismis 24 provides rare insight into large and massive stars. This region is one of the best places to explore the properties of hot young stars and how they evolve.

Image credit: Credit: X-ray: NASA/CXC/Penn State/G. Garmire; Infrared: NASA, ESA, CSA, and STScI; Image Processing: NASA/CXC/SAO/L. Frattare and NSA/ESA/CSA/STScI/A. Pagan

Categories: NASA

NASA Webb Pushes Boundaries of Observable Universe Closer to Big Bang

NASA News - Wed, 01/28/2026 - 10:00am
Explore Webb
  1. Science
  2. James Webb Space Telescope (JWST)
  3. NASA Webb Pushes Boundaries of…
  6 Min Read NASA Webb Pushes Boundaries of Observable Universe Closer to Big Bang NASA’s James Webb Space Telescope shows galaxy MoM-z14 as it appeared in the distant past, only 280 million years after the universe began in the big bang.  Credits: Image: NASA, ESA, CSA, STScI, Rohan Naidu (MIT); Image Processing: Joseph DePasquale (STScI)

NASA’s James Webb Space Telescope has topped itself once again, delivering on its promise to push the boundaries of the observable universe closer to cosmic dawn with the confirmation of a bright galaxy that existed 280 million years after the big bang. By now Webb has established that it will eventually surpass virtually every benchmark it sets in these early years, but the newly confirmed galaxy, MoM-z14, holds intriguing clues to the universe’s historical timeline and just how different a place the early universe was than astronomers expected.

“With Webb, we are able to see farther than humans ever have before, and it looks nothing like what we predicted, which is both challenging and exciting,” said Rohan Naidu of the Massachusetts Institute of Technology’s (MIT) Kavli Institute for Astrophysics and Space Research, lead author of a paper on galaxy MoM-z14 published in the Open Journal of Astrophysics. 

Due to the expansion of the universe that is driven by dark energy, discussion of physical distances and “years ago” becomes tricky when looking this far. Using Webb’s NIRSpec (Near-Infrared Spectrograph) instrument, astronomers confirmed that MoM-z14 has a cosmological redshift of 14.44, meaning that its light has been travelling through (expanding) space, being stretched and “shifted” to longer, redder wavelengths, for about 13.5 of the universe’s estimated 13.8 billion years of existence.

“We can estimate the distance of galaxies from images, but it’s really important to follow up and confirm with more detailed spectroscopy so that we know exactly what we are seeing, and when,” said Pascal Oesch of the University of Geneva, co-principal investigator of the survey.

Image: COSMOS Field MoM-z14 Galaxy (NIRCam Image) NASA’s James Webb Space Telescope shows galaxy MoM-z14 as it appeared in the distant past, only 280 million years after the universe began in the big bang. Image: NASA, ESA, CSA, STScI, Rohan Naidu (MIT); Image Processing: Joseph DePasquale (STScI) Intriguing Features

MoM-z14 is one of a growing group of surprisingly bright galaxies in the early universe – 100 times more than theoretical studies predicted before the launch of Webb, according to the research team.

“There is a growing chasm between theory and observation related to the early universe, which presents compelling questions to be explored going forward,” said Jacob Shen, a postdoctoral researcher at MIT and a member of the research team.

One place researchers and theorists can look for answers is the oldest population of stars in the Milky Way galaxy. A small percentage of these stars have shown high amounts of nitrogen, which is also showing up in some of Webb’s observations of early galaxies, including MoM-z14.

“We can take a page from archeology and look at these ancient stars in our own galaxy like fossils from the early universe, except in astronomy we are lucky enough to have Webb seeing so far that we also have direct information about galaxies during that time. It turns out we are seeing some of the same features, like this unusual nitrogen enrichment,” said Naidu.

With galaxy MoM-z14 existing only 280 million years after the big bang, there was not enough time for generations of stars to produce such high amounts of nitrogen in the way that astronomers would expect. One theory the researchers note is that the dense environment of the early universe resulted in supermassive stars capable of producing more nitrogen than any stars observed in the local universe.

The galaxy MoM-z14 also shows signs of clearing out the thick, primordial hydrogen fog of the early universe in the space around itself. One of the reasons Webb was originally built was to define the timeline for this “clearing” period of cosmic history, which astronomers call reionization. This is when early stars produced light of high enough energy to break through the dense hydrogen gas of the early universe and begin travelling through space, eventually making its way to Webb, and us. Galaxy MoM-z14 provides another clue for mapping out the timeline of reionization, work that was not possible until Webb lifted the veil on this era of the universe.

Legacy of Discovery Continues

Even before Webb’s launch, there were hints that something very unanticipated happened in the early universe, when NASA’s Hubble Space Telescope discovered the bright galaxy GN-z11 400 million years after the big bang. Webb confirmed the galaxy’s distance — at the time the most distant ever. From there Webb has continued to push back farther and farther in space and time, finding more surprisingly bright galaxies like GN-z11.

As Webb continues to uncover more of these unexpectedly luminous galaxies, it’s clear that the first few were not a fluke. Astronomers are eagerly anticipating that NASA’s upcoming Nancy Grace Roman Space Telescope, with its combination of high-resolution infrared imaging and extremely wide field of view, will boost the sample of these bright, compact, chemically enriched early galaxies into the thousands.

“To figure out what is going on in the early universe, we really need more information —more detailed observations with Webb, and more galaxies to see where the common features are, which Roman will be able to provide,” said Yijia Li, a graduate student at the Pennsylvania State University and a member of the research team. “It’s an incredibly exciting time, with Webb revealing the early universe like never before and showing us how much there still is to discover.”

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

To learn more about Webb, visit:

https://science.nasa.gov/webb

Downloads & Related Information

The following sections contain links to download this article’s images and videos in all available resolutions followed by related information links, media contacts, and if available, research paper and Spanish translation links.

Related Images & Videos COSMOS Field MoM-z14 Galaxy (NIRCam Image)

NASA’s James Webb Space Telescope shows galaxy MoM-z14 as it appeared in the distant past, only 280 million years after the universe began in the big bang.

COSMOS Field MoM-z14 Galaxy (NIRCam Compass Image)

NASA’s James Webb Space Telescope shows galaxy MoM-z14 as it appeared in the distant past, only 280 million years after the universe began in the big bang.

Related Links

Read more: Webb Science: Galaxies Through Time

Explore more: ViewSpace Seeing Farther: Hubble Ultra Deep Field

Video: JADES: GOODS South Fly-Through Visualization

Video: Ultra Deep Field: Looking Out into Space, Looking Back into Time

Explore more: ViewSpace Gathering Light: Hubble Ultra Deep Field

More Webb News

More Webb Images

Webb Science Themes

Webb Mission Page

Share Details Last Updated Jan 28, 2026 LocationNASA Goddard Space Flight Center Contact Media

Laura Betz
NASA’s Goddard Space Flight Center
Greenbelt, Maryland
laura.e.betz@nasa.gov

Leah Ramsay
Space Telescope Science Institute
Baltimore, Maryland

Christine Pulliam
Space Telescope Science Institute
Baltimore, Maryland

Related Terms Related Links and Documents Keep Exploring Related Topics James Webb Space Telescope

Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…

Galaxies

Galaxies Stories

Universe

Categories: NASA

NASA Webb Pushes Boundaries of Observable Universe Closer to Big Bang

NASA - Breaking News - Wed, 01/28/2026 - 10:00am
Explore Webb
  1. Science
  2. James Webb Space Telescope (JWST)
  3. NASA Webb Pushes Boundaries of…
  6 Min Read NASA Webb Pushes Boundaries of Observable Universe Closer to Big Bang NASA’s James Webb Space Telescope shows galaxy MoM-z14 as it appeared in the distant past, only 280 million years after the universe began in the big bang.  Credits: Image: NASA, ESA, CSA, STScI, Rohan Naidu (MIT); Image Processing: Joseph DePasquale (STScI)

NASA’s James Webb Space Telescope has topped itself once again, delivering on its promise to push the boundaries of the observable universe closer to cosmic dawn with the confirmation of a bright galaxy that existed 280 million years after the big bang. By now Webb has established that it will eventually surpass virtually every benchmark it sets in these early years, but the newly confirmed galaxy, MoM-z14, holds intriguing clues to the universe’s historical timeline and just how different a place the early universe was than astronomers expected.

“With Webb, we are able to see farther than humans ever have before, and it looks nothing like what we predicted, which is both challenging and exciting,” said Rohan Naidu of the Massachusetts Institute of Technology’s (MIT) Kavli Institute for Astrophysics and Space Research, lead author of a paper on galaxy MoM-z14 published in the Open Journal of Astrophysics. 

Due to the expansion of the universe that is driven by dark energy, discussion of physical distances and “years ago” becomes tricky when looking this far. Using Webb’s NIRSpec (Near-Infrared Spectrograph) instrument, astronomers confirmed that MoM-z14 has a cosmological redshift of 14.44, meaning that its light has been travelling through (expanding) space, being stretched and “shifted” to longer, redder wavelengths, for about 13.5 of the universe’s estimated 13.8 billion years of existence.

“We can estimate the distance of galaxies from images, but it’s really important to follow up and confirm with more detailed spectroscopy so that we know exactly what we are seeing, and when,” said Pascal Oesch of the University of Geneva, co-principal investigator of the survey.

Image: COSMOS Field MoM-z14 Galaxy (NIRCam Image) NASA’s James Webb Space Telescope shows galaxy MoM-z14 as it appeared in the distant past, only 280 million years after the universe began in the big bang. Image: NASA, ESA, CSA, STScI, Rohan Naidu (MIT); Image Processing: Joseph DePasquale (STScI) Intriguing Features

MoM-z14 is one of a growing group of surprisingly bright galaxies in the early universe – 100 times more than theoretical studies predicted before the launch of Webb, according to the research team.

“There is a growing chasm between theory and observation related to the early universe, which presents compelling questions to be explored going forward,” said Jacob Shen, a postdoctoral researcher at MIT and a member of the research team.

One place researchers and theorists can look for answers is the oldest population of stars in the Milky Way galaxy. A small percentage of these stars have shown high amounts of nitrogen, which is also showing up in some of Webb’s observations of early galaxies, including MoM-z14.

“We can take a page from archeology and look at these ancient stars in our own galaxy like fossils from the early universe, except in astronomy we are lucky enough to have Webb seeing so far that we also have direct information about galaxies during that time. It turns out we are seeing some of the same features, like this unusual nitrogen enrichment,” said Naidu.

With galaxy MoM-z14 existing only 280 million years after the big bang, there was not enough time for generations of stars to produce such high amounts of nitrogen in the way that astronomers would expect. One theory the researchers note is that the dense environment of the early universe resulted in supermassive stars capable of producing more nitrogen than any stars observed in the local universe.

The galaxy MoM-z14 also shows signs of clearing out the thick, primordial hydrogen fog of the early universe in the space around itself. One of the reasons Webb was originally built was to define the timeline for this “clearing” period of cosmic history, which astronomers call reionization. This is when early stars produced light of high enough energy to break through the dense hydrogen gas of the early universe and begin travelling through space, eventually making its way to Webb, and us. Galaxy MoM-z14 provides another clue for mapping out the timeline of reionization, work that was not possible until Webb lifted the veil on this era of the universe.

Legacy of Discovery Continues

Even before Webb’s launch, there were hints that something very unanticipated happened in the early universe, when NASA’s Hubble Space Telescope discovered the bright galaxy GN-z11 400 million years after the big bang. Webb confirmed the galaxy’s distance — at the time the most distant ever. From there Webb has continued to push back farther and farther in space and time, finding more surprisingly bright galaxies like GN-z11.

As Webb continues to uncover more of these unexpectedly luminous galaxies, it’s clear that the first few were not a fluke. Astronomers are eagerly anticipating that NASA’s upcoming Nancy Grace Roman Space Telescope, with its combination of high-resolution infrared imaging and extremely wide field of view, will boost the sample of these bright, compact, chemically enriched early galaxies into the thousands.

“To figure out what is going on in the early universe, we really need more information —more detailed observations with Webb, and more galaxies to see where the common features are, which Roman will be able to provide,” said Yijia Li, a graduate student at the Pennsylvania State University and a member of the research team. “It’s an incredibly exciting time, with Webb revealing the early universe like never before and showing us how much there still is to discover.”

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

To learn more about Webb, visit:

https://science.nasa.gov/webb

Downloads & Related Information

The following sections contain links to download this article’s images and videos in all available resolutions followed by related information links, media contacts, and if available, research paper and Spanish translation links.

Related Images & Videos COSMOS Field MoM-z14 Galaxy (NIRCam Image)

NASA’s James Webb Space Telescope shows galaxy MoM-z14 as it appeared in the distant past, only 280 million years after the universe began in the big bang.

COSMOS Field MoM-z14 Galaxy (NIRCam Compass Image)

NASA’s James Webb Space Telescope shows galaxy MoM-z14 as it appeared in the distant past, only 280 million years after the universe began in the big bang.

Related Links

Read more: Webb Science: Galaxies Through Time

Explore more: ViewSpace Seeing Farther: Hubble Ultra Deep Field

Video: JADES: GOODS South Fly-Through Visualization

Video: Ultra Deep Field: Looking Out into Space, Looking Back into Time

Explore more: ViewSpace Gathering Light: Hubble Ultra Deep Field

More Webb News

More Webb Images

Webb Science Themes

Webb Mission Page

Share Details Last Updated Jan 28, 2026 LocationNASA Goddard Space Flight Center Contact Media

Laura Betz
NASA’s Goddard Space Flight Center
Greenbelt, Maryland
laura.e.betz@nasa.gov

Leah Ramsay
Space Telescope Science Institute
Baltimore, Maryland

Christine Pulliam
Space Telescope Science Institute
Baltimore, Maryland

Related Terms Related Links and Documents Keep Exploring Related Topics James Webb Space Telescope

Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…

Galaxies

Galaxies Stories

Universe

Categories: NASA

NASA Testing Advances Space Nuclear Propulsion Capabilities

NASA News - Tue, 01/27/2026 - 5:36pm
3 Min Read NASA Testing Advances Space Nuclear Propulsion Capabilities

Nuclear propulsion and power technologies could unlock new frontiers in missions to the Moon, Mars, and beyond. NASA has reached an important milestone advancing nuclear propulsion that could benefit future deep space missions by completing a cold-flow test campaign of the first flight reactor engineering development unit since the 1960s.

Crews at NASA’s Marshall Space Flight Center in Huntsville, Alabama, install a flight reactor engineering development unit into Test Stand 400 in preparation for cold-flow testing. The test campaign began in July and ran through September and marked the first testing on a light reactor engineering development unit since the 1960s.NASA/Adam Butt Crews at NASA’s Marshall Space Flight Center in Huntsville, Alabama, install a flight reactor engineering development unit into Test Stand 400 in preparation for cold-flow testing. The test campaign began in July and ran through September and marked the first testing on a flight reactor engineering development unit since the 1960s. NASA/Adam Butt Crews at NASA’s Marshall Space Flight Center in Huntsville, Alabama, install a flight reactor engineering development unit into Test Stand 400 in preparation for cold-flow testing. The test campaign began in July and ran through September and marked the first testing on a flight reactor engineering development unit since the 1960s. NASA/Adam Butt A flight reactor engineering development unit is fully installed at Test Stand 400 in preparation for cold-flow testing. The test campaign began in July and ran through September, marking the first testing on a flight reactor engineering development unit since the 1960s. NASA/Adam Butt

“Nuclear propulsion has multiple benefits including speed and endurance that could enable complex deep space missions,” said Greg Stover acting associate administrator of NASA’s Space Technology Mission Directorate at NASA Headquarters in Washington. “By shortening travel times and expanding mission capabilities, this technology will lay the foundation to explore farther into our solar system than ever before. Information from the cold-flow test series is instrumental in understanding the operational characteristics and fluid flow performance of nuclear reactors.”

Teams at the agency’s Marshall Space Flight Center in Huntsville, Alabama, conducted more than 100 tests on  the engineering development unit over several months in 2025. The 44-inch by 72-inch unit, built by BWX Technologies of Lynchburg, Virginia, is a full-scale, non-nuclear, flight-like development test article the size of a 100-gallon drum that simulates propellant flow throughout the reactor across a range of operational conditions.

The cold-flow tests at NASA Marshall are the culmination of a multi-year activity for the agency and its industry partners. Key test objectives included simulating operational fluid-dynamic responses, gathering critical information for design of the flight instrumentation and control system, providing crucial validation of analytical tools, and serving as a pathfinder for manufacturing, assembly, and integration of near-term flight-capable nuclear propulsion systems.

Other benefits to space travel include increasing the science payload capacity and higher power for instrumentation and communication.

Test engineers were able to demonstrate that the reactor design is not susceptible to destructive flow-induced oscillations, vibrations or pressure waves that occur when a moving fluid interacts with a structure in a way that makes the system shake.

“We’re doing more than proving a new technology,” said Jason Turpin, manager of the Space Nuclear Propulsion Office at NASA Marshall. “This test series generated some of the most detailed flow responses for a flight-like space reactor design in more than 50 years and is a key steppingstone toward developing a flight-capable system. Each milestone brings us closer to expanding what’s possible for the future of human spaceflight, exploration, and science.”

The Space Nuclear Propulsion Office is part of NASA’s Technology Demonstration Missions Program within the agency’s Space Technology Mission Directorate.

Learn more about NASA’s technology advancements:

https://www.nasa.gov/space-technology-mission-directorate/

News Media Contact

Joel Wallace
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
joel.w.wallace@nasa.gov

Share Details Last Updated Jan 28, 2026 EditorLee MohonContactJoel Wallacejoel.w.wallace@nasa.govLocationMarshall Space Flight Center Related Terms
Categories: NASA

NASA Testing Advances Space Nuclear Propulsion Capabilities

NASA - Breaking News - Tue, 01/27/2026 - 5:36pm
3 Min Read NASA Testing Advances Space Nuclear Propulsion Capabilities

Nuclear propulsion and power technologies could unlock new frontiers in missions to the Moon, Mars, and beyond. NASA has reached an important milestone advancing nuclear propulsion that could benefit future deep space missions by completing a cold-flow test campaign of the first flight reactor engineering development unit since the 1960s.

Crews at NASA’s Marshall Space Flight Center in Huntsville, Alabama, install a flight reactor engineering development unit into Test Stand 400 in preparation for cold-flow testing. The test campaign began in July and ran through September and marked the first testing on a light reactor engineering development unit since the 1960s.NASA/Adam Butt Crews at NASA’s Marshall Space Flight Center in Huntsville, Alabama, install a flight reactor engineering development unit into Test Stand 400 in preparation for cold-flow testing. The test campaign began in July and ran through September and marked the first testing on a flight reactor engineering development unit since the 1960s. NASA/Adam Butt Crews at NASA’s Marshall Space Flight Center in Huntsville, Alabama, install a flight reactor engineering development unit into Test Stand 400 in preparation for cold-flow testing. The test campaign began in July and ran through September and marked the first testing on a flight reactor engineering development unit since the 1960s. NASA/Adam Butt A flight reactor engineering development unit is fully installed at Test Stand 400 in preparation for cold-flow testing. The test campaign began in July and ran through September, marking the first testing on a flight reactor engineering development unit since the 1960s. NASA/Adam Butt

“Nuclear propulsion has multiple benefits including speed and endurance that could enable complex deep space missions,” said Greg Stover acting associate administrator of NASA’s Space Technology Mission Directorate at NASA Headquarters in Washington. “By shortening travel times and expanding mission capabilities, this technology will lay the foundation to explore farther into our solar system than ever before. Information from the cold-flow test series is instrumental in understanding the operational characteristics and fluid flow performance of nuclear reactors.”

Teams at the agency’s Marshall Space Flight Center in Huntsville, Alabama, conducted more than 100 tests on  the engineering development unit over several months in 2025. The 44-inch by 72-inch unit, built by BWX Technologies of Lynchburg, Virginia, is a full-scale, non-nuclear, flight-like development test article the size of a 100-gallon drum that simulates propellant flow throughout the reactor across a range of operational conditions.

The cold-flow tests at NASA Marshall are the culmination of a multi-year activity for the agency and its industry partners. Key test objectives included simulating operational fluid-dynamic responses, gathering critical information for design of the flight instrumentation and control system, providing crucial validation of analytical tools, and serving as a pathfinder for manufacturing, assembly, and integration of near-term flight-capable nuclear propulsion systems.

Other benefits to space travel include increasing the science payload capacity and higher power for instrumentation and communication.

Test engineers were able to demonstrate that the reactor design is not susceptible to destructive flow-induced oscillations, vibrations or pressure waves that occur when a moving fluid interacts with a structure in a way that makes the system shake.

“We’re doing more than proving a new technology,” said Jason Turpin, manager of the Space Nuclear Propulsion Office at NASA Marshall. “This test series generated some of the most detailed flow responses for a flight-like space reactor design in more than 50 years and is a key steppingstone toward developing a flight-capable system. Each milestone brings us closer to expanding what’s possible for the future of human spaceflight, exploration, and science.”

The Space Nuclear Propulsion Office is part of NASA’s Technology Demonstration Missions Program within the agency’s Space Technology Mission Directorate.

Learn more about NASA’s technology advancements:

https://www.nasa.gov/space-technology-mission-directorate/

News Media Contact

Joel Wallace
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
joel.w.wallace@nasa.gov

Share Details Last Updated Jan 28, 2026 EditorLee MohonContactJoel Wallacejoel.w.wallace@nasa.govLocationMarshall Space Flight Center Related Terms
Categories: NASA

Discovery Alert: An Ice-Cold Earth?

NASA News - Tue, 01/27/2026 - 5:27pm
Explore the Universe Artist’s concept of exoplanet candidate HD 137010 b, dubbed a “cold Earth” because it’s a possible rocky planet slightly larger than Earth, orbiting a Sun-like star about 146 light-years away.NASA/JPL-Caltech/Keith Miller (Caltech/IPAC) The Discovery

A candidate planet that might be remarkably similar to Earth, HD 137010 b, has one potentially big difference: It could be colder than perpetually frozen Mars.

Key Facts

Scientists continue to mine data gathered by NASA’s Kepler Space Telescope, retired in 2018, and continue to turn up surprises. A new paper reveals the latest: a possible rocky planet slightly larger than Earth, orbiting a Sun-like star about 146 light-years away.

The orbital period of the planet — listed as a “candidate” pending further confirmation — is likely to be similar to Earth’s, around one year. Planet HD 137010 b also might fall just within the outer edge of its star’s “habitable zone,” the orbital distance that could allow liquid water to form on the planet’s surface under a suitable atmosphere.

Planets orbiting other stars are known as “exoplanets.” And this could turn out to be the first exoplanet with Earth-like properties that, from our vantage point, crosses the face of a Sun-like star that is near enough and bright enough for meaningful follow-up observations.

Details

Now the bad news. The amount of heat and light such a planet would receive from its star is less than a third of what Earth receives from the Sun. Although of a stellar type similar to our Sun, the star, HD 137010, is cooler and dimmer. That could mean a planetary surface temperature no higher than minus 90 degrees Fahrenheit (minus 68 degrees Celsius). By comparison, the average surface temperature on Mars runs about minus 85 degrees Fahrenheit (minus 65 degrees Celsius).

Planet HD 137010 b also will need follow-up observations to be promoted from “candidate” to “confirmed.” Exoplanet scientists use a variety of techniques to identify planets, and this discovery comes from a single “transit” — only one instance of the planet crossing its star’s face in a kind of miniature eclipse — detected during Kepler’s second mission, known as K2. Even with just one transit, the study’s authors were able to estimate the candidate planet’s orbital period. They tracked the time it took for the planet’s shadow to move across the star’s face — in this case 10 hours, while Earth takes about 13 — then compared it to orbital models of the system itself. Still, though the precision of that single detection is much higher than most transits captured by space-based telescopes, astronomers need to see these transits repeat regularly in order to confirm that they are caused by a real planet.

And capturing more transits is going to be tricky. The planet’s orbital distance, so similar to Earth’s, means such transits happen far less often than for planets in tighter orbits around their stars (it’s a big reason why exoplanets with Earth-like orbits are so hard to detect in the first place). With luck, confirmation could come from further observation by the successor to Kepler/K2, NASA’s TESS (the Transiting Exoplanet Survey Satellite), the still-functioning workhorse for planetary detection, or from the European Space Agency’s CHEOPS (CHaracterising ExOPlanets Satellite). Otherwise, gathering further data on planet HD 137010 b might have to wait for the next generation of space telescopes.

To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

An artist’s concept animation of exoplanet candidate HD 137010 b, which gives a view as if flying above this possible rocky planet slightly larger than Earth, thought to orbit a Sun-like star about 146 light-years away. This view also creates an effect similar to a transit, as the planet’s star disappears and then reappears from behind HD 137010 b.NASA/JPL-Caltech/Keith Miller (Caltech/IPAC) Fun Facts

Despite the possibility of a frigid climate, HD 137010 b also could turn out to be a temperate or even a watery world, say the authors of the paper on this exoplanet. It would just need an atmosphere richer in carbon dioxide than our own. The science team, based on modeling of the planet’s possible atmospheres, gives it a 40% chance of falling within the “conservative” habitable zone around the star, and a 51% chance of falling within the broader “optimistic” habitable zone. On the other hand, the authors of the study say the planet has about a 50-50 chance of falling beyond the habitable zone entirely.

The Discoverers

An international science team published a paper on the discovery, “A Cool Earth-sized Planet Candidate Transiting a Tenth Magnitude K-dwarf From K2,” in The Astrophysical Journal Letters on Jan. 27, 2026. The team was led by astrophysics Ph.D. student Alexander Venner of the University of Southern Queensland, Toowoomba, Australia, now a postdoctoral researcher at the Max Planck Institute for Astronomy, Heidelberg, Germany.

Explore More 3 min read NASA, Partners Advance LISA Prototype Hardware Article 8 hours ago 4 min read AI Unlocks Hundreds of Cosmic Anomalies in Hubble Archive Article 8 hours ago 4 min read TESS Status Updates Article 4 days ago Share Details Last Updated Jan 27, 2026 Related Terms
Categories: NASA