NASA
Could Life Exist Below Mars Ice? NASA Study Proposes Possibilities
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) The white material seen within this Martian gully is believed to be dusty water ice. Scientists believe this kind of ice could be an excellent place to look for microbial life on Mars today. This image, showing part of a region called Dao Vallis, was captured by NASA’s Mars Reconnaissance Orbiter in 2009.NASA/JPL-Caltech/University of Arizona These holes, captured on Alaska’s Matanuska Glacier in 2012, are formed by cryoconite — dust particles that melt into the ice over time, eventually forming small pockets of water below the glacier’s surface. Scientists believe similar pockets of water could form within dusty water ice on Mars.Kimberly Casey CC BY-NC-SA 4.0Researchers think meltwater beneath Martian ice could support microbial life.
While actual evidence for life on Mars has never been found, a new NASA study proposes microbes could find a potential home beneath frozen water on the planet’s surface.
Through computer modeling, the study’s authors have shown that the amount of sunlight that can shine through water ice would be enough for photosynthesis to occur in shallow pools of meltwater below the surface of that ice. Similar pools of water that form within ice on Earth have been found to teem with life, including algae, fungi, and microscopic cyanobacteria, all of which derive energy from photosynthesis.
“If we’re trying to find life anywhere in the universe today, Martian ice exposures are probably one of the most accessible places we should be looking,” said the paper’s lead author, Aditya Khuller of NASA’s Jet Propulsion Laboratory in Southern California.
Mars has two kinds of ice: frozen water and frozen carbon dioxide. For their paper, published in Nature Communications Earth & Environment, Khuller and colleagues looked at water ice, large amounts of which formed from snow mixed with dust that fell on the surface during a series of Martian ice ages in the past million years. That ancient snow has since solidified into ice, still peppered with specks of dust.
Although dust particles may obscure light in deeper layers of the ice, they are key to explaining how subsurface pools of water could form within ice when exposed to the Sun: Dark dust absorbs more sunlight than the surrounding ice, potentially causing the ice to warm up and melt up to a few feet below the surface.
The white edges along these gullies in Mars’ Terra Sirenum are believed to be dusty water ice. Scientists think meltwater could form beneath the surface of this kind of ice, providing a place for possible photosynthesis. This is an enhanced-color image; the blue color would not actually be perceptible to the human eye.NASA/JPL-Caltech/University of ArizonaMars scientists are divided about whether ice can actually melt when exposed to the Martian surface. That’s due to the planet’s thin, dry atmosphere, where water ice is believed to sublimate — turn directly into gas — the way dry ice does on Earth. But the atmospheric effects that make melting difficult on the Martian surface wouldn’t apply below the surface of a dusty snowpack or glacier.
Thriving MicrocosmsOn Earth, dust within ice can create what are called cryoconite holes — small cavities that form in ice when particles of windblown dust (called cryoconite) land there, absorb sunlight, and melt farther into the ice each summer. Eventually, as these dust particles travel farther from the Sun’s rays, they stop sinking, but they still generate enough warmth to create a pocket of meltwater around them. The pockets can nourish a thriving ecosystem for simple lifeforms..
“This is a common phenomenon on Earth,” said co-author Phil Christensen of Arizona State University in Tempe, referring to ice melting from within. “Dense snow and ice can melt from the inside out, letting in sunlight that warms it like a greenhouse, rather than melting from the top down.”
Christensen has studied ice on Mars for decades. He leads operations for a heat-sensitive camera called THEMIS (Thermal Emission Imaging System) aboard NASA’s 2001 Mars Odyssey orbiter. In past research, Christensen and Gary Clow of the University of Colorado Boulder used modeling to demonstrate how liquid water could form within dusty snowpack on the Red Planet. That work, in turn, provided a foundation for the new paper focused on whether photosynthesis could be possible on Mars.
In 2021, Christensen and Khuller co-authored a paper on the discovery of dusty water ice exposed within gullies on Mars, proposing that many Martian gullies form by erosion caused by the ice melting to form liquid water.
This new paper suggests that dusty ice lets in enough light for photosynthesis to occur as deep as 9 feet (3 meters) below the surface. In this scenario, the upper layers of ice prevent the shallow subsurface pools of water from evaporating while also providing protection from harmful radiation. That’s important, because unlike Earth, Mars lacks a protective magnetic field to shield it from both the Sun and radioactive cosmic ray particles zipping around space.
The study authors say the water ice that would be most likely to form subsurface pools would exist in Mars’ tropics, between 30 degrees and 60 degrees latitude, in both the northern and southern hemispheres.
Khuller next hopes to re-create some of Mars’ dusty ice in a lab to study it up close. Meanwhile, he and other scientists are beginning to map out the most likely spots on Mars to look for shallow meltwater — locations that could be scientific targets for possible human and robotic missions in the future.
News Media ContactsAndrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2024-142
Share Details Last Updated Oct 17, 2024 Related Terms Explore More 4 min read New Team to Assess NASA’s Mars Sample Return Architecture ProposalsNASA announced Wednesday a new strategy review team will assess potential architecture adjustments for the…
Article 23 hours ago 6 min read Christine Knudson Uses Earthly Experience to Study Martian GeologyGeologist Christine Knudson works with the Curiosity rover to explore Mars — from about 250…
Article 1 day ago 5 min read Snippet of Euclid Mission’s Cosmic Atlas Released by ESA Article 2 days ago Keep Exploring Discover Related TopicsMissions
Humans in Space
Climate Change
Solar System
Scientist Profile: Jacquelyn Shuman Blazes New Trails in Fire Science
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) Jacquelyn Shuman visually assesses a prescribed fire at Ft. Stewart in Georgia, working with partner organizations as part of the Department of Defense Ft. Stewart 2024 Fire Research Campaign. USFS/Linda ChappellJacquelyn Shuman, FireSense Project Scientist at NASA Ames Research Center, originally wanted to be a veterinarian. By the time she got to college, Shuman had switched interests to biology, which became a job teaching middle and high school science. Teaching pivoted to finance for a year, before Shuman returned to the science world to pursue a PhD.
It was in a forest ecology class taught by her future PhD advisor, Herman “Hank” Shugart, that she first discovered a passion for ecosystems and dynamic vegetation that led her into the world of fire science, and eventually to NASA Ames.
While Shuman’s path into the world of fire science was not a direct one, she views her diverse experiences as the key to finding a fulfilling career. “Do a lot of different things and try a lot of different things, and if one thing isn’t connecting with you, then do something different,” Shuman said.
Diving into the World of FireShuman’s PhD program focused on boreal forest dynamics across Russia, examining how the forest changes in response to climate change and wildfire. During her research, she worked mainly with scientists from Russia, Canada, and the US through the Northern Eurasia Earth Science Partnership Initiative (NEESPI), where Shugart served as the NEESPI Chief Scientist. “The experience of having a highly supportive mentor, being a part of the NEESPI community, and working alongside other inspiring female scientists from across the globe helped me to stay motivated within my own research,” Shuman said.
After completing her PhD, Shuman wanted to become involved in collaborative science with a global impact, which led her to the National Center for Atmospheric Research (NCAR). There, she spent seven years working as a project scientist on the Next Generation Ecosystem Experiment NGEE-Tropics) on a dynamic vegetation model project called FATES (Functionally Assembled Terrestrial Ecosystem Simulator). As part of the FATES team, Shuman used computer modeling to test vegetation structure and function in tropical and boreal forests after wildfires, and was the lead developer for updating the fire portion of the model.
This figure shows fire characteristics from an Earth system model that uses vegetation structure and interactive fire. The FATES model captures the fire intensity associated with burned land and grass growth in the Southern Hemisphere. Shuman et al. 2024 GMDFire has also played a powerful role in Shuman’s personal life. In 2021, the Marshall Fire destroyed neighborhoods near her hometown of Boulder, Colorado, causing over $513 million of damage and securing its place as the state’s most destructive wildfire. Despite this, Shuman is determined to not live in fear. “Fire is part of our lives, it’s a part of the Earth system, and it’s something we can plan for. We can live more sustainably with fires.” The way to live safely in a fire-inclusive ecosystem, according to Shuman, is to develop ways to accurately track and forecast wildfires and smoke, and to respond to them efficiently: efforts the fire community is continuously working on improving.
The Fire Science CommunityCollaboration is a critical element of wildland fire management. Fire science is a field that involves practitioners such as firefighters and land managers, but also researchers such as modelers and forecasters; the most effective efforts, according to Shuman, come when this community works together. “People in fire science might be out in the field and carrying a drip torch and marching along in the hilltops and the grasslands or be behind a computer and analyzing remote sensing data,” Shuman said. “We need both pieces.”
Protecting communities from wildfire impacts is one of the most fulfilling aspects of Shuman’s career, and a goal that unites this community. “Fire research poses tough questions, but the people who are thinking about this are the people who are acting on it,” Shuman said. “They are saying, ‘What can we do? How can we think about this? What information do we need? What are the questions?’ It’s a special community to be a part of.”
Looking to the Future of FireCurrently at NASA Ames Research Center, Shuman is the Project Scientist for FireSense: a project focused on delivering NASA science and technology to practitioners and operational agencies. Shuman acts as the lead for the project office, identifying and implementing tools and strategies. Shuman still does ecosystem modeling work, including implementing vegetation models that forecast the impact of fire, but also spends time traveling to active fires across the country so she can help partners implement NASA tools and strategies in real time.
FireSense Project Scientist Jacquelyn Shuman stands with Roger Ottmar (United States Forest Service), surveying potential future locations for prescribed burns in Fishlake National Forest. NASA Ames/Milan Loiacono“Right now, many different communities are all recognizing that we can partner to identify the best path forward,” Shuman said. “We have an opportunity to use everyone’s strengths and unique perspectives. It can be a devastating thing for a community and an ecosystem when a fire happens. Everyone is interested in using all this collective knowledge to do more, together.”
Written by Molly Medin, NASA Ames Research Center
Share Details Last Updated Oct 17, 2024 Related Terms Explore More 4 min read Navigating Space and Sound: Jesse Bazley Supports Station Integration and Colleagues With Disabilities Article 23 hours ago 3 min read Sacrifice and Success: NASA Engineer Honors Family Roots Article 24 hours ago 7 min read What is a Coral Reef? Article 2 days ago Keep Exploring Discover Related TopicsMissions
Humans in Space
Climate Change
Solar System
Iowa Students to Connect with NASA Astronaut Aboard Space Station
Students from Iowa will have the opportunity to hear NASA astronaut Nick Hague answer their prerecorded questions while he’s serving an expedition aboard the International Space Station on Monday, Oct. 21.
Watch the 20-minute space-to-Earth call at 11:40 a.m. EDT on NASA+. Students from Iowa State University in Ames, First Robotics Clubs, World Food Prize Global Youth Institute, and Plant the Moon teams will focus on food production in space. Learn how to watch NASA content on various platforms, including social media.
Media interested in covering the event must contact Angie Hunt by 5 p.m., Friday, Oct.18 at amhunt@iastate.edu or 515-294-8986.
For more than 23 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
See videos and lesson plans highlighting space station research at:
https://www.nasa.gov/stemonstation
-end-
Abbey Donaldson
Headquarters, Washington
202-358-1600
Abbey.a.donaldson@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
NASA Pilots Add Perspective to Research
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA pilots Nils Larson and Wayne Ringelberg head for a mission debrief after flying a NASA F/A-18 at Mach 1.38 to create sonic booms as part of the Sonic Booms in Atmospheric Turbulence flight series at NASA’s Armstrong Flight Research Center in California, to study sonic boom signatures with and without the element of atmospheric turbulence.NASA/Lauren HughesNASA research pilots are experts on how to achieve the right flight-test conditions for experiments and the tools needed for successful missions. It is that expertise that enables pilots to help researchers learn how an aircraft can fly their technology innovations and save time and money, while increasing the innovation’s readiness for use.
NASA pilots detailed how they help researchers find the right fit for experiments that might not advance without proving that they work in flight as they do in modeling, simulation, and ground tests at the Ideas to Flight Workshop on Sept. 18 at NASA’s Armstrong Flight Research Center in Edwards, California. “Start the conversation early and make sure you have the right people in the conversation,” said Tim Krall, a NASA Armstrong flight operations engineer. “What we are doing better is making sure pilots are included earlier in a flight project to capitalize on their experience and knowledge.”
Flight research is often used to prove or refine computer models, try out new systems, or increase a technology’s readiness. Sometimes, pilots guide a research project involving experimental aircraft. For example, pilots play a pivotal role on the X-59 aircraft, which will fly faster than the speed of sound while generating a quiet thump, rather than a loud boom. In the future, NASA’s pilots with fly the X-59 over select U.S. communities to gather data about how people on the ground perceive sonic thumps. NASA will provide this information to regulators to potentially change regulations that currently prohibit commercial supersonic flight over land.
Mark Russell, center, a research pilot at NASA’s Glenn Research Center in Hampton, Virginia, explains the differences in flight environments at different NASA centers. Jim Less, a NASA pilot at NASA’s Armstrong Flight Research Center in Edwards, California, left, Russell, and Nils Larson, NASA Armstrong chief X-59 aircraft pilot and senior advisor on flight research, provided perspective on flight research at the Ideas to Flight Workshop on Sept. 18 at NASA Armstrong.NASA/Genaro Vavuris“We have been involved with X-59 aircraft requirements and design process from before it was an X-plane,” said Nils Larson, NASA chief X-59 aircraft pilot and senior advisor on flight research. “I was part of pre-formulation and formulation teams. I was also on the research studies and brought in NASA pilot Jim Less in for a second opinion. Because we had flown missions in the F-15 and F-18, we knew the kinds of systems, like autopilots, that we need to get the repeatability and accuracy for the data.”
NASA pilots’ experience can provide guidance to enable a wide range of flight experiments. A lot of times researchers have an idea of how to get the required flight data, but sometimes, Larson explains, while there are limits to what an aircraft can do – like flying the DC-8 upside down, there are maneuvers that given the right mitigations, training, and approval could simulate those conditions.
Less says he’s developed an approach to help focus researchers: “What do you guys really need? A lot of what we do is mundane, but anytime you go out and fly, there is some risk. We don’t want to take a risk if we are going after data that nobody needs, or it is not going to serve a purpose, or the quality won’t work.”
Justin Hall, left, attaches the Preliminary Research Aerodynamic Design to Land on Mars, or Prandtl-M, glider onto the Carbon-Z Cub, which Justin Link steadies. Hall and Link are part of a team from NASA’s Armstrong Flight Research Center in Edwards, California, that uses an experimental magnetic release mechanism to air launch the glider.NASA/Lauren HughesSometimes, a remotely piloted aircraft can provide an advantage to achieve NASA’s research priorities, said Justin Hall, NASA Armstrong’s subscale aircraft laboratory chief pilot. “We can do things quicker, at a lower cost, and the subscale lab offers unique opportunities. Sometimes an engineer comes in with an idea and we can help design and integrate experiments, or we can even build an aircraft and pilot it.”
Most research flights are straight and level like driving a car on the highway. But there are exceptions. “The more interesting flights require a maneuver to get the data the researcher is looking for,” Less said. “We mounted a pod to an F/A-18 with the landing radar that was going to Mars and they wanted to simulate Martian reentry using the airplane. We went up high and dove straight at the ground.”
Another F/A-18 experiment tested the flight control software for the Space Launch System rocket for the Artemis missions. “A rocket takes off vertically and it has to pitch over 90 degrees,” Less explained. “We can’t quite do that in an F-18, but we could start at about a 45-degree angle and then push 45 degrees nose low to simulate the whole turn. That’s one of the fun parts of the job, trying to figure out how to get the data you want with the tools we have.”
NASA pilot Jim Less is assisted by life support as he is fitted with a pilot breathing monitoring system. The sensing system is attached to a pilot’s existing gear to capture real-time physiological, breathing gas, and cockpit environmental data.NASA/Carla Thomas Share Details Last Updated Oct 16, 2024 EditorDede DiniusContactJay Levinejay.levine-1@nasa.govLocationArmstrong Flight Research Center Related Terms Explore More 3 min read Sacrifice and Success: NASA Engineer Honors Family Roots Article 3 hours ago 4 min read Sacrificio y Éxito: Ingeniero de la NASA honra sus orígenes familiares Article 3 hours ago 3 min read NASA Spotlight: Felipe Valdez, an Inspiring Engineer Article 3 days ago Keep Exploring Discover More Topics From NASAArmstrong Flight Research Center
Armstrong Capabilities & Facilities
NASA Aircraft
Armstrong Technologies
Navigating Space and Sound: Jesse Bazley Supports Station Integration and Colleagues With Disabilities
A salute is widely recognized as a display of respect, but did you know it also means ‘hello’ in American Sign Language?
It is one of the signs that Jesse Bazley, International Space Station/Commercial Low Earth Orbit Development Program integration team lead, subtly incorporates into his daily interactions with colleagues at NASA’s Johnson Space Center in Houston.
In May 2021, Jesse Bazley worked his final shift as an Environmental and Thermal Operating Systems flight controller in the Mission Control Center at NASA’s Johnson Space Center in Houston. Image courtesy of Jesse BazleyBazley is hard of hearing, which has at times presented challenges in his daily work – particularly during his stint as an Environmental and Thermal Operating Systems flight controller for the space station. “Working on console [in the Mission Control Center], you must listen to dozens of voice loops at a time, sometimes in different languages,” he said, adding that the standard-issue headset for flight controllers was not compatible with his hearing aids. Bazley adapted by obtaining a headset that fit over his hearing aids, learning how to adjust the audio system’s volume, and limiting over-the-air discussions when possible.
Bazley has been part of the NASA team for 17 years, filling a variety of roles that support the International Space Station. One of his proudest achievements occurred early in his tenure. Bazley was an intern at Marshall Space Flight Center in Huntsville, Alabama, in 2006 when the space station’s Water Recovery System was being tested. The system converts the station’s wastewater into drinkable water for the crew. When he arrived at Johnson one year later, his first assignment was to assist with the system’s procedure and display development for its incorporation into the space station’s core operations. “Now, 16 years later, it is commonplace for the space station to ‘turn yesterday’s coffee into tomorrow’s coffee’,” he said.
Jesse Bazley supporting the Atmosphere and Consumables Engineer console during the STS-127 mission in July 2009. NASAHis favorite project so far has been integrating the station’s Thermal Amine Scrubber – which removes carbon dioxide from the air – into station operations. “I worked it from the beginning of NASA’s involvement, helping the provider with software testing and the integration of a brand-new Mission Control Center communications architecture,” he said.
Today, Bazley works to integrate subject matter experts from Johnson’s Flight Operations Directorate (FOD) into the processes of the International Space Station and Commercial Low Earth Orbit Development Programs. “I help pull together FOD positions on topics and coordinate reviews of provider materials to ensure that the operations perspective is maintained as development moves forward,” he explained.
While Bazley no longer supports a console, he must continue adapting to difficult hearing environments. He uses the captioning tools available through videoconferencing software during frequent team meetings, for example. “It’s important to understand that people have visible and invisible disabilities,” he said. “Sometimes their request for a remote option is not because they want to avoid an in-person meeting. It may be that they work best using the features available in that virtual environment.”
Bazley also chairs the No Boundaries Employee Resource Group, which promotes the development, inclusion, and innovation of Johnson’s workforce with a focus on employees with disabilities and employees who are caregivers of family members with disabilities.
From these diverse roles and experiences, Bazley has learned to listen to his gut instincts. “In flight operations, you must work with short timelines when things happen in-orbit, so you have to trust your training,” he said. “Understanding when you have enough information to proceed is critical to getting things done.”
Bazley looks forward to the further commercialization of low Earth orbit so NASA can focus resources on journeying to the Moon and Mars. “Aviation started out as government-funded and now is commonplace for the public. I look forward to seeing how that evolution progresses in low Earth orbit.”
His advice to the Artemis Generation is to consider the long-term impact of their actions and decisions. “What looks great on paper may not be a great solution when you have to send 10 commands just to do one task, or when the crew has to put their hand deep into the spacecraft to actuate a manual override,” he said. “The decisions you make today will be felt by operations in the future.”
The View from Space Keeps Getting Better
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) Farms in California’s Sacramento-San Joaquin River Delta face strict reporting requirements for water usage because the delta supplies most of the state’s freshwater. This Landsat image uses infrared wavelengths to depict vegetation.Credit: U.S. Geological SurveyThe 30-acre pear orchard in the Sacramento-San Joaquin River Delta has been in Brett Baker’s family since the end of the Gold Rush. After six generations, though, California’s most precious resource is no longer gold – it’s water. And most of the state’s freshwater is in the delta.
Landowners there are required to report their water use, but methods for monitoring were expensive and inaccurate. Recently, however, a platform called OpenET, created by NASA, the U.S. Geological Survey (USGS), and other partners, has introduced the ability to calculate the total amount of water transferred from the surface to the atmosphere through evapotranspiration. This is a key measure of the water that’s actually being removed from a local water system. It’s calculated based on imagery from Landsat and other satellites.
“It’s good public policy to start with a measure everyone can agree upon,” Baker said.
OpenET is only one of the latest uses researchers and businesses continue finding for Landsat over 50 years after the program started collecting continuous imagery of Earth’s surface. NASA has built and launched all nine of the satellites before handing them over to USGS, which manages the program.
Some of the most pressing questions people ask about Earth are about the food it’s producing. Agriculture and adjacent industries are among the heaviest users of Earth-imaging data, which can help assess crop health and predict yields.
The latest Landsat satellite, Landsat 9, went into orbit in fall of 2021. NASA and the USGS are already developing options for the next iteration of Landsat, currently known as Landsat Next.Credit: NASAEven in this well-established niche, though, new capabilities continue to emerge. One up-and-coming company is using Landsat to validate sustainable farming practices by measuring carbon stored in the ground, which can be detected in the reflectance rate in certain wavelengths. This is how Perennial Inc. is enabling emerging markets for carbon credits, through which farmers get paid for maximizing their land’s storage of carbon.
The company is also discovering interest among food companies that want to reduce their environmental impact by choosing eco-conscious suppliers, as well as companies in the fertilizer, farm equipment, and agricultural lending businesses.
Landsat also enables countless map-based apps, studies of changes in Earth’s surface cover over half a century, and so much more.
Read More Share Details Last Updated Oct 16, 2024 Related Terms Explore More 2 min read Controlled Propulsion for Gentle LandingsA valve designed for NASA rover landings enables effective stage separations for commercial spaceflight
Article 5 days ago 2 min read Tech Today: Spraying for Food Safety Article 1 week ago 2 min read The Science of the Perfect Cup for CoffeeMaterial research is behind the design of a temperature-regulating mug
Article 3 weeks ago Keep Exploring Discover Related TopicsMissions
Humans in Space
Climate Change
Solar System
New Team to Assess NASA’s Mars Sample Return Architecture Proposals
- MSR Home
- Mission Concept
- Science
- News and Features
- Multimedia
- Mars Missions
- The Solar System
4 min read
New Team to Assess NASA’s Mars Sample Return Architecture ProposalsNASA announced Wednesday a new strategy review team will assess potential architecture adjustments for the agency’s Mars Sample Return Program, which aims to bring back scientifically selected samples from Mars, and is a key step in NASA’s quest to better understand our solar system and help answer whether we are alone in the universe.
Earlier this year, the agency commissioned design studies from the NASA community and eight selected industry teams on how to return Martian samples to Earth in the 2030s while lowering the cost, risk, and mission complexity. The new strategy review team will assess 11 studies conducted by industry, a team across NASA centers, the agency’s Jet Propulsion Laboratory in Southern California, and the Johns Hopkins Applied Physics Laboratory. The team will recommend to NASA a primary architecture for the campaign, including associated cost and schedule estimates.
“Mars Sample Return will require a diversity of opinions and ideas to do something we’ve never done before: launch a rocket off another planet and safely return samples to Earth from more than 33 million miles away,” said NASA Administrator Bill Nelson. “It is critical that Mars Sample Return is done in a cost-effective and efficient way, and we look forward to learning the recommendations from the strategy review team to achieve our goals for the benefit of humanity.”
Returning samples from Mars has been a major long-term goal of international planetary exploration for more than three decades, and the Mars Sample Return Program is jointly planned with ESA (European Space Agency). NASA’s Perseverance rover is collecting compelling science samples that will help scientists understand the geological history of Mars, the evolution of its climate, and potential hazards for future human explorers. Retrieval of the samples also will help NASA’s search for signs of ancient life.
The team’s report is anticipated by the end of 2024 and will examine options for a complete mission design, which may be a composite of multiple studied design elements. The team will not recommend specific acquisition strategies or partners. The strategy review team has been chartered under a task to the Cornell Technical Services contract. The team may request input from a NASA analysis team that consists of government employees and expert consultants. The analysis team also will provide programmatic input such as a cost and schedule assessment of the architecture recommended by the strategy review team.
The Mars Sample Return Strategy Review Team is led by Jim Bridenstine, former NASA administrator, and includes the following members:
- Greg Robinson, former program director, James Webb Space Telescope
- Lisa Pratt, former planetary protection officer, NASA
- Steve Battel, president, Battel Engineering; Professor of Practice, University of Michigan, Ann Arbor
- Phil Christensen, regents professor, School of Earth and Space Exploration, Arizona State University, Tempe
- Eric Evans, director emeritus and fellow, MIT Lincoln Lab
- Jack Mustard, professor of Earth, Environmental, and Planetary Science, Brown University
- Maria Zuber, E. A. Griswold professor of Geophysics and presidential advisor for science and technology policy, MIT
The NASA Analysis Team is led by David Mitchell, chief program management officer at NASA Headquarters, and includes the following members:
- John Aitchison, program business manager (acting), Mars Sample Return
- Brian Corb, program control/schedule analyst, NASA Headquarters
- Steve Creech, assistant deputy associate administrator for Technical, Moon to Mars Program Office, NASA Headquarters
- Mark Jacobs, senior systems engineer, NASA Headquarters
- Rob Manning, chief engineer emeritus, NASA JPL
- Mike Menzel, senior engineer, NASA Goddard
- Fernando Pellerano, senior advisor for Systems Engineering, NASA Goddard
- Ruth Siboni, chief of staff, Moon to Mars Program Office, NASA Headquarters
- Bryan Smith, director of Facilities, Test and Manufacturing, NASA Glenn
- Ellen Stofan, under secretary for Science and Research, Smithsonian
For more information on NASA’s Mars Sample Return, visit:
https://science.nasa.gov/mission/mars-sample-return
Dewayne Washington
Headquarters, Washington
202-358-1100
dewayne.a.washington@nasa.gov
Article
7 hours ago
6 min read NASA, NOAA: Sun Reaches Maximum Phase in 11-Year Solar Cycle
Article
1 day ago
2 min read ESA/NASA’s SOHO Spies Bright Comet Making Debut in Evening Sky
The Solar and Heliospheric Observatory (SOHO) has captured images of the second-brightest comet to ever pass…
Article
5 days ago
Keep Exploring Discover Related Topics Mars Sample Return
Mars Sample Return would be NASA’s most ambitious, multi-mission campaign that would bring carefully selected Martian samples to Earth for…
Mars 2020: Perseverance Rover
NASA’s Mars Perseverance rover seeks signs of ancient life and collects samples of rock and regolith for possible Earth return.
Mars Science Laboratory: Curiosity Rover
Part of NASA’s Mars Science Laboratory mission, at the time of launch, Curiosity was the largest and most capable rover…
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
Sacrifice and Success: NASA Engineer Honors Family Roots
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA operations engineer Daniel Velasquez, left, is reviewing the Mobile Vertipad Sensor Package system as part of the Air Mobility Pathways test project at NASA’s Armstrong Flight Research Center in Edwards, California, on Oct. 17, 2023.NASA/Steve FreemanLee esta historia en Español aquí.
Born and raised in Peru, Daniel Velasquez moved to the United States when he was 10 years old. While that decision was a big transition for his family, it also created many opportunities for him. Now Velasquez is an operations engineer for NASA’s Air Mobility Pathfinders project at NASA’s Armstrong Flight Research Center in Edwards, California.
Velasquez develops flight test plans for electric vertical take-off and landing (eVTOL) aircraft, specifically testing how they perform during various phases of flight, such as taxi, takeoff, cruise, approach, and landing. He was drawn to NASA Armstrong because of the legacy in advancing flight research and the connection to the Space Shuttle program.
“Being part of a center with such a rich history in supporting space missions and cutting-edge aeronautics was a major motivation for me,” Velasquez said. “One of the biggest highlights of my career has been the opportunity to meet (virtually) and collaborate with an astronaut on a possible future NASA project.”
Daniel Velasquez stands next to the main entrance sign at NASA’s Armstrong Flight Research Center in Edwards, California, in 2022.Daniel VelasquezVelasquez is incredibly proud of his Latino background because of its rich culture, strong sense of community and connection to his parents. “My parents are my biggest inspiration. They sacrificed so much to ensure my siblings and I could succeed, leaving behind the comfort of their home and family in Peru to give us better opportunities,” Velasquez said. “Their hard work and dedication motivate me every day. Everything I do is to honor their sacrifices and show them that their efforts weren’t wasted. I owe all my success to them.”
Velasquez began his career at NASA in 2021 as an intern through the Pathways Internship Program while he was studying aerospace engineering at Rutgers University in New Brunswick, New Jersey. Through that program, he learned about eVTOL modeling software called NASA Design and Analysis of Rotorcraft to create a help guide for other NASA engineers to reference when they worked with the software.
At the same time, he is also a staff sergeant in the U.S Army Reserves and responsible for overseeing the training and development of junior soldiers during monthly assemblies. He plans, creates, and presents classes for soldiers to stay up-to-date and refine their skills while supervising practical exercises, after action reviews, and gathering lessons learned during trainings.
Daniel Velasquez graduated in 2023 from Rutgers University in New Jersey while he was an intern at NASA. Behind him is the New York City skyline.Daniel Velasquez“This job is different than what I do day-to-day at NASA, but it has helped me become a more outspoken individual,” he said. “Being able to converse with a variety of people and be able to do it well is a skill that I acquired and refined while serving my country.”
Velasquez said he never imagined working for NASA as it was something he had only seen in movies and on television, but he is so proud to be working for the agency after all the hard work and sacrifices he made that lead him to this point. “I am incredibly proud to work every day with some of the most motivated and dedicated individuals in the industry.”
Share Details Last Updated Oct 16, 2024 Related Terms Explore More 4 min read NASA Pilots Add Perspective to Research Article 2 hours ago 4 min read Navigating Space and Sound: Jesse Bazley Supports Station Integration and Colleagues With Disabilities Article 2 hours ago 4 min read Sacrificio y Éxito: Ingeniero de la NASA honra sus orígenes familiares Article 3 hours ago Keep Exploring Discover More Topics From NASAArmstrong Flight Research Center
Hispanic Heritage Month
NASA en españolExplora el universo y descubre tu planeta natal con nosotros, en tu idioma.
Armstrong People
Sacrificio y Éxito: Ingeniero de la NASA honra sus orígenes familiares
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) Daniel Velásquez, ingeniero de operaciones de la NASA, a la izquierda, revisa el sistema Mobile Vertipad Sensor Package como parte del proyecto de pruebas Air Mobility Pathways en el Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California, el 17 de octubre de 2023.NASA/Steve FreemanRead this story in English here.
Nacido y criado en Perú, Daniel Velásquez se estableció en los Estados Unidos cuando tenía 10 años. Aunque esa decisión fue una gran transición para su familia, también le creó muchas oportunidades. Ahora Velásquez es ingeniero de operaciones del proyecto Pathfinders de Movilidad Aérea de la NASA en el Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California.
Velásquez desarrolla ensayos de vuelo para aeronaves eléctricas de despegue y aterrizaje vertical (eVTOL, por sus siglas en inglés), poniendo a prueba específicamente su rendimiento durante varias fases del vuelo, como el rodaje, el despegue, el crucero, la aproximación y el aterrizaje. Se interesó en el centro Armstrong de la NASA debido a su legado en el avance de la investigación de vuelo y a su contribución al programa del Transbordador Espacial.
“Formar parte de un centro con una historia tan rica en el apoyo a las misiones espaciales y la aeronáutica avanzada fue una motivación importante para mí,” dice Velásquez. “Uno de los mayores hitos de mi carrera ha sido la oportunidad de conocer (virtualmente) y colaborar con un astronauta en un posible proyecto de la NASA.”
Daniel Velásquez se encuentra junto al letrero de la entrada principal del Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California.Daniel VelásquezVelásquez está increíblemente orgulloso de su origen latino por su rica cultura, su fuerte sentido de comunidad y la conexión a sus padres. “Mis padres son mi mayor inspiración. Sacrificaron mucho para asegurarse de que mis hermanos y yo pudiéramos tener éxito, dejando atrás la comodidad de su hogar y su familia en Perú para darnos mejores oportunidades,” dice Velásquez. “Su esfuerzo y dedicación me motivan cada día. Todo lo que hago es para honrar sus sacrificios y demostrarles que sus esfuerzos no fueron un vano. Todo mi éxito se lo debo a ellos.”
Velásquez comenzó su carrera en la NASA en 2021 como un pasante en el Programa de Pasantías Pathways mientras estudiaba ingeniería aeroespacial en la Universidad Rutgers en New Brunswick, New Jersey. A través de ese programa, el aprendió sobre un software de modelado eVTOL que se llama Diseño y Análisis de Aeronaves de Alas Giratorias de la NASA y creó una guía de ayuda que otros ingenieros de la NASA pudieran consultar cuando trabajaban con el software.
Al mismo tiempo, también es un sargento primero de la Reserva del Ejército de EE. UU. y es responsable de supervisar el entrenamiento y el desarrollo de los soldados subalternos durante las reuniones mensuales. Planifica, crea y presenta clases para que los soldados se mantengan al día y refinen sus habilidades, a la vez que supervisa los ejercicios prácticos, las revisiones posteriores de acción y recopila lecciones aprendidas durante los entrenamientos.
Daniel Velásquez se graduó en la Universidad Rutgers en mayo de 2023 mientras trabajaba como pasante en la NASA. Aquí está posando con el horizonte de Nueva York al fondo.Daniel Velásquez“Este trabajo es diferente de lo que hago día a día en la NASA, pero me ha ayudado a convertirme en una persona más franca,” dice. “Ser capaz de conversar con una variedad de personas y poder hacerlo bien es una habilidad que adquirí y refiné mientras servía a mi país.”
Velásquez explica que nunca imaginó trabajar para la NASA, ya que era algo que sólo había visto en las películas y en la televisión, pero está muy orgulloso de trabajar para la agencia después de todo el trabajo duro y los sacrificios que lo llevaron hasta aquí. “Estoy increíblemente orgulloso de trabajar cada día con algunas de las personas más motivadas y dedicadas en la industria.”
Share Details Last Updated Oct 16, 2024 EditorDede DiniusContactElena Aguirreelena.aguirre@nasa.govLocationArmstrong Flight Research Center Related Terms Explore More 4 min read NASA Pilots Add Perspective to Research Article 2 hours ago 3 min read Sacrifice and Success: NASA Engineer Honors Family Roots Article 3 hours ago 6 min read Christine Knudson Uses Earthly Experience to Study Martian GeologyGeologist Christine Knudson works with the Curiosity rover to explore Mars — from about 250…
Article 10 hours ago Keep Exploring Discover More Topics From NASAArmstrong Flight Research Center
Hispanic Heritage Month
NASA en españolExplora el universo y descubre tu planeta natal con nosotros, en tu idioma.
Armstrong People
The Marshall Star for October 16, 2024
NASA’s Europa Clipper has embarked on its long voyage to Jupiter, where it will investigate Europa, a moon with an enormous subsurface ocean that may have conditions to support life. The spacecraft launched at 11:06 a.m. CDT on Oct. 14 aboard a SpaceX Falcon Heavy rocket from Launch Pad 39A at NASA’s Kennedy Space Center.
A SpaceX Falcon Heavy rocket carrying NASA’s Europa Clipper spacecraft lifts off from Launch Complex 39A at the agency’s Kennedy Space Center at 11:06 a.m. CDT on Oct. 14. After launch, the spacecraft plans to fly by Mars in February 2025, then back by Earth in December 2026, using the gravity of each planet to increase its momentum. With help of these “gravity assists,” Europa Clipper will achieve the velocity needed to reach Jupiter in April 2030.Credit: NASA/Kim ShiflettThe largest spacecraft NASA ever built for a mission headed to another planet, Europa Clipper also is the first NASA mission dedicated to studying an ocean world beyond Earth. The spacecraft will travel 1.8 billion miles on a trajectory that will leverage the power of gravity assists, first to Mars in four months and then back to Earth for another gravity assist flyby in 2026. After it begins orbiting Jupiter in April 2030, the spacecraft will fly past Europa 49 times.
“Congratulations to our Europa Clipper team for beginning the first journey to an ocean world beyond Earth,” said NASA Administrator Bill Nelson. “NASA leads the world in exploration and discovery, and the Europa Clipper mission is no different. By exploring the unknown, Europa Clipper will help us better understand whether there is the potential for life not just within our solar system, but among the billions of moons and planets beyond our Sun.”
Approximately five minutes after liftoff, the rocket’s second stage fired up and the payload fairing, or the rocket’s nose cone, opened to reveal Europa Clipper. About an hour after launch, the spacecraft separated from the rocket. Ground controllers received a signal soon after, and two-way communication was established at 12:13 p.m. with NASA’s Deep Space Network facility in Canberra, Australia. Mission teams celebrated as initial telemetry reports showed Europa Clipper is in good health and operating as expected.
“We could not be more excited for the incredible and unprecedented science NASA’s Europa Clipper mission will deliver in the generations to come,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters. “Everything in NASA science is interconnected, and Europa Clipper’s scientific discoveries will build upon the legacy that our other missions exploring Jupiter – including Juno, Galileo, and Voyager – created in our search for habitable worlds beyond our home planet.”
The main goal of the mission is to determine whether Europa has conditions that could support life. Europa is about the size of our own Moon, but its interior is different. Information from NASA’s Galileo mission in the 1990s showed strong evidence that under Europa’s ice lies an enormous, salty ocean with more water than all of Earth’s oceans combined. Scientists also have found evidence that Europa may host organic compounds and energy sources under its surface.
If the mission determines Europa is habitable, it may mean there are more habitable worlds in our solar system and beyond than imagined.
“We’re ecstatic to send Europa Clipper on its way to explore a potentially habitable ocean world, thanks to our colleagues and partners who’ve worked so hard to get us to this day,” said Laurie Leshin, director, NASA’s Jet Propulsion Laboratory (JPL). “Europa Clipper will undoubtedly deliver mind-blowing science. While always bittersweet to send something we’ve labored over for years off on its long journey, we know this remarkable team and spacecraft will expand our knowledge of our solar system and inspire future exploration.”
In 2031, the spacecraft will begin conducting its science-dedicated flybys of Europa. Coming as close as 16 miles to the surface, Europa Clipper is equipped with nine science instruments and a gravity experiment, including an ice-penetrating radar, cameras, and a thermal instrument to look for areas of warmer ice and any recent eruptions of water. As the most sophisticated suite of science instruments NASA has ever sent to Jupiter, they will work in concert to learn more about the moon’s icy shell, thin atmosphere, and deep interior.
To power those instruments in the faint sunlight that reaches Jupiter, Europa Clipper also carries the largest solar arrays NASA has ever used for an interplanetary mission. With arrays extended, the spacecraft spans 100 feet from end to end. With propellant loaded, it weighs about 13,000 pounds.
In all, more than 4,000 people have contributed to Europa Clipper mission since it was formally approved in 2015.
“As Europa Clipper embarks on its journey, I’ll be thinking about the countless hours of dedication, innovation, and teamwork that made this moment possible,” said Jordan Evans, project manager, JPL. “This launch isn’t just the next chapter in our exploration of the solar system; it’s a leap toward uncovering the mysteries of another ocean world, driven by our shared curiosity and continued search to answer the question, ‘are we alone?’”
Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
Managed by Caltech in Pasadena, California, JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, for NASA’s Science Mission Directorate. The main spacecraft body was designed by APL in collaboration with JPL and NASA’s Goddard Space Flight Center, Marshall Space Flight Center, and Langley Research Center. The Planetary Missions Program Office at Marshall executes program management of the Europa Clipper mission.
NASA’s Launch Services Program, based at NASA Kennedy, managed the launch service for the Europa Clipper spacecraft.
Staying the Course: 30 Years of NASA’s Student Rover ChallengeGet ready, get set, and let’s go take a look back at NASA’s 2024 Human Exploration Rover Challenge! Watch as talented student teams from around the world gather in Huntsville for the 30th annual competition to push the boundaries of innovation and engineering. These student teams piloted their human-powered rovers over simulated lunar and Martian terrain for a chance at winning an award during this Artemis student challenge. From jaw-dropping triumphs to unexpected setbacks, this year’s competition was a thrilling ride from start to finish. Buckle up and enjoy the ride as you witness the future of space exploration unfold!
The challenge is managed by NASA’s Southeast Regional Office of STEM Engagement at the agency’s Marshall Space Flight Center. Learn more about the challenge.
Black Hole Destroys Star, Goes After Another, NASA Missions FindNASA’s Chandra X-ray Observatory and other telescopes have identified a supermassive black hole that has torn apart one star and is now using that stellar wreckage to pummel another star or smaller black hole, as described in our latest press release. This research helps connect two cosmic mysteries and provides information about the environment around some of the bigger types of black holes.
This artist’s illustration shows a disk of material (red, orange, and yellow) that was created after a supermassive black hole (depicted on the right) tore apart a star through intense tidal forces.X-ray: NASA/CXC/Queen’s Univ. Belfast/M. Nicholl et al.; Optical/IR: PanSTARRS, NSF/Legacy Survey/SDSS; Illustration: Soheb Mandhai / The Astro Phoenix; Image Processing: NASA/CXC/SAO/N. WolkThis artist’s illustration shows a disk of material (red, orange, and yellow) that was created after a supermassive black hole (depicted on the right) tore apart a star through intense tidal forces. Over the course of a few years, this disk expanded outward until it intersected with another object – either a star or a small black hole – that is also in orbit around the giant black hole. Each time this object crashes into the disk, it sends out a burst of X-rays detected by Chandra. The inset shows Chandra data (purple) and an optical image of the source from Pan-STARRS (red, green, and blue).
In 2019, an optical telescope in California noticed a burst of light that astronomers later categorized as a “tidal disruption event”, or TDE. These are cases where black holes tear stars apart if they get too close through their powerful tidal forces. Astronomers gave this TDE the name of AT2019qiz.
Meanwhile, scientists were also tracking instances of another type of cosmic phenomena occasionally observed across the Universe. These were brief and regular bursts of X-rays that were near supermassive black holes. Astronomers named these events “quasi-periodic eruptions,” or QPEs.
This latest study gives scientists evidence that TDEs and QPEs are likely connected. The researchers think that QPEs arise when an object smashes into the disk left behind after the TDE. While there may be other explanations, the authors of the study propose this is the source of at least some QPEs.
In 2023, astronomers used both Chandra and Hubble to simultaneously study the debris left behind after the tidal disruption had ended. The Chandra data were obtained during three different observations, each separated by about 4 to 5 hours. The total exposure of about 14 hours of Chandra time revealed only a weak signal in the first and last chunk, but a very strong signal in the middle observation.
From there, the researchers used NASA’s Neutron Star Interior Composition Explorer (NICER) to look frequently at AT2019qiz for repeated X-ray bursts. The NICER data showed that AT2019qiz erupts roughly every 48 hours. Observations from NASA’s Neil Gehrels Swift Observatory and India’s AstroSat telescope cemented the finding.
The ultraviolet data from Hubble, obtained at the same time as the Chandra observations, allowed the scientists to determine the size of the disk around the supermassive black hole. They found that the disk had become large enough that if any object was orbiting the black hole and took about a week or less to complete an orbit, it would collide with the disk and cause eruptions.
This result has implications for searching for more quasi-periodic eruptions associated with tidal disruptions. Finding more of these would allow astronomers to measure the prevalence and distances of objects in close orbits around supermassive black holes. Some of these may be excellent targets for the planned future gravitational wave observatories.
The paper describing these results appears in the Oct. 9 issue of the journal Nature. The first author of the paper is Matt Nicholl of Queen’s University Belfast in Ireland.
NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Revealing the Hidden Universe with Full-shell X-ray Optics at MarshallThe study of X-ray emission from astronomical objects reveals secrets about the universe at the largest and smallest spatial scales. Celestial X-rays are produced by black holes consuming nearby stars, emitted by the million-degree gas that traces the structure between galaxies, and can be used to predict whether stars may be able to host planets hospitable to life. X-ray observations have shown that most of the visible matter in the universe exists as hot gas between galaxies and have conclusively demonstrated that the presence of “dark matter” is needed to explain galaxy cluster dynamics, that dark matter dominates the mass of galaxy clusters, and that it governs the expansion of the cosmos.
A composite X-ray/Optical/Infrared image of the Crab Pulsar. The X-ray image from the Chandra X-ray Observatory (blue and white), reveals exquisite details in the central ring structures and gas flowing out of the polar jets. Optical light from the Hubble Space Telescope (purple) shows foreground and background stars as pinpoints of light. Infrared light from the Spitzer Space Telescope (pink) traces cooler gas in the nebula. Finally, magnetic field direction derived from X-ray polarization observed by the Imaging X-ray Polarimetry Explorer is shown as orange lines.Magnetic field lines: NASA/Bucciantini et al; X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared: NASA-JPL-CaltechX-ray observations also enable us to probe mysteries of the universe on the smallest scales. X-ray observations of compact objects such as white dwarfs, neutron stars, and black holes allow us to use the universe as a physics laboratory to study conditions that are orders of magnitude more extreme in terms of density, pressure, temperature, and magnetic field strength than anything that can be produced on Earth. In this astrophysical laboratory, researchers expect to reveal new physics at the subatomic scale by conducting investigations such as probing the neutron star equation of state and testing quantum electrodynamics with observations of neutron star atmospheres.
At NASA’s Marshall Space Flight Center, a team of scientists and engineers is building, testing, and flying innovative optics that bring the universe’s X-ray mysteries into sharper focus.
Unlike optical telescopes that create images by reflecting or refracting light at near-90-degree angles (normal incidence), focusing X-ray optics must be designed to reflect light at very small angles (grazing incidence). At normal incidence, X-rays are either absorbed by the surface of a mirror or penetrate it entirely. However, at grazing angles of incidence, X-rays reflect very efficiently due to an effect called total external reflection. In grazing incidence, X-rays reflect off the surface of a mirror like rocks skipping on the surface of a pond.
A classic design for astronomical grazing incidence optics is the Wolter-I prescription, which consists of two reflecting surfaces, a parabola and hyperbola (see figure below). This optical prescription is revolved around the optical axis to produce a full-shell mirror (i.e., the mirror spans the full circumference) that resembles a gently tapered cone. To increase the light collecting area, multiple mirror shells with incrementally larger diameters and a common focus are fabricated and nested concentrically to comprise a mirror module assembly (MMA).
Focusing optics are critical to studying the X-ray universe because, in contrast to other optical systems like collimators or coded masks, they produce high signal-to-noise images with low background noise. Two key metrics that characterize the performance of X-ray optics are angular resolution, which is the ability of an optical system to discriminate between closely spaced objects, and effective area, which is the light collecting area of the telescope, typically quoted in units of cm2. Angular resolution is typically measured as the half-power diameter (HPD) of a focused spot in units of arcseconds. The HPD encircles half of the incident photons in a focused spot and measures the sharpness of the final image; a smaller number is better.
Schematic of a full-shell Wolter-I X-ray optic mirror module assembly with five concentrically nested mirror shells. Parallel rays of light enter from the left, reflect twice off the reflective inside surface of the shell (first off the parabolic segment and then off the hyperbolic segment), and converge at the focal plane.NASAMarshall has been building and flying lightweight, full-shell, focusing X-ray optics for over three decades, always meeting or exceeding angular resolution and effective area requirements. Marshall utilizes an electroformed nickel replication technique to make these thin full-shell X-ray optics from nickel alloy.
X-ray optics development at Marshall began in the early 1990s with the fabrication of optics to support NASA’s Advanced X-ray Astrophysics Facility (AXAF-S) and then continued via the Constellation-X technology development programs. In 2001, Marshall launched a balloon payload that included two modules each with three mirrors, which produced the first focused hard X-ray images of an astrophysical source by imaging Cygnus X-1, GRS 1915, and the Crab Nebula. This initial effort resulted in several follow-up missions over the next 12 years and became known as the High Energy Replicated Optics (HERO) balloon program.
In 2012, the first of four sounding rocket flights of the Focusing Optics X-ray Solar Imager (FOXSI) flew with Marshall optics onboard, producing the first focused images of the Sun at energies greater than 5 keV. In 2019 the Astronomical Roentgen Telescope X-ray Concentrator (ART-XC) instrument on the Spectr-Roentgen-Gamma Mission launched with seven Marshall-fabricated X-ray MMAs, each containing 28 mirror shells. ART-XC is currently mapping the sky in the 4-30 keV hard X-ray energy range, studying exotic objects like neutron stars in our own galaxy as well as active galactic nuclei, which are spread across the visible universe. In 2021, the Imaging X-ray Polarimetry Explorer (IXPE), flew and is now performing extraordinary science with a Marshall-led team using three, 24-shell MMAs that were fabricated and calibrated in-house.
Most recently, in 2024, the fourth FOXSI sounding rocket campaign launched with a high-resolution Marshall MMA. The optics achieved 9.5 arcsecond HPD angular resolution during pre-flight test with an expected 7 arcsecond HPD in gravity-free flight, making this the highest angular resolution flight observation made with a nickel-replicated X-ray optic. Currently Marshall is fabricating an MMA for the Rocket Experiment Demonstration of a Soft X-ray (REDSoX) polarimeter, a sounding rocket mission that will fly a novel soft X-ray polarimeter instrument to observe active galactic nuclei. The REDSoX MMA optic will be 444 mm in diameter, which will make it the largest MMA ever produced by MSFC and the second largest replicated nickel X-ray optic in the world.
The ultimate performance of an X-ray optic is determined by errors in the shape, position, and roughness of the optical surface. To push the performance of X-ray optics toward even higher angular resolution and achieve more ambitious science goals, Marshall is currently engaged in a fundamental research and development effort to improve all aspects of full-shell optics fabrication.
Scientists Wayne Baumgartner, left, crouched, and Nick Thomas, left, standing, calibrate an IXPE MMA in the Marshall 100 m Beamline. Scientist Stephen Bongiorno, right, applies epoxy to an IXPE shell during MMA assembly.NASAGiven that these optics are made with the electroformed nickel replication technique, the fabrication process begins with creation of a replication master, called the mandrel, which is a negative of the desired optical surface. First, the mandrel is figured and polished to specification, then a thin layer of nickel alloy is electroformed onto the mandrel surface. Next, the nickel alloy layer is removed to produce a replicated optical shell, and finally the thin shell is attached to a stiff holding structure for use.
Each step in this process imparts some degree of error into the final replicated shell. Research and development efforts at Marshall are currently concentrating on reducing distortion induced during the electroforming metal deposition and release steps. Electroforming-induced distortion is caused by material stress built into the electroformed material as it deposits onto the mandrel. Decreasing release-induced distortion is a matter of reducing adhesion strength between the shell and mandrel, increasing strength of the shell material to prevent yielding, and reducing point defects in the release layer.
Additionally, verifying the performance of these advanced optics requires world-class test facilities. The basic premise of testing an optic designed for X-ray astrophysics is to place a small, bright X-ray source far away from the optic. If the angular size of the source, as viewed from the optic, is smaller than the angular resolution of the optic, the source is effectively simulating X-ray starlight. Due to the absorption of X-rays by air, the entire test facility light path must be placed inside a vacuum chamber.
At the center, a group of scientists and engineers operate the Marshall 100-meter X-ray beamline, a world-class end-to-end test facility for flight and laboratory X-ray optics, instruments, and telescopes. As per the name, it consists of a 100-meter-long vacuum tube with an 8-meter-long, 3-meter-diameter instrument chamber and a variety of X-ray sources ranging from 0.25 – 114 keV. Across the street sits the X-Ray and Cryogenic Facility (XRCF), a 527-meter-long beamline with an 18-meter-long, 6-meter-diameter instrument chamber. These facilities are available for the scientific community to use and highlight the comprehensive optics development and test capability that Marshall is known for.
Within the X-ray astrophysics community there exist a variety of angular resolution and effective area needs for focusing optics. Given its storied history in X-ray optics, Marshall is uniquely poised to fulfill requirements for large or small, medium- or high-angular-resolution X-ray optics. To help guide technology development, the astrophysics community convenes once per decade to produce a decadal survey. The need for high-angular-resolution and high-throughput X-ray optics is strongly endorsed by the National Academies of Sciences, Engineering, and Medicine report, Pathways to Discovery in Astronomy and Astrophysics for the 2020s.In pursuit of this goal, Marshall is continuing to advance the state of the art in full-shell optics. This work will enable the extraordinary mysteries of the X-ray universe to be revealed.
Hubble, New Horizons Team Up for a Simultaneous Look at UranusNASA’s Hubble Space Telescope and New Horizons spacecraft simultaneously set their sights on Uranus recently, allowing scientists to make a direct comparison of the planet from two very different viewpoints. The results inform future plans to study like types of planets around other stars.
NASA’s Hubble Space Telescope (left) and NASA’s New Horizon’s spacecraft (right) image the planet Uranus.NASA, ESA, STScI, Samantha Hasler (MIT), Amy Simon (NASA-GSFC), New Horizons Planetary Science Theme Team; Image Processing: Joseph DePasquale (STScI), Joseph Olmsted (STScI)Astronomers used Uranus as a proxy for similar planets beyond our solar system, known as exoplanets, comparing high-resolution images from Hubble to the more-distant view from New Horizons. This combined perspective will help scientists learn more about what to expect while imaging planets around other stars with future telescopes.
“While we expected Uranus to appear differently in each filter of the observations, we found that Uranus was actually dimmer than predicted in the New Horizons data taken from a different viewpoint,” said lead author Samantha Hasler of the Massachusetts Institute of Technology in Cambridge and New Horizons science team collaborator.
Direct imaging of exoplanets is a key technique for learning about their potential habitability, and offers new clues to the origin and formation of our own solar system. Astronomers use both direct imaging and spectroscopy to collect light from the observed planet and compare its brightness at different wavelengths. However, imaging exoplanets is a notoriously difficult process because they’re so far away. Their images are mere pinpoints and so are not as detailed as the close-up views that we have of worlds orbiting our Sun. Researchers can also only directly image exoplanets at “partial phases,” when only a portion of the planet is illuminated by their star as seen from Earth.
Uranus was an ideal target as a test for understanding future distant observations of exoplanets by other telescopes for a few reasons. First, many known exoplanets are also gas giants similar in nature. Also, at the time of the observations, New Horizons was on the far side of Uranus, 6.5 billion miles away, allowing its twilight crescent to be studied – something that cannot be done from Earth. At that distance, the New Horizons view of the planet was just several pixels in its color camera, called the Multispectral Visible Imaging Camera.
On the other hand, Hubble, with its high resolution, and in its low-Earth orbit 1.7 billion miles away from Uranus, was able to see atmospheric features such as clouds and storms on the day side of the gaseous world.
“Uranus appears as just a small dot on the New Horizons observations, similar to the dots seen of directly imaged exoplanets from observatories like Webb or ground-based observatories,” Hasler said. “Hubble provides context for what the atmosphere is doing when it was observed with New Horizons.”
The gas giant planets in our solar system have dynamic and variable atmospheres with changing cloud cover. How common is this among exoplanets? By knowing the details of what the clouds on Uranus looked like from Hubble, researchers can verify what is interpreted from the New Horizons data. In the case of Uranus, both Hubble and New Horizons saw that the brightness did not vary as the planet rotated, which indicates that the cloud features were not changing with the planet’s rotation.
In this image, two three-dimensional shapes, top, of Uranus are compared to the actual views of the planet from NASA’s Hubble Space Telescope, bottom left, and NASA’s New Horizon’s spacecraft, bottom right. Comparing high-resolution images from Hubble to the smaller view from New Horizons offers a combined perspective that will help researchers learn more about what to expect while imaging planets around other stars with future observatories. NASA, ESA, STScI, Samantha Hasler (MIT), Amy Simon (NASA-GSFC), New Horizons Planetary Science Theme Team; Image Processing: Joseph DePasquale (STScI), Joseph Olmsted (STScI)However, the importance of the detection by New Horizons has to do with how the planet reflects light at a different phase than what Hubble, or other observatories on or near Earth, can see. New Horizons showed that exoplanets may be dimmer than predicted at partial and high phase angles, and that the atmosphere reflects light differently at partial phase.
NASA has two major upcoming observatories in the works to advance studies of exoplanet atmospheres and potential habitability.
“These landmark New Horizons studies of Uranus from a vantage point unobservable by any other means add to the mission’s treasure trove of new scientific knowledge, and have, like many other datasets obtained in the mission, yielded surprising new insights into the worlds of our solar system,” added New Horizons principal investigator Alan Stern of the Southwest Research Institute.
NASA’s upcoming Nancy Grace Roman Space Telescope, set to launch by 2027, will use a coronagraph to block out a star’s light to directly see gas giant exoplanets. NASA’s Habitable Worlds Observatory, in an early planning phase, will be the first telescope designed specifically to search for atmospheric biosignatures on Earth-sized, rocky planets orbiting other stars.
“Studying how known benchmarks like Uranus appear in distant imaging can help us have more robust expectations when preparing for these future missions,” concluded Hasler. “And that will be critical to our success.”
Launched in January 2006, New Horizons made the historic flyby of Pluto and its moons in July 2015, before giving humankind its first close-up look at one of these planetary building block and Kuiper Belt object, Arrokoth, in January 2019. New Horizons is now in its second extended mission, studying distant Kuiper Belt objects, characterizing the outer heliosphere of the Sun, and making important astrophysical observations from its unmatched vantage point in distant regions of the solar system.
The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
The Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, built and operates the New Horizons spacecraft and manages the mission for NASA’s Science Mission Directorate. Southwest Research Institute, based in San Antonio and Boulder, Colorado, directs the mission via Principal Investigator Alan Stern and leads the science team, payload operations and encounter science planning. New Horizons is part of NASA’s New Frontiers program, managed by NASA’s Marshall Space Flight Center.
Crew-8 Awaits Splashdown; Expedition 72 Stays Focused on ScienceFour International Space Station crew members continue waiting for their departure date as mission managers monitor weather conditions off the coast of Florida. The rest of the Expedition 72 crew stayed focused Oct. 14 on space biology and lab maintenance aboard the orbital outpost.
The SpaceX Dragon Freedom spacecraft is pictured through the window of the SpaceX Dragon Endeavour spacecraft with a vivid green and pink aurora below.NASANASA and SpaceX mission managers are watching unfavorable weather conditions off the Florida coast right now for the splashdown of the SpaceX Crew-8 mission with NASA astronauts Matthew Dominick, Mike Barratt, and Jeanette Epps, and Roscosmos cosmonaut Alexander Grebenkin. The homebound quartet spent Oct. 14 mostly relaxing while also continuing departure preps. Mission teams are currently targeting Dragon Endeavour’s undocking for no earlier than 2:05 a.m. CDT on Oct. 18. The Crew-8 foursome is in the seventh month of their space research mission that began on March 3.
The other seven orbital residents will stay aboard the orbital outpost until early 2025. NASA astronaut Don Pettit is scheduled to return to Earth first in February with Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner aboard the Soyuz MS-26 crew ship. Next, station Commander Suni Williams and flight engineer Butch Wilmore are targeted to return home aboard SpaceX Dragon Freedom with SpaceX Crew-9 Commander Nick Hague, all three NASA astronauts, and Roscosmos cosmonaut Aleksandr Gorbunov.
Williams had a light duty day Oct. 14 disassembling life support gear before working out for a cardio fitness study. Wilmore installed a new oxygen recharge tank and began transferring oxygen into tanks located in the Quest airlock. Hague collected his blood and saliva samples for incubation and cold stowage to learn how microgravity affects cellular immunity. Pettit also had a light duty day servicing biology hardware including the Cell Biology Experiment Facility, a research incubator with an artificial gravity generator, and the BioLab, which supports observations of microbes, cells, tissue cultures and more.
The Huntsville Operations Support Center (HOSC) at NASA’s Marshall Space Flight Center provides engineering and mission operations support for the space station, the CCP, and Artemis missions, as well as science and technology demonstration missions. The Payload Operations Integration Center within HOSC operates, plans, and coordinates the science experiments onboard the space station 365 days a year, 24 hours a day.
The first flight of Sierra Space’s Dream Chaser to the space station is now scheduled for no earlier than May 2025 to allow for completion of spacecraft testing. Dream Chaser, which will launch atop a ULA (United Launch Alliance) Vulcan rocket and later glide to a runway landing at NASA’s Kennedy Space Center, will carry cargo to the orbiting laboratory and stay on board for approximately 45 days on its first mission.
Learn more about station activities by following the space station blog.
NASA Seeks Innovative Ideas with Revamped Procurement Framework
NASA is announcing the relaunch of the NASA Acquisition Innovation Launchpad (NAIL), a framework to drive innovation and modernize acquisition processes across the agency, after piloting the program for a year.
NASA spends approximately $21 billion or 85% of its budget on acquiring goods and services. Managed by NASA’s Office of Procurement, the NAIL was established to identify ways to manage risk-taking and encourage innovation through the submission, review, and approval of ideas from anyone who engages in the acquisition process.
Since launching last year, the goal of the NAIL has been to build an innovation-focused culture that can produce ideas from team members in the Office of Procurement or across the agency, as well as from industry.
“The success of the NAIL inaugural year has laid a strong foundation for the future,” said Karla Smith Jackson, deputy chief acquisition officer and assistant administrator for the Office of Procurement.
Over the past year, the NAIL has achieved numerous milestones, allowing NASA to approach various procurement challenges and implement diverse solutions. Key accomplishments include improving procurement processes and technological automations and developing an industry feedback forum. The program update will leverage industry’s feedback to continue fostering innovative solutions and optimize the agency’s procurement efforts.
As NASA’s Office of Procurement embarks on fiscal year 2025, the NAIL relaunch will use information from the program’s pilot year to focus on the following priorities:
- Providing additional engagement opportunities for the agency’s network of innovators
- Enhancing the framework to improve internal outcomes for the agency
- Promoting procurement success stories
- Investing in talent and technology
“We are incredibly proud of the program’s achievements and are even more excited about the opportunities ahead with the relaunch,” said Kameke Mitchell, NAIL chair and director for the Procurement Strategic Operations Division. “We encourage everyone to get involved and make fiscal year 2025 a standout year for innovation.”
In addition to programmatic updates, NAIL’s program manager, Brittney Chappell, will lead new engagements and framework enhancements moving forward.
“I am thrilled to step into this role and lead the program, using everything our team has learned from the last year,” said Chappell. “Together with internal and external stakeholders, we will turn bold ideas into impactful solutions that drive real change.”
To collaborate or share innovative ideas, reach out to the NAIL Procurement team at hq-op-nail@mail.nasa.gov.
For more information about the NAIL framework, visit:
https://www.nasa.gov/procurement-nail-framework
Share Details Last Updated Oct 16, 2024 LocationNASA Headquarters Related TermsNASA to Embrace Commercial Sector, Fly Out Legacy Relay Fleet
NASA is one step closer on its transition to using commercially owned and operated satellite communications services to provide future near-Earth space missions with increased service coverage, availability, and accelerated science and data delivery.
As of Friday, Nov. 8, the agency’s legacy TDRS (Tracking and Data Relay Satellite) system, as part of the Near Space Network, will support only existing missions while new missions will be supported by future commercial services.
“There have been tremendous advancements in commercial innovation since NASA launched its first TDRS satellite more than 40 years ago,” said Kevin Coggins, deputy associate administrator of NASA’s SCaN (Space Communications and Navigation) program. “TDRS will continue to provide critical support for at least the next decade, but now is the time to embrace commercial services that could enhance science objectives, expand experimentation, and ultimately provide greater opportunities for discovery.”
TDRS will continue to provide critical support for at least the next decade, but now is the time to embrace commercial services."Kevin Coggins
Deputy Associate Administrator for NASA’s SCaN
Just as NASA has adopted commercial crew, commercial landers, and commercial transport services, the Near Space Network, managed by NASA’s SCaN, will leverage private industry’s vast investment in the Earth-based satellite communications market, which includes communications on airplanes, ships, satellite dish television, and more. Now, industry is developing a new space-based market for these services, where NASA plans to become one of many customers, bolstering the domestic space industry.
NASA’s Communications Services Project is working with industry through funded Space Act Agreements to develop and demonstrate commercial satellite communications services that meet the agency’s mission needs, and the needs of other potential users.
In 2022, NASA provided $278.5 million in funding to six domestic partners so they could develop and demonstrate space relay communication capabilities.
- Inmarsat Government Inc.
- Kuiper Government Solutions (KGS) LLC
- SES Government Solutions
- Space Exploration Technologies (SpaceX)
- Telesat U.S. Services LLC
- Viasat Incorporated
A successful space-based commercial service demonstration would encompass end-to-end testing with a user spacecraft for one or more of the following use cases: launch support, launch and early operations phase, low and high data rate routine missions, terrestrial support, and contingency services. Once a demonstration has been completed, it is expected that the commercial company would be able to offer their services to government and commercial users.
NASA also is formulating non-reimbursable Space Act Agreements with members of industry to exchange capability information as a means of growing the domestic satellite communications market. The Communications Services Project currently is partnered with Kepler Communications US Inc. through a non-reimbursable Space Act Agreement.
As the agency and the aerospace community expand their exploration efforts and increase mission complexity, the ability to communicate science, tracking, and telemetry data to and from space quickly and securely will become more critical than ever before. The goal is to validate and deliver space-based commercial communications services to the Near Space Network by 2031, to support future NASA missions.
NASA’s Tracking and Data Relay SystemWhile TDRS will not be accepting new missions, it won’t be retiring immediately. Current TDRS users, like the International Space Station, Hubble Space Telescope, and many other Earth- and universe-observing missions, will still rely on TDRS until the mid-2030s. Each TDRS spacecraft’s retirement will be driven by individual health factors, as the seven active TDRS satellites are expected to decline at variable rates.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
An artist's concept of the International Space Station using NASA’s Tracking and Data Relay Satellite (TDRS) fleet to transmit data to Earth. NASAThe TDRS fleet began in 1983 and consists of three generations of satellites, launching over the course of 40 years. Each successive generation of TDRS improved upon the previous model, with additional radio frequency band support and increased automation.
The first TDRS was designed for a mission life of 10 years, but lasted 26 years before it was decommissioned in 2009. The last in the third generation – TDRS-13 –was launched Aug. 18, 2017.
The TDRS constellation has been a workhorse for the agency, enabling significant data transfer and discoveries.”DAve Israel
Near Space Network Chief Architect
“Each astronaut conversation from the International Space Station, every picture you’ve seen from Hubble Space Telescope, Nobel Prize-winning science data from the COBE satellite, and much more has flowed through TDRS,” said Dave Israel, Near Space Network chief architect. “The TDRS constellation has been a workhorse for the agency, enabling significant data transfer and discoveries.”
NASA’s Tracking and Data Relay Satellite 13 (TDRS-13) atop an Atlas V rocket at NASA’s Kennedy Space Center in Florida before launch. NASAThe Near Space Network and the Communications Services Project are funded by NASA’s SCaN (Space Communications and Navigation) program office at NASA Headquarters in Washington. The network is operated out of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the Communications Services Project is managed out of NASA’s Glenn Research Center in Cleveland.
Share Details Last Updated Oct 16, 2024 EditorGoddard Digital TeamContactKatherine Schauerkatherine.s.schauer@nasa.govMolly KearnsLocationGoddard Space Flight Center Related Terms Explore More 4 min read Communications Services Project Article 7 months ago 5 min read Wideband Technology Article 9 months ago 3 min read NASA Seeks Commercial Near Space Network ServicesNASA is seeking commercial communication and navigation service providers for the Near Space Network.
Article 2 years agoSols 4334-4335: Planning with Popsicles — A Clipper Celebration!
- Curiosity Home
- Science
- News and Features
- Multimedia
- Mars Missions
- The Solar System
3 min read
Sols 4334-4335: Planning with Popsicles — A Clipper Celebration! This image was taken by Left Navigation Camera aboard NASA’s Mars rover Curiosity on Sol 4329 — Martian day 4,329 of the Mars Science Laboratory mission — on Oct. 10, 2024, at 05:35:08 UTC. NASA/JPL-CaltechEarth planning date: Monday, Oct. 14, 2024
Today was an unusually exciting day during tactical planning on the Curiosity mission because it intersected with a momentous event in space exploration: the launch of Europa Clipper from Kennedy Space Center. Even though the launch window occurred right in the middle of our morning planning meetings, at 9:06 a.m. PDT to be specific, today’s Tactical Uplink Lead and Science Operations Working Group Chair agreed it would be OK for the entire tactical team to take a 15-minute pause to turn on NASA TV and watch the launch together. Down the hall the Perseverance rover tactical team had decided the same, and for a few moments, the two teams paused their planning and watched together in anticipation as the countdown ticked down to T-0. Many of my close friends and co-workers had worked for years — some for decades — to make this mission a reality, and it was amazing to watch the enormous rocket carrying the Clipper spacecraft leap off the pad knowing how hard it was to get to this point. I cannot wait for the mission’s discoveries once it reaches Jupiter’s watery moon Europa!
In true JPL tradition, we of course had to commemorate the event with some sweet frozen treats on-lab. Back when Curiosity landed, we had a full fridge of ice cream that was kept stocked for the first 90 sols of the mission. (Eating ice cream cones at 2 in the morning is a core memory of mine from those early days in our mission.) Today, in a clever nod to Europa’s icy surface, we celebrated with some even icier sweets: fruit and coffee popsicles to anyone on-lab. I chose coffee of course; the caffeine was great to help me get through a busy day of planning for Curiosity!
On Mars, things with our rover are going well. We completed our mega ~50-meter drive (about 164 feet) over the weekend, which took Curiosity further north along the western side of Gediz Vallis channel. Our plan today is a “touch and go,” which means we’ll do contact science with APXS and MAHLI on a block in front of us named “Dollar Lake,” some remote sensing, including ChemCam LIBS of a target named “Cape Horn” and a couple Mastcam mosaics, followed by a drive to the north. We’ll continue to follow the western side of Gediz Vallis channel as we descend slightly down Mount Sharp, until we reach a location where we are able to head west towards a more easily traversable valley, and then restart our ascent.
What a fun day of planning today. Congratulations to everyone involved helping Europa Clipper reach this incredible milestone, and go Clipper go!
Written by Abigail Fraeman, Planetary Geologist at NASA’s Jet Propulsion Laboratory
Share Details Last Updated Oct 16, 2024 Related Terms Explore More 4 min read Sols 4331-4333: Today’s Rover ABC – Aurora, Backwards Driving, and Chemistry, with a Side of ImagesArticle
3 days ago
3 min read Sols 4329-4330: Continuing Downhill
Article
5 days ago
3 min read Sols 4327-4328: On the Road Again
Article
7 days ago
Keep Exploring Discover More Topics From NASA Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
What is a Coral Reef?
7 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) Juvenile black, white, and yellow-striped Bluehead wrasse fish dart in and out of a dead colony of pillar coral (Dendrogyra cylindrus), now covered in various algae, in the waters of Playa Melones, Puerto Rico. NASA Ames/Milan LoiaconoCoral reefs cover only 1% of the ocean floor, but support an estimated 25% of all marine life in the ocean, earning them the moniker ‘rainforest of the sea.’ They also play a critical role for coastal communities; preventing coastal erosion, protecting coastlines from hurricane damage, and generating $36 billion in annual income worldwide.
We asked Juan Torres-Pérez, a research scientist and coral reef expert at NASA Ames Research Center, about the science behind coral reefs, and the role they play in both marine ecosystems and human communities.
What is the difference between a reef, coral, and a coral reef? ReefReefs are ridge-like structures, either natural or artificial. “A reef by definition is a structure that provides some relief above the ocean floor,” Torres-Pérez said. “It could be something man-made: you can pile a bunch of car tires, and then they get colonized by different organisms. Or it could be natural: a small hill on top of the ocean floor in which the primary framework is a rock.”
CoralsCorals are animals from the phylum Cnidaria, typically found along tropical coastlines. They comprise hundreds to thousands of living organisms called polyps, each only a few millimeters in diameter. Each polyp has its own body and a mouth with stinging tentacles to capture food such as plankton and small fish. The polyps grow together until they form a colony, and it is this colony that we recognize as a coral. There are two types of coral: hard corals and soft corals. Hard corals, also known as stony corals or more formally as Scleractinians, secrete calcium carbonate to form a hard skeleton; it is this type of coral that form a coral reefs. Soft corals, also known as Alcyonacea, are fleshy and bendable, often resembling trees or fans.
Juvenile black, white, and yellow-striped Bluehead wrasse fish dart in and out of a reef, composed of yellow fire coral (Millepora complanate, back left), branching finger coral (Porites furcate, front left), and various species of sea rods and sea fans. This coral reef sits in the waters of Playa Melones, Puerto Rico. NASA Ames/Milan LoiaconoThe colorful appearance of corals comes from the microscopic algae that live inside coral cells, called zooxanthellae. These algae perform photosynthesis, bringing vital food and nutrients to the corals. “The majority of the products from photosynthesis, about 80 to 90%, pass on to the coral, and then the coral uses those for its own metabolism,” said Torres-Pérez. “This is why corals are usually found in shallow waters: because these organisms need the sunlight to photosynthesize.”
Coral ReefsA coral reef is a term used to describe the collective structure of hard corals that help shape a coral reef ecosystem. “A coral reef is a reef whose main structure is made by living organisms, in this case corals,” said Torres-Pérez. “A coral reef will always be a reef, but not all reefs are coral reefs.” The largest coral reef in the world is Australia’s Great Barrier Reef, which is over 1,000 miles long and covers around 133,000 square miles.
Why are coral reefs important?Healthy coral reefs play a crucial role in providing coastal protection, habitats for marine life, and even key ingredients for potential new medicines.
“Coral reef ecosystems provide habitat for thousands of species, from unicellular organisms like bacteria or some phytoplankton communities, to large organisms like sharks, groupers or snappers, and reptiles like sea turtles,” Torres-Pérez said.
Corals act as a protective barrier during big storm events such as typhoons or hurricanes and have proven to be 97% effective in preventing damage to the natural and built environment. As coral reefs have been damaged in recent decades, coastal flooding and erosion have increased, causing significant damage to coastal communities.
Many communities depend on coral reefs as a resource to sustain their livelihoods. “These are critical ecosystems, not only in terms of the whole biodiversity of the planet but because they also provide sustenance for millions of people, especially in island nations,” Torres-Pérez said. Coral reefs also support fisheries (fish caught for commercial, recreational, or subsistence purposes), recreational activities, and educational purposes.
Scientists have been exploring coral as a new ingredient source for some medicines. They have discovered that a chemical from coral can be extracted to create antibiotics that are effective against bacteria resistant to other types of antibiotics. These ingredients are replicated in a lab, eliminating the need to continuously harvest and harm corals.
What are some current threats to coral reefs?According to a 2020 report produced by the Global Coral Reef Monitoring Network (GCRMN), 14% of the world’s coral reefs have been lost since 2009. In the wake of the 2023-2024 global coral bleaching event, that number is expected to increase.
Map showing sea surface temperatures in March, 2022 near the Great Barrier Reef in Australia. The darker red colors indicate an in increase in sea surface temperature.Coral bleaching is caused by increasing ocean temperatures. As water temperatures rise, it causes corals to expel their zooxanthellae, leaving behind a bone-white shell and depriving the coral of its main food source. “Eventually what happens is that the coral is too weak to compete with other organisms, like filamentous algae, that can overgrow the coral and eventually kill the whole colony,” said Torres-Pérez.
Other threats to coral reefs come from human activity, such as pollution or physical damage. “Increases in sedimentation from poor land management get deposited into the reefs,” said Torres-Pérez, citing urban stormwater runoff and deforestation as two examples of sedimentation. Coral sedimentation is the deposition and accumulation of sediments, like fine sands or mud, on a reef. This clouds the waters, blocking critical sunlight and reducing the ability of zooxanthellae to photosynthesize.
Another human-caused threat to corals is eutrophication, the unnatural increase of nutrients in the water. “Eutrophication provides grounds for the development of filamentous algae, which grows much faster than corals,” said Torres-Pérez. Some of these excess nutrients in the water come from sewage released into coastal waters or runoff of agricultural fertilizers into the ocean. The algae feed off the excess nutrients and grow into massive blooms, which suppress the growth of corals.
Cyanobacteria overgrowth crowds the water of Playa Melones, Puerto Rico, likely caused by an on-land source of pollution leeching excess nutrients into the water. In the background float students and instructors from the NASA OCEANOS internship.NASA Ames/Milan LoiaconoMoreover, Torres-Pérez pointed out that human-caused physical damage to reefs can result from mechanical damage, such as ship anchors being thrown onto corals. Some fishing techniques, like deep water trawling (dragging fishing nets along the sea floor), can also damage reefs by pulling and tearing corals away from their bases. On a more individual scale, coral damage can also result from being stepped on by humans, or accumulated trash left behind by beach-goers.
What is being done to protect coral, at NASA and beyond?Many coral reefs in the world are still unclassified, unexplored, or yet to be discovered. NASA’s NeMO-Net hopes to change that. Torres-Pérez, who is a Co-Investigator for NeMO-Net, described how the citizen science project functions like an interactive mobile video game, allowing anyone to identify corals. “Users can characterize different components of a coral reef based on 2D [and 3D] images of a coral reef,” said Torres-Pérez. “which goes into a machine learning component.” The information from these classifications is fed into a scientific model and helps NASA both classify and assess the health of coral reefs around the world. To learn more about NeMO-Net and how to get involved, check out their website.
In 2022, Torres-Pérez founded OCEANOS (Ocean Community Engagement and Awareness using NASA Earth Observations and Science for Hispanic/Latino Students), a program aimed at bringing oceanography and STEM opportunities to the next generation of Hispanic/Latino students in Puerto Rico. During the program, students build and test their own low-cost optical sensors, test data in a phytoplankton lab, replant coral reefs, and create storymap presentations of their work. “We want students to feel confident and capable to pursue STEM careers,” Torres-Pérez said, “and we want them to become agents of change in their community to share the importance of preserving the ocean.”
OCEANOS PI Juan Torres-Pérez delivers the opening address of the 2023 final presentations to a crowded room at the EcoExploratorio: el Museo de Ciencias de Puerto Rico.NASA Ames/Milan LoiaconoOutside of NASA, Torres-Pérez is an active member of the U.S. Coral Reef Task Force (USCRTF); an interagency body established in 1998 from Executive Order 13089: Coral Reef Protection that aims to preserve, protect, and restore coral reef ecosystems.
Resources to Learn MoreTo learn more about coral reefs and how they are monitored, Torres-Pérez recommends checking out resources from the National Oceanic and Atmospheric Administration (NOAA), which has a section on their website dedicated to corals. One notable coral reef resource from NOAA is their Coral Reef Watch website, which monitors sea surface temperatures on global and local scales. The website serves government and non-governmental agencies with their data products, which are used to monitor and predict climate impacts on coral reefs worldwide.
Written by: Katera Lee, NASA Ames Research Center
Share Details Last Updated Oct 15, 2024 Related Terms Explore More 2 min read $1.5 Million Awarded at Watts on the Moon Finals Article 5 hours ago 1 min read NASA Glenn Connects with Morehead State University Article 5 hours ago 15 min read OpenET: Balancing Water Supply and Demand in the West Article 1 day ago Keep Exploring Discover More Topics From NASAMissions
Humans in Space
Climate Change
Solar System
Station Science Top News: Oct. 11, 2024
Researchers verified that 3D micro-computed tomography scans can map the orientation of plant roots in space and used the method to demonstrate that carrots grown in actual and simulated microgravity both had random root orientation. These findings suggest that simulated microgravity offers a reliable and more affordable tool for studying plant adaptation to spaceflight.
MULTI-TROP evaluated the role of gravity and other factors on plant growth. Plant roots grow downward in response to gravity on Earth, but in random directions in microgravity, which is a challenge for developing plant growth facilities for space. Results from this investigation could help address this challenge, advancing efforts to grow plants for food and other uses on future space missions as well as improving plant cultivation on Earth.
Preflight image of the BIOKON facility used to grow carrots for MULTI-TROP. Kayser ItaliaFor climate model simulations, researchers developed four parameters of electrical discharges from thunderclouds that produce visual emissions known as Blue LUminous Events or BLUEs. BLUEs are thought to affect regional atmospheric chemistry and climate. The parameters reported by this study could inform models that help test the global and regional effects of thunderstorm corona discharges, including how their geographic distribution and global occurrence rate will change as the atmosphere warms.
ASIM, an investigation from ESA (European Space Agency), studies high-altitude lightning in thunderstorms and the role it plays in Earth’s atmosphere and climate. Scientists need to understand processes occurring in Earth’s upper atmosphere to determine how lightning is connected to Earth’s climate and weather so they can develop better atmospheric models to guide weather and climate predictions.
Lightning in a thunderstorm off the coast of Africa as seen from the International Space Station. NASA/Matthew DominickA technique to detect sounds generated by the inner ear could be used as a non-invasive tool for monitoring changes in fluid pressure in the head during spaceflight. Increased fluid pressure in the head that occurs in microgravity can cause visual impairment and may also affect the middle and inner ear. Insight into fluid pressure changes could help scientists develop ways to protect astronauts from these effects.
The ESA and ASI investigation Acoustic Diagnostics monitored hearing function in astronauts on long-term missions using otoacoustic emissions (sounds generated by the inner ear in response to specific tones). Researchers compared these measurements before and during flight to indirectly detect changes in fluid pressure in the head. Different body position and fit of the ear probes affected results of the test and the authors note that these issues need to be addressed.
NASA astronaut Drew Morgan participates in a hearing test for the Acoustic Diagnostics investigation. ESA (European Space Agency)/Luca ParmitanoDr. Rickey Shyne Named Crain’s Notable Black Leader
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) Dr. Rickey Shyne is responsible for leading a staff of approximately 1,100 engineers and scientists.Credit: NASADr. Rickey J. Shyne, director of Research and Engineering at NASA’s Glenn Research Center in Cleveland, has been named one of Crain’s Cleveland Business’ 2024 Notable Black Leaders.
Shyne is responsible for leading a staff of approximately 1,100 engineers and scientists, and managing research and development in propulsion, communications, power, and materials and structures for extreme environments in support of the agency’s missions. He is on the board of Southwest General Health Center and a former board member of Cleveland Engineering Society.
Crain’s Notable Black Leaders represent all industries and communities. From magnates to mentors, they are working to enrich their companies, communities and city. Nominees must serve in a senior leadership role at their company or organization; have at least five years of experience in their field; and demonstrate significant accomplishments within their industry, professional organizations, and civic and community groups. They must live and work in the Northeast Ohio area.
Shyne is featured in the Crain’s September 30 issue, online and in print.
Return to Newsletter Explore More 2 min read Ohio State Marching Band Performs Tribute to NASA Article 5 hours ago 1 min read NASA Glenn Connects with Morehead State University Article 5 hours ago 1 min read Visitors Explore NASA at Ingenuity Fest Article 5 hours ago$1.5 Million Awarded at Watts on the Moon Finals
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) Orbital Mining Corporation took second place in NASA’s Watts on the Moon Challenge. Left to right: Rob Button, deputy chief of NASA Glenn’s Power Division; three members of the team; Mary Wadel, NASA director of Technology Integration and Partnerships; and NASA astronaut Stephen Bowen. Credit: NASA/Sara Lowthian-HannaGreat Lakes Science Center, home of the visitor center for NASA’s Glenn Research Center in Cleveland, hosted the final phase of NASA’s Watts on the Moon Challenge on Sept. 20. NASA astronaut Stephen Bowen attended to help acknowledge the top winners.
NASA awarded a total of $1.5 million to two U.S. teams for their novel technology solutions addressing energy distribution, management, and storage as part of the challenge. The innovations from this challenge aim to support NASA’s Artemis missions, which will establish a long-term human presence on the Moon.
This two-phase competition challenged U.S. innovators to develop breakthrough technologies that could enable long-duration Moon missions to advance the nation’s lunar exploration goals.
The winning teams are:
- First Prize ($1 million): Team H.E.L.P.S. (High Efficiency Long-Range Power Solution) from University of California, Santa Barbara , won the grand prize for their hardware solution, which featured the lowest mass and highest efficiency of all competitors.
- Second prize ($500,000): Orbital Mining Corporation, a space technology startup in Golden, Colorado, earned the second prize for its hardware solution that also successfully completed the 48-hour test with high performance.
Four teams were invited to refine their hardware and deliver full system prototypes in the final stage of the competition, and three finalist teams completed their technology solutions for demonstration and assessment at NASA Glenn.
The University of California (UC), Santa Barbara, took first place in NASA’s Watts on the Moon Challenge. Left to right: Mary Wadel, NASA director of Technology Integration and Partnerships; Rob Button, deputy chief of NASA Glenn’s Power Division; UC Santa Barbara team members; and NASA astronaut Stephen Bowen. Credit: NASA/Sara Lowthian-HannaNASA Glenn’s Mary Wadel, director of Technology Integration and Partnerships, recognized the work involved to bring this challenge to its conclusion. Rob Button, deputy chief of Glenn’s Power Division and his team of experts, formulated and executed the challenge and oversaw testing.
The technologies were the first power transmission and energy storage prototypes to be tested by NASA in a vacuum chamber mimicking the freezing temperature and absence of pressure found at the permanently shadowed regions of the Lunar South Pole.
The Watts on the Moon Challenge is a NASA Centennial Challenge led by NASA Glenn. As the agency’s lead center for power systems technologies, NASA Glenn has been involved in the Watts on the Moon Challenge from its inception.
Return to Newsletter Explore More 7 min read What is a Coral Reef? Article 43 mins ago 1 min read NASA Glenn Connects with Morehead State University Article 5 hours ago 15 min read OpenET: Balancing Water Supply and Demand in the West Article 1 day ago