“...all the past is but a beginning of a beginning, and that all that is and has been is but the twilight of dawn.”

— H.G. Wells
1902

NASA

NASA’s SpaceX Crew-11 to Support Health Studies for Deep Space Travel

NASA - Breaking News - Fri, 07/11/2025 - 10:00am
The crew of NASA’s SpaceX Crew-11 mission sit inside a Dragon training spacecraft at SpaceX in Hawthorne, California. Pictured from left: Roscosmos cosmonaut Oleg Platonov, NASA astronauts Mike Fincke and Zena Cardman, and JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui (Credit: SpaceX).

NASA’s SpaceX Crew-11 mission is set to launch a four-person crew to the International Space Station later this summer. Some of the crew have volunteered to participate in a series of experiments to address health challenges astronauts may face on deep space missions during NASA’s Artemis campaign and future human expeditions to Mars.

The research during Crew-11 includes simulated lunar landings, tactics to safeguard vision, and other human physiology studies led by NASA’s Human Research Program.

Select crew members will participate in a series of simulated Moon landings, before, during, and after their flight. Using a handheld controller and multiple screens, the astronauts will fly through simulated scenarios created to resemble the lunar South Pole region that Artemis crews plan to visit. This experiment allows researchers to evaluate how different gravitational forces may disorient astronauts and affect their ability to pilot a spacecraft, like a lunar lander.

“Even though many landing tasks are automated, astronauts must still know how to monitor the controls and know when to take over to ensure a safe landing,” said Scott Wood, a neuroscientist at NASA’s Johnson Space Center in Houston coordinating the scientific investigation. “Our study assesses exactly how changes in gravity affect spatial awareness and piloting skills that are important for navigating these scenarios.”

A ground control group completing the same tasks over a similar timeframe will help scientists better understand gravitational effects on human performance. The experiment’s results could inform the pilot training needed for future Artemis crews.

“Experiencing weightlessness for months and then feeling greater levels of gravity on a planet like Mars, for example, may increase the risk of disorientation,” said Wood. “Our goal is to help astronauts adapt to any gravitational change, whether it’s to the Moon, a new planet, or landing back on Earth.”

Other studies during the mission will explore possible ways to treat or prevent a group of eye and brain changes that can occur during long-duration space travel, called spaceflight associated neuro-ocular syndrome (SANS).  

Some researchers suspect the redistribution of bodily fluids in constant weightlessness may increase pressure in the head and contribute to SANS. One study will investigate fluid pressure on the brain while another will examine how the body processes B vitamins and whether supplements can affect how astronauts respond to bodily fluid shifts. Participating crew members will test whether a daily B vitamin supplement can eliminate or ease symptoms of SANS. Specific crew members also will wear thigh cuffs to keep bodily fluids from traveling headward.

Crew members also will complete another set of experiments, called CIPHER (Complement of Integrated Protocols for Human Exploration Research), which measures how multiple systems within the human body change in space. The study includes vision assessments, MRI scans, and other medical exams to provide a complete overview of the whole body’s response to long-duration spaceflight.

Several other studies involving human health and performance are also a part of Crew-11’s science portfolio. Crew members will contribute to a core set of measurements called Spaceflight Standard Measures, which collects physical data and biological samples from astronauts and stores them for other comparative studies. Participants will supply biological samples, such as blood and urine, for a study characterizing how spaceflight alters astronauts’ genetic makeup. In addition, volunteers will test different exercise regimens to help scientists explore what activities remain essential for long-duration journeys.

After landing, participating crew members will complete surveys to track any discomfort, such as scrapes or bruises, acquired from re-entry. The data will help clarify whether mission length increases injury risks and could help NASA design landing systems on future spacecraft as NASA prepares to travel to the Moon, Mars, and beyond.

NASA’s Human Research Program pursues methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, and aboard the International Space Station, the program investigates how spaceflight affects human bodies and behaviors. Such research drives NASA’s quest to innovate ways that keep astronauts healthy and mission-ready.

Explore More 2 min read NASA Announces Winners of 2025 Human Lander Challenge Article 2 weeks ago 4 min read NASA, Australia Team Up for Artemis II Lunar Laser Communications Test Article 2 weeks ago 3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing Article 4 weeks ago Keep Exploring Discover More Topics From NASA

Living in Space

Artemis

Human Research Program

Space Station Research and Technology

Categories: NASA

NASA’s SpaceX Crew-11 to Support Health Studies for Deep Space Travel

NASA News - Fri, 07/11/2025 - 10:00am
The crew of NASA’s SpaceX Crew-11 mission sit inside a Dragon training spacecraft at SpaceX in Hawthorne, California. Pictured from left: Roscosmos cosmonaut Oleg Platonov, NASA astronauts Mike Fincke and Zena Cardman, and JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui (Credit: SpaceX).

NASA’s SpaceX Crew-11 mission is set to launch a four-person crew to the International Space Station later this summer. Some of the crew have volunteered to participate in a series of experiments to address health challenges astronauts may face on deep space missions during NASA’s Artemis campaign and future human expeditions to Mars.

The research during Crew-11 includes simulated lunar landings, tactics to safeguard vision, and other human physiology studies led by NASA’s Human Research Program.

Select crew members will participate in a series of simulated Moon landings, before, during, and after their flight. Using a handheld controller and multiple screens, the astronauts will fly through simulated scenarios created to resemble the lunar South Pole region that Artemis crews plan to visit. This experiment allows researchers to evaluate how different gravitational forces may disorient astronauts and affect their ability to pilot a spacecraft, like a lunar lander.

“Even though many landing tasks are automated, astronauts must still know how to monitor the controls and know when to take over to ensure a safe landing,” said Scott Wood, a neuroscientist at NASA’s Johnson Space Center in Houston coordinating the scientific investigation. “Our study assesses exactly how changes in gravity affect spatial awareness and piloting skills that are important for navigating these scenarios.”

A ground control group completing the same tasks over a similar timeframe will help scientists better understand gravitational effects on human performance. The experiment’s results could inform the pilot training needed for future Artemis crews.

“Experiencing weightlessness for months and then feeling greater levels of gravity on a planet like Mars, for example, may increase the risk of disorientation,” said Wood. “Our goal is to help astronauts adapt to any gravitational change, whether it’s to the Moon, a new planet, or landing back on Earth.”

Other studies during the mission will explore possible ways to treat or prevent a group of eye and brain changes that can occur during long-duration space travel, called spaceflight associated neuro-ocular syndrome (SANS).  

Some researchers suspect the redistribution of bodily fluids in constant weightlessness may increase pressure in the head and contribute to SANS. One study will investigate fluid pressure on the brain while another will examine how the body processes B vitamins and whether supplements can affect how astronauts respond to bodily fluid shifts. Participating crew members will test whether a daily B vitamin supplement can eliminate or ease symptoms of SANS. Specific crew members also will wear thigh cuffs to keep bodily fluids from traveling headward.

Crew members also will complete another set of experiments, called CIPHER (Complement of Integrated Protocols for Human Exploration Research), which measures how multiple systems within the human body change in space. The study includes vision assessments, MRI scans, and other medical exams to provide a complete overview of the whole body’s response to long-duration spaceflight.

Several other studies involving human health and performance are also a part of Crew-11’s science portfolio. Crew members will contribute to a core set of measurements called Spaceflight Standard Measures, which collects physical data and biological samples from astronauts and stores them for other comparative studies. Participants will supply biological samples, such as blood and urine, for a study characterizing how spaceflight alters astronauts’ genetic makeup. In addition, volunteers will test different exercise regimens to help scientists explore what activities remain essential for long-duration journeys.

After landing, participating crew members will complete surveys to track any discomfort, such as scrapes or bruises, acquired from re-entry. The data will help clarify whether mission length increases injury risks and could help NASA design landing systems on future spacecraft as NASA prepares to travel to the Moon, Mars, and beyond.

NASA’s Human Research Program pursues methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, and aboard the International Space Station, the program investigates how spaceflight affects human bodies and behaviors. Such research drives NASA’s quest to innovate ways that keep astronauts healthy and mission-ready.

Explore More 2 min read NASA Announces Winners of 2025 Human Lander Challenge Article 2 weeks ago 4 min read NASA, Australia Team Up for Artemis II Lunar Laser Communications Test Article 3 weeks ago 3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing Article 4 weeks ago Keep Exploring Discover More Topics From NASA

Living in Space

Artemis

Human Research Program

Space Station Research and Technology

Categories: NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Fri, 07/11/2025 - 8:00am


Categories: Astronomy, NASA

Hubble Snaps Galaxy Cluster’s Portrait

NASA News - Fri, 07/11/2025 - 7:00am
Explore Hubble

2 min read

Hubble Snaps Galaxy Cluster’s Portrait This NASA/ESA Hubble Space Telescope image features the galaxy cluster Abell 209. ESA/Hubble & NASA, M. Postman, P. Kelly

A massive, spacetime-warping cluster of galaxies is the setting of today’s NASA/ESA Hubble Space Telescope image. The galaxy cluster in question is Abell 209, located 2.8 billion light-years away in the constellation Cetus (the Whale).

This Hubble image of Abell 209 shows more than a hundred galaxies, but there’s more to this cluster than even Hubble’s discerning eye can see. Abell 209’s galaxies are separated by millions of light-years, and the seemingly empty space between the galaxies is filled with hot, diffuse gas that is visible only at X-ray wavelengths. An even more elusive occupant of this galaxy cluster is dark matter: a form of matter that does not interact with light. Dark matter does not absorb, reflect, or emit light, effectively making it invisible to us. Astronomers detect dark matter by its gravitational influence on normal matter. Astronomers surmise that the universe is comprised of 5% normal matter, 25% dark matter, and 70% dark energy.

Hubble observations, like the ones used to create this image, can help astronomers answer fundamental questions about our universe, including mysteries surrounding dark matter and dark energy. These investigations leverage the immense mass of a galaxy cluster, which can bend the fabric of spacetime itself and create warped and magnified images of background galaxies and stars in a process called gravitational lensing.

While this image lacks the dramatic rings that gravitational lensing can sometimes create, Abell 209 still shows subtle signs of lensing at work, in the form of streaky, slightly curved galaxies within the cluster’s golden glow. By measuring the distortion of these galaxies, astronomers can map the distribution of mass within the cluster, illuminating the underlying cloud of dark matter. This information, which Hubble’s fine resolution and sensitive instruments help to provide, is critical for testing theories of how our universe evolved.

Text Credit: ESA/Hubble

Facebook logo @NASAHubble

@NASAHubble

Instagram logo @NASAHubble

Media Contact:

Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight CenterGreenbelt, MD

Share

Details

Last Updated

Jul 11, 2025

Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center

Related Terms Keep Exploring Discover More Topics From Hubble

Hubble Space Telescope

Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


Hubble Gravitational Lenses


Focusing in on Gravitational Lenses


Shining a Light on Dark Matter

Categories: NASA

Hubble Snaps Galaxy Cluster’s Portrait

NASA - Breaking News - Fri, 07/11/2025 - 7:00am
Explore Hubble

2 min read

Hubble Snaps Galaxy Cluster’s Portrait This NASA/ESA Hubble Space Telescope image features the galaxy cluster Abell 209. ESA/Hubble & NASA, M. Postman, P. Kelly

A massive, spacetime-warping cluster of galaxies is the setting of today’s NASA/ESA Hubble Space Telescope image. The galaxy cluster in question is Abell 209, located 2.8 billion light-years away in the constellation Cetus (the Whale).

This Hubble image of Abell 209 shows more than a hundred galaxies, but there’s more to this cluster than even Hubble’s discerning eye can see. Abell 209’s galaxies are separated by millions of light-years, and the seemingly empty space between the galaxies is filled with hot, diffuse gas that is visible only at X-ray wavelengths. An even more elusive occupant of this galaxy cluster is dark matter: a form of matter that does not interact with light. Dark matter does not absorb, reflect, or emit light, effectively making it invisible to us. Astronomers detect dark matter by its gravitational influence on normal matter. Astronomers surmise that the universe is comprised of 5% normal matter, 25% dark matter, and 70% dark energy.

Hubble observations, like the ones used to create this image, can help astronomers answer fundamental questions about our universe, including mysteries surrounding dark matter and dark energy. These investigations leverage the immense mass of a galaxy cluster, which can bend the fabric of spacetime itself and create warped and magnified images of background galaxies and stars in a process called gravitational lensing.

While this image lacks the dramatic rings that gravitational lensing can sometimes create, Abell 209 still shows subtle signs of lensing at work, in the form of streaky, slightly curved galaxies within the cluster’s golden glow. By measuring the distortion of these galaxies, astronomers can map the distribution of mass within the cluster, illuminating the underlying cloud of dark matter. This information, which Hubble’s fine resolution and sensitive instruments help to provide, is critical for testing theories of how our universe evolved.

Text Credit: ESA/Hubble

Facebook logo @NASAHubble

@NASAHubble

Instagram logo @NASAHubble

Media Contact:

Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight CenterGreenbelt, MD

Share

Details

Last Updated

Jul 11, 2025

Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center

Related Terms Keep Exploring Discover More Topics From Hubble

Hubble Space Telescope

Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


Hubble Gravitational Lenses


Focusing in on Gravitational Lenses


Shining a Light on Dark Matter

Categories: NASA

Curiosity Blog, Sols 4593-4594: Three Layers and a Lot of Structure at Volcán Peña Blanca

NASA News - Thu, 07/10/2025 - 10:12pm
Curiosity Navigation

4 min read

Curiosity Blog, Sols 4593-4594: Three Layers and a Lot of Structure at Volcán Peña Blanca NASA’s Mars rover Curiosity used its Mast Camera (Mastcam) to acquire this image showing a part of Volcán Peña Blanca from about 10 meters away (about 33 feet). It is already possible to see the different layers and make out that some of them are parallel, while others are at an angle. Curiosity acquired this image on July 6, 2025 — Sol 4591, or Martian day 4,591 of the Mars Science Laboratory mission — at 10:13:13 UTC. NASA/JPL-Caltech/MSSS

Written by Susanne P. Schwenzer, Professor of Planetary Mineralogy at The Open University, UK

Earth planning date: Monday, July 7, 2025

A few planning sols ago, we spotted a small ridge in the landscape ahead of us. Ridges and structures that are prominently raised above the landscape are our main target along this part of Curiosity’s traverse. There are many hypotheses on how they formed, and water is one of the likely culprits involved. That is because water reacts with the original minerals, moves the compounds around and some precipitate as minerals in the pore spaces, which is called “cement” by sedimentologists, and generally known as one mechanism to make a rock harder. It’s not the only one, so the Curiosity science team is after all the details at this time to assess whether water indeed was responsible for the more resistant nature of the ridges. Spotting one that is so clearly raised prominently above the landscape — and in easy reach of the rover, both from the distance but also from the path that leads up to it — was therefore very exciting. In addition, the fact that we get a side view of the structure as well as a top view adds to the team’s ability to read the geologic record of this area. “Outcrops,” as we call those places, are one of the most important tools for any field geologist, including Curiosity and team!

Therefore, the penultimate drive stopped about 10 meters away (about 33 feet) from the structure to get a good assessment of where exactly to direct the rover (see the blog post by my colleague Abby). You can see an example of the images Curiosity took with its Mast Camera above; if you want to see them all, they are on the raw images page (and by the time you go, there may be even more images that we took in today’s plan.

With all the information from the last parking spot, the rover drivers parked Curiosity in perfect operating distance for all instruments. In direct view of the rover was a part of Volcán Peña Blanca that shows several units; this blogger counts at least three — but I am a mineralogist, not a sedimentologist! I am really looking forward to the chemical data we will get in this plan. My sedimentologist colleagues found the different angles of smaller layers in the three bigger layers especially interesting, and will look at the high-resolution images from the MAHLI instrument very closely.

With all that in front of us, Curiosity has a very full plan. APXS will get two measurements, the target “Parinacota” is on the upper part of the outcrop and we can even clean it from the dust with the brush, aka DRT. MAHLI will get close-up images to see finer structures and maybe even individual grains. The second APXS target, called “Wila Willki,” is located in the middle part of the outcrop and will also be documented by MAHLI. The third activity of MAHLI will be a so-called dog’s-eye view of the outcrop. For this, the arm reaches very low down to align MAHLI to directly face the outcrop, to get a view of the structures and even a peek underneath some of the protruding ledges. The team is excitedly anticipating the arrival of those images. Stay tuned; you can also find them in the raw images section as soon as we have them!

ChemCam is joining in with two LIBS targets — the target “Pichu Pichu” is on the upper part of the outcrop, and the target “Tacume” is on the middle part. After this much of close up looks, ChemCam is pointing the RMI to the mid-field to look at another of the raised features in more detail and into the far distance to see the upper contact of the boxwork unit with the next unit above it. Mastcam will first join the close up looks and take a large mosaic to document all the details of Volcán Peña Blanca, and to document the LIBS targets, before looking into the distance at two places where we see small troughs around exposed bedrock.

Of course, there are also atmospheric observations in the plan; it’s aphelion cloud season and dust is always of interest. The latter is regularly monitored by atmosphere opacity experiments, and we keep searching for dust devils to understand where, how and why they form and how they move. Curiosity will be busy, and we are very much looking forward to understanding this interesting feature, which is one piece of the puzzle to understand this area we call the boxwork area.


For more Curiosity blog posts, visit MSL Mission Updates


Learn more about Curiosity’s science instruments

Share

Details

Last Updated

Jul 10, 2025

Related Terms Explore More

3 min read Continuing the Quest for Clays

Article


2 days ago

2 min read Curiosity Blog, Sols 4589–4592: Setting up to explore Volcán Peña Blanca

Article


3 days ago

2 min read Curiosity Blog, Sol 4588: Ridges and troughs

Article


3 days ago

Keep Exploring Discover More Topics From NASA

Mars

Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


All Mars Resources

Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


Rover Basics

Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


Mars Exploration: Science Goals

The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

Share

Details

Last Updated

Jul 10, 2025

Related Terms Explore More

3 min read Continuing the Quest for Clays

Article


2 days ago

2 min read Curiosity Blog, Sols 4589–4592: Setting up to explore Volcán Peña Blanca

Article


3 days ago

2 min read Curiosity Blog, Sol 4588: Ridges and troughs

Article


3 days ago

Keep Exploring Discover Related Topics

Missions


Humans in Space


Climate Change


Solar System

Categories: NASA

Curiosity Blog, Sols 4593-4594: Three Layers and a Lot of Structure at Volcán Peña Blanca

NASA - Breaking News - Thu, 07/10/2025 - 10:12pm
Curiosity Navigation

4 min read

Curiosity Blog, Sols 4593-4594: Three Layers and a Lot of Structure at Volcán Peña Blanca NASA’s Mars rover Curiosity used its Mast Camera (Mastcam) to acquire this image showing a part of Volcán Peña Blanca from about 10 meters away (about 33 feet). It is already possible to see the different layers and make out that some of them are parallel, while others are at an angle. Curiosity acquired this image on July 6, 2025 — Sol 4591, or Martian day 4,591 of the Mars Science Laboratory mission — at 10:13:13 UTC. NASA/JPL-Caltech/MSSS

Written by Susanne P. Schwenzer, Professor of Planetary Mineralogy at The Open University, UK

Earth planning date: Monday, July 7, 2025

A few planning sols ago, we spotted a small ridge in the landscape ahead of us. Ridges and structures that are prominently raised above the landscape are our main target along this part of Curiosity’s traverse. There are many hypotheses on how they formed, and water is one of the likely culprits involved. That is because water reacts with the original minerals, moves the compounds around and some precipitate as minerals in the pore spaces, which is called “cement” by sedimentologists, and generally known as one mechanism to make a rock harder. It’s not the only one, so the Curiosity science team is after all the details at this time to assess whether water indeed was responsible for the more resistant nature of the ridges. Spotting one that is so clearly raised prominently above the landscape — and in easy reach of the rover, both from the distance but also from the path that leads up to it — was therefore very exciting. In addition, the fact that we get a side view of the structure as well as a top view adds to the team’s ability to read the geologic record of this area. “Outcrops,” as we call those places, are one of the most important tools for any field geologist, including Curiosity and team!

Therefore, the penultimate drive stopped about 10 meters away (about 33 feet) from the structure to get a good assessment of where exactly to direct the rover (see the blog post by my colleague Abby). You can see an example of the images Curiosity took with its Mast Camera above; if you want to see them all, they are on the raw images page (and by the time you go, there may be even more images that we took in today’s plan.

With all the information from the last parking spot, the rover drivers parked Curiosity in perfect operating distance for all instruments. In direct view of the rover was a part of Volcán Peña Blanca that shows several units; this blogger counts at least three — but I am a mineralogist, not a sedimentologist! I am really looking forward to the chemical data we will get in this plan. My sedimentologist colleagues found the different angles of smaller layers in the three bigger layers especially interesting, and will look at the high-resolution images from the MAHLI instrument very closely.

With all that in front of us, Curiosity has a very full plan. APXS will get two measurements, the target “Parinacota” is on the upper part of the outcrop and we can even clean it from the dust with the brush, aka DRT. MAHLI will get close-up images to see finer structures and maybe even individual grains. The second APXS target, called “Wila Willki,” is located in the middle part of the outcrop and will also be documented by MAHLI. The third activity of MAHLI will be a so-called dog’s-eye view of the outcrop. For this, the arm reaches very low down to align MAHLI to directly face the outcrop, to get a view of the structures and even a peek underneath some of the protruding ledges. The team is excitedly anticipating the arrival of those images. Stay tuned; you can also find them in the raw images section as soon as we have them!

ChemCam is joining in with two LIBS targets — the target “Pichu Pichu” is on the upper part of the outcrop, and the target “Tacume” is on the middle part. After this much of close up looks, ChemCam is pointing the RMI to the mid-field to look at another of the raised features in more detail and into the far distance to see the upper contact of the boxwork unit with the next unit above it. Mastcam will first join the close up looks and take a large mosaic to document all the details of Volcán Peña Blanca, and to document the LIBS targets, before looking into the distance at two places where we see small troughs around exposed bedrock.

Of course, there are also atmospheric observations in the plan; it’s aphelion cloud season and dust is always of interest. The latter is regularly monitored by atmosphere opacity experiments, and we keep searching for dust devils to understand where, how and why they form and how they move. Curiosity will be busy, and we are very much looking forward to understanding this interesting feature, which is one piece of the puzzle to understand this area we call the boxwork area.


For more Curiosity blog posts, visit MSL Mission Updates


Learn more about Curiosity’s science instruments

Share

Details

Last Updated

Jul 10, 2025

Related Terms Explore More

3 min read Continuing the Quest for Clays

Article


2 days ago

2 min read Curiosity Blog, Sols 4589–4592: Setting up to explore Volcán Peña Blanca

Article


3 days ago

2 min read Curiosity Blog, Sol 4588: Ridges and troughs

Article


3 days ago

Keep Exploring Discover More Topics From NASA

Mars

Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


All Mars Resources

Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


Rover Basics

Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


Mars Exploration: Science Goals

The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

Share

Details

Last Updated

Jul 10, 2025

Related Terms Explore More

3 min read Continuing the Quest for Clays

Article


2 days ago

2 min read Curiosity Blog, Sols 4589–4592: Setting up to explore Volcán Peña Blanca

Article


3 days ago

2 min read Curiosity Blog, Sol 4588: Ridges and troughs

Article


3 days ago

Keep Exploring Discover Related Topics

Missions


Humans in Space


Climate Change


Solar System

Categories: NASA

NASA Selects Instruments for Artemis Lunar Terrain Vehicle

NASA - Breaking News - Thu, 07/10/2025 - 4:47pm
An artist’s concept design of NASA’s Lunar Terrain Vehicle.Credit: NASA

NASA has selected three instruments to travel to the Moon, with two planned for integration onto an LTV (Lunar Terrain Vehicle) and one for a future orbital opportunity.

The LTV is part of NASA’s efforts to explore the lunar surface as part of the Artemis campaign and is the first crew-driven vehicle to operate on the Moon in more than 50 years. Designed to hold up to two astronauts, as well as operate remotely without a crew, this surface vehicle will enable NASA to achieve more of its science and exploration goals over a wide swath of lunar terrain.

“The Artemis Lunar Terrain Vehicle will transport humanity farther than ever before across the lunar frontier on an epic journey of scientific exploration and discovery,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “By combining the best of human and robotic exploration, the science instruments selected for the LTV will make discoveries that inform us about Earth’s nearest neighbor as well as benefit the health and safety of our astronauts and spacecraft on the Moon.”

The Artemis Infrared Reflectance and Emission Spectrometer (AIRES) will identify, quantify, and map lunar minerals and volatiles, which are materials that evaporate easily, like water, ammonia, or carbon dioxide. The instrument will capture spectral data overlaid on visible light images of both specific features of interest and broad panoramas to discover the distribution of minerals and volatiles across the Moon’s south polar region. The AIRES instrument team is led by Phil Christensen from Arizona State University in Tempe.

The Lunar Microwave Active-Passive Spectrometer (L-MAPS) will help define what is below the Moon’s surface and search for possible locations of ice. Containing both a spectrometer and a ground-penetrating radar, the instrument suite will measure temperature, density, and subsurface structures to more than 131 feet (40 meters) below the surface. The L-MAPS instrument team is led by Matthew Siegler from the University of Hawaii at Manoa.

When combined, the data from the two instruments will paint a picture of the components of the lunar surface and subsurface to support human exploration and will uncover clues to the history of rocky worlds in our solar system. The instruments also will help scientists characterize the Moon’s resources, including what the Moon is made of, potential locations of ice, and how the Moon changes over time.

In addition to the instruments selected for integration onto the LTV, NASA also selected the Ultra-Compact Imaging Spectrometer for the Moon (UCIS-Moon) for a future orbital flight opportunity. The instrument will provide regional context to the discoveries made from the LTV. From above, UCIS-Moon will map the Moon’s geology and volatiles and measure how human activity affects those volatiles. The spectrometer also will help identify scientifically valuable areas for astronauts to collect lunar samples, while its wide-view images provide the overall context for where these samples will be collected. The UCIS-Moon instrument will provide the Moon’s highest spatial resolution data of surface lunar water, mineral makeup, and thermophysical properties. The UCIS-Moon instrument team is led by Abigail Fraeman from NASA’s Jet Propulsion Laboratory in Southern California.

“Together, these three scientific instruments will make significant progress in answering key questions about what minerals and volatiles are present on and under the surface of the Moon,” said Joel Kearns, deputy associate administrator for Exploration, Science Mission Directorate at NASA Headquarters. “With these instruments riding on the LTV and in orbit, we will be able to characterize the surface not only where astronauts explore, but also across the south polar region of the Moon, offering exciting opportunities for scientific discovery and exploration for years to come.”

Leading up to these instrument selections, NASA has worked with all three lunar terrain vehicle vendors – Intuitive Machines, Lunar Outpost, and Venturi Astrolab – to complete their preliminary design reviews. This review demonstrates that the initial design of each commercial lunar rover meets all of NASA’s system requirements and shows that the correct design options have been selected, interfaces have been identified, and verification methods have been described. NASA will evaluate the task order proposals received from each LTV vendor and make a selection decision on the demonstration mission by the end of 2025. 

Through Artemis, NASA will address high priority science questions, focusing on those that are best accomplished by on-site human explorers on and around the Moon by using robotic surface and orbiting systems. The Artemis missions will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.

To learn more about Artemis, visit:

https://www.nasa.gov/artemis

-end-

Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

Share Details Last Updated Jul 10, 2025 LocationNASA Headquarters Related Terms
Categories: NASA

NASA Selects Instruments for Artemis Lunar Terrain Vehicle

NASA News - Thu, 07/10/2025 - 4:47pm
An artist’s concept design of NASA’s Lunar Terrain Vehicle.Credit: NASA

NASA has selected three instruments to travel to the Moon, with two planned for integration onto an LTV (Lunar Terrain Vehicle) and one for a future orbital opportunity.

The LTV is part of NASA’s efforts to explore the lunar surface as part of the Artemis campaign and is the first crew-driven vehicle to operate on the Moon in more than 50 years. Designed to hold up to two astronauts, as well as operate remotely without a crew, this surface vehicle will enable NASA to achieve more of its science and exploration goals over a wide swath of lunar terrain.

“The Artemis Lunar Terrain Vehicle will transport humanity farther than ever before across the lunar frontier on an epic journey of scientific exploration and discovery,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “By combining the best of human and robotic exploration, the science instruments selected for the LTV will make discoveries that inform us about Earth’s nearest neighbor as well as benefit the health and safety of our astronauts and spacecraft on the Moon.”

The Artemis Infrared Reflectance and Emission Spectrometer (AIRES) will identify, quantify, and map lunar minerals and volatiles, which are materials that evaporate easily, like water, ammonia, or carbon dioxide. The instrument will capture spectral data overlaid on visible light images of both specific features of interest and broad panoramas to discover the distribution of minerals and volatiles across the Moon’s south polar region. The AIRES instrument team is led by Phil Christensen from Arizona State University in Tempe.

The Lunar Microwave Active-Passive Spectrometer (L-MAPS) will help define what is below the Moon’s surface and search for possible locations of ice. Containing both a spectrometer and a ground-penetrating radar, the instrument suite will measure temperature, density, and subsurface structures to more than 131 feet (40 meters) below the surface. The L-MAPS instrument team is led by Matthew Siegler from the University of Hawaii at Manoa.

When combined, the data from the two instruments will paint a picture of the components of the lunar surface and subsurface to support human exploration and will uncover clues to the history of rocky worlds in our solar system. The instruments also will help scientists characterize the Moon’s resources, including what the Moon is made of, potential locations of ice, and how the Moon changes over time.

In addition to the instruments selected for integration onto the LTV, NASA also selected the Ultra-Compact Imaging Spectrometer for the Moon (UCIS-Moon) for a future orbital flight opportunity. The instrument will provide regional context to the discoveries made from the LTV. From above, UCIS-Moon will map the Moon’s geology and volatiles and measure how human activity affects those volatiles. The spectrometer also will help identify scientifically valuable areas for astronauts to collect lunar samples, while its wide-view images provide the overall context for where these samples will be collected. The UCIS-Moon instrument will provide the Moon’s highest spatial resolution data of surface lunar water, mineral makeup, and thermophysical properties. The UCIS-Moon instrument team is led by Abigail Fraeman from NASA’s Jet Propulsion Laboratory in Southern California.

“Together, these three scientific instruments will make significant progress in answering key questions about what minerals and volatiles are present on and under the surface of the Moon,” said Joel Kearns, deputy associate administrator for Exploration, Science Mission Directorate at NASA Headquarters. “With these instruments riding on the LTV and in orbit, we will be able to characterize the surface not only where astronauts explore, but also across the south polar region of the Moon, offering exciting opportunities for scientific discovery and exploration for years to come.”

Leading up to these instrument selections, NASA has worked with all three lunar terrain vehicle vendors – Intuitive Machines, Lunar Outpost, and Venturi Astrolab – to complete their preliminary design reviews. This review demonstrates that the initial design of each commercial lunar rover meets all of NASA’s system requirements and shows that the correct design options have been selected, interfaces have been identified, and verification methods have been described. NASA will evaluate the task order proposals received from each LTV vendor and make a selection decision on the demonstration mission by the end of 2025. 

Through Artemis, NASA will address high priority science questions, focusing on those that are best accomplished by on-site human explorers on and around the Moon by using robotic surface and orbiting systems. The Artemis missions will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.

To learn more about Artemis, visit:

https://www.nasa.gov/artemis

-end-

Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

Share Details Last Updated Jul 10, 2025 LocationNASA Headquarters Related Terms
Categories: NASA

NASA’s James Webb Space Telescope Inspects Cat’s Paw

NASA Image of the Day - Thu, 07/10/2025 - 4:10pm
To celebrate its third year of revealing stunning scenes of the cosmos in infrared light, NASA’s James Webb Space Telescope has “clawed” back the thick, dusty layers of a section within the Cat’s Paw Nebula (NGC 6334).
Categories: Astronomy, NASA

NASA’s James Webb Space Telescope Inspects Cat’s Paw

NASA - Breaking News - Thu, 07/10/2025 - 4:09pm
To celebrate its third year of revealing stunning scenes of the cosmos in infrared light, NASA’s James Webb Space Telescope has “clawed” back the thick, dusty layers of a section within the Cat’s Paw Nebula (NGC 6334). NASA, ESA, CSA, STScI

NASA’s James Webb Space Telescope team released this image of the Cat’s Paw Nebula on July 10, 2025, in honor of the telescope’s third anniversary. Webb’s NIRCam (Near-Infrared Camera)  revealed never-before-seen structural details and features: Massive young stars carve away at nearby gas and dust, while their bright starlight produces a bright nebulous glow represented in blue. As a consequence of these massive stars’ lively behavior, the local star formation process will eventually come to a stop.

Take a tour through this section of the Cat’s Paw Nebula.

Image credit: NASA, ESA, CSA, STScI

Categories: NASA

NASA’s James Webb Space Telescope Inspects Cat’s Paw

NASA News - Thu, 07/10/2025 - 4:09pm
To celebrate its third year of revealing stunning scenes of the cosmos in infrared light, NASA’s James Webb Space Telescope has “clawed” back the thick, dusty layers of a section within the Cat’s Paw Nebula (NGC 6334). NASA, ESA, CSA, STScI

NASA’s James Webb Space Telescope team released this image of the Cat’s Paw Nebula on July 10, 2025, in honor of the telescope’s third anniversary. Webb’s NIRCam (Near-Infrared Camera)  revealed never-before-seen structural details and features: Massive young stars carve away at nearby gas and dust, while their bright starlight produces a bright nebulous glow represented in blue. As a consequence of these massive stars’ lively behavior, the local star formation process will eventually come to a stop.

Take a tour through this section of the Cat’s Paw Nebula.

Image credit: NASA, ESA, CSA, STScI

Categories: NASA

NASA to Brief Media on New Mission to Study Earth’s Magnetic Shield

NASA - Breaking News - Thu, 07/10/2025 - 3:19pm
The TRACERS (Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites) mission will help scientists understand an explosive process called magnetic reconnection and its effects in Earth’s atmosphere. Credit: University of Iowa/Andy Kale

NASA will hold a media teleconference at 11 a.m. EDT on Thursday, July 17, to share information about the agency’s upcoming Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites, or TRACERS, mission, which is targeted to launch no earlier than late July.

The TRACERS mission is a pair of twin satellites that will study how Earth’s magnetic shield — the magnetosphere — protects our planet from the supersonic stream of material from the Sun called solar wind. As they fly pole to pole in a Sun-synchronous orbit, the two TRACERS spacecraft will measure how magnetic explosions send these solar wind particles zooming down into Earth’s atmosphere — and how these explosions shape the space weather that impacts our satellites, technology, and astronauts.

Also launching on this flight will be three additional NASA-funded payloads. The Athena EPIC (Economical Payload Integration Cost) SmallSat, led by NASA’s Langley Research Center in Hampton, Virginia, is designed to demonstrate an innovative, configurable way to put remote-sensing instruments into orbit faster and more affordably. The Polylingual Experimental Terminal technology demonstration, managed by the agency’s SCaN (Space Communications and Navigation) program, will showcase new technology that empowers missions to roam between communications networks in space, like cell phones roam between providers on Earth. Finally, the Relativistic Electron Atmospheric Loss (REAL) CubeSat, led by Dartmouth College in Hanover, New Hampshire, will use space as a laboratory to understand how high-energy particles within the bands of radiation that surround Earth are naturally scattered into the atmosphere, aiding the development of methods for removing these damaging particles to better protect satellites and the critical ground systems they support.

Audio of the teleconference will stream live on the agency’s website at:

nasa.gov/live

Participants include:

  • Joe Westlake, division director, Heliophysics, NASA Headquarters
  • Kory Priestley, principal investigator, Athena EPIC, NASA Langley
  • Greg Heckler, deputy program manager for capability development, SCaN, NASA Headquarters
  • David Miles, principal investigator for TRACERS, University of Iowa
  • Robyn Millan, REAL principal investigator, Dartmouth College

To participate in the media teleconference, media must RSVP no later than 10 a.m. on July 17 to Sarah Frazier at: sarah.frazier@nasa.gov. NASA’s media accreditation policy is available online. 

The TRACERS mission will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California.

This mission is led by David Miles at the University of Iowa with support from the Southwest Research Institute in San Antonio. NASA’s Heliophysics Explorers Program Office at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, manages the mission for the agency’s HeliophysicsDivision at NASA Headquarters in Washington. The University of Iowa, Southwest Research Institute, University of California, Los Angeles, and University of California, Berkeley, all lead instruments on TRACERS that will study changes in the Earth’s magnetic field and electric field. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, manages the Venture-class Acquisition of Dedicated and Rideshare contract.

To learn more about TRACERS, please visit:

nasa.gov/tracers

-end-

Abbey Interrante / Karen Fox
Headquarters, Washington
301-201-0124 / 202-358-1600
abbey.a.interrante@nasa.gov / karen.c.fox@nasa.gov

Sarah Frazier
Goddard Space Flight Center, Greenbelt, Maryland
202-853-7191
sarah.frazier@nasa.gov

Share Details Last Updated Jul 10, 2025 LocationNASA Headquarters Related Terms
Categories: NASA

NASA to Brief Media on New Mission to Study Earth’s Magnetic Shield

NASA News - Thu, 07/10/2025 - 3:19pm
The TRACERS (Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites) mission will help scientists understand an explosive process called magnetic reconnection and its effects in Earth’s atmosphere. Credit: University of Iowa/Andy Kale

NASA will hold a media teleconference at 11 a.m. EDT on Thursday, July 17, to share information about the agency’s upcoming Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites, or TRACERS, mission, which is targeted to launch no earlier than late July.

The TRACERS mission is a pair of twin satellites that will study how Earth’s magnetic shield — the magnetosphere — protects our planet from the supersonic stream of material from the Sun called solar wind. As they fly pole to pole in a Sun-synchronous orbit, the two TRACERS spacecraft will measure how magnetic explosions send these solar wind particles zooming down into Earth’s atmosphere — and how these explosions shape the space weather that impacts our satellites, technology, and astronauts.

Also launching on this flight will be three additional NASA-funded payloads. The Athena EPIC (Economical Payload Integration Cost) SmallSat, led by NASA’s Langley Research Center in Hampton, Virginia, is designed to demonstrate an innovative, configurable way to put remote-sensing instruments into orbit faster and more affordably. The Polylingual Experimental Terminal technology demonstration, managed by the agency’s SCaN (Space Communications and Navigation) program, will showcase new technology that empowers missions to roam between communications networks in space, like cell phones roam between providers on Earth. Finally, the Relativistic Electron Atmospheric Loss (REAL) CubeSat, led by Dartmouth College in Hanover, New Hampshire, will use space as a laboratory to understand how high-energy particles within the bands of radiation that surround Earth are naturally scattered into the atmosphere, aiding the development of methods for removing these damaging particles to better protect satellites and the critical ground systems they support.

Audio of the teleconference will stream live on the agency’s website at:

nasa.gov/live

Participants include:

  • Joe Westlake, division director, Heliophysics, NASA Headquarters
  • Kory Priestley, principal investigator, Athena EPIC, NASA Langley
  • Greg Heckler, deputy program manager for capability development, SCaN, NASA Headquarters
  • David Miles, principal investigator for TRACERS, University of Iowa
  • Robyn Millan, REAL principal investigator, Dartmouth College

To participate in the media teleconference, media must RSVP no later than 10 a.m. on July 17 to Sarah Frazier at: sarah.frazier@nasa.gov. NASA’s media accreditation policy is available online. 

The TRACERS mission will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California.

This mission is led by David Miles at the University of Iowa with support from the Southwest Research Institute in San Antonio. NASA’s Heliophysics Explorers Program Office at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, manages the mission for the agency’s HeliophysicsDivision at NASA Headquarters in Washington. The University of Iowa, Southwest Research Institute, University of California, Los Angeles, and University of California, Berkeley, all lead instruments on TRACERS that will study changes in the Earth’s magnetic field and electric field. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, manages the Venture-class Acquisition of Dedicated and Rideshare contract.

To learn more about TRACERS, please visit:

nasa.gov/tracers

-end-

Abbey Interrante / Karen Fox
Headquarters, Washington
301-201-0124 / 202-358-1600
abbey.a.interrante@nasa.gov / karen.c.fox@nasa.gov

Sarah Frazier
Goddard Space Flight Center, Greenbelt, Maryland
202-853-7191
sarah.frazier@nasa.gov

Share Details Last Updated Jul 10, 2025 LocationNASA Headquarters Related Terms
Categories: NASA

NASA’s Parker Solar Probe Snaps Closest-Ever Images to Sun

NASA - Breaking News - Thu, 07/10/2025 - 2:05pm

7 min read

NASA’s Parker Solar Probe Snaps Closest-Ever Images to Sun

KEY POINTS

  • NASA’s Parker Solar Probe has taken the closest ever images to the Sun, captured just 3.8 million miles from the solar surface.
  • The new close-up images show features in the solar wind, the constant stream of electrically charged subatomic particles released by the Sun that rage across the solar system at speeds exceeding 1 million miles an hour.
  • These images, and other data, are helping scientists understand the mysteries of the solar wind, which is essential to understanding its effects at Earth.

On its record-breaking pass by the Sun late last year, NASA’s Parker Solar Probe captured stunning new images from within the Sun’s atmosphere. These newly released images — taken closer to the Sun than we’ve ever been before — are helping scientists better understand the Sun’s influence across the solar system, including events that can affect Earth.

“Parker Solar Probe has once again transported us into the dynamic atmosphere of our closest star,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “We are witnessing where space weather threats to Earth begin, with our eyes, not just with models. This new data will help us vastly improve our space weather predictions to ensure the safety of our astronauts and the protection of our technology here on Earth and throughout the solar system.”

Parker Solar Probe started its closest approach to the Sun on Dec. 24, 2024, flying just 3.8 million miles from the solar surface. As it skimmed through the Sun’s outer atmosphere, called the corona, in the days around the perihelion, it collected data with an array of scientific instruments, including the Wide-Field Imager for Solar Probe, or WISPR. 

Parker Solar Probe has revolutionized our understanding of the solar wind thanks to the spacecraft’s many passes through the Sun’s outer atmosphere.
Credit: NASA’s Goddard Space Flight Center/Joy Ng

The new WISPR images reveal the corona and solar wind, a constant stream of electrically charged particles from the Sun that rage across the solar system. The solar wind expands throughout of the solar system with wide-ranging effects. Together with outbursts of material and magnetic currents from the Sun, it helps generate auroras, strip planetary atmospheres, and induce electric currents that can overwhelm power grids and affect communications at Earth. Understanding the impact of solar wind starts with understanding its origins at the Sun.

The WISPR images give scientists a closer look at what happens to the solar wind shortly after it is released from the corona. The images show the important boundary where the Sun’s magnetic field direction switches from northward to southward, called the heliospheric current sheet. It also captures the collision of multiple coronal mass ejections, or CMEs — large outbursts of charged particles that are a key driver of space weather — for the first time in high resolution.

“In these images, we’re seeing the CMEs basically piling up on top of one another,” said Angelos Vourlidas, the WISPR instrument scientist at the Johns Hopkins Applied Physics Laboratory, which designed, built, and operates the spacecraft in Laurel, Maryland. “We’re using this to figure out how the CMEs merge together, which can be important for space weather.”

To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video

This video, made from images taken by Parker Solar Probe’s WISPR instrument during its record-breaking flyby of the Sun on Dec. 25, 2024, shows the solar wind racing out from the Sun’s outer atmosphere, the corona. NASA/Johns Hopkins APL/Naval Research Lab

When CMEs collide, their trajectory can change, making it harder to predict where they’ll end up. Their merger can also accelerate charged particles and mix magnetic fields, which makes the CMEs’ effects potentially more dangerous to astronauts and satellites in space and technology on the ground. Parker Solar Probe’s close-up view helps scientists better prepare for such space weather effects at Earth and beyond.

Zooming in on Solar Wind’s Origins

The solar wind was first theorized by preeminent heliophysicist Eugene Parker in 1958. His theories about the solar wind, which were met with criticism at the time, revolutionized how we see our solar system. Prior to Parker Solar Probe’s launch in 2018, NASA and its international partners led missions like Mariner 2, Helios, Ulysses, Wind, and ACE that helped scientists understand the origins of the solar wind — but from a distance. Parker Solar Probe, named in honor of the late scientist, is filling in the gaps of our understanding much closer to the Sun.

At Earth, the solar wind is mostly a consistent breeze, but Parker Solar Probe found it’s anything but at the Sun. When the spacecraft reached within 14.7 million miles from the Sun, it encountered zig-zagging magnetic fields — a feature known as switchbacks. Using Parker Solar Probe’s data, scientists discovered that these switchbacks, which came in clumps, were more common than expected.

When Parker Solar Probe first crossed into the corona about 8 million miles from the Sun’s surface in 2021, it noticed the boundary of the corona was uneven and more complex than previously thought.

As it got even closer, Parker Solar Probe helped scientists pinpoint the origin of switchbacks at patches on the visible surface of the Sun where magnetic funnels form. In 2024 scientists announced that the fast solar wind — one of two main classes of the solar wind — is in part powered by these switchbacks, adding to a 50-year-old mystery.

However, it would take a closer view to understand the slow solar wind, which travels at just 220 miles per second, half the speed of the fast solar wind.

“The big unknown has been: how is the solar wind generated, and how does it manage to escape the Sun’s immense gravitational pull?” said Nour Rawafi, the project scientist for Parker Solar Probe at the Johns Hopkins Applied Physics Laboratory. “Understanding this continuous flow of particles, particularly the slow solar wind, is a major challenge, especially given the diversity in the properties of these streams — but with Parker Solar Probe, we’re closer than ever to uncovering their origins and how they evolve.”

Understanding Slow Solar Wind

The slow solar wind, which is twice as dense and more variable than fast solar wind, is important to study because its interplay with the fast solar wind can create moderately strong solar storm conditions at Earth sometimes rivaling those from CMEs.

To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video

This artist’s concept shows a representative state of Earth’s magnetic bubble immersed in the slow solar wind, which averages some 180 to 300 miles per second. NASA’s Goddard Space Flight Center Conceptual Image Lab

Prior to Parker Solar Probe, distant observations suggested there are actually two varieties of slow solar wind, distinguished by the orientation or variability of their magnetic fields. One type of slow solar wind, called Alfvénic, has small-scale switchbacks. The second type, called non-Alfvénic, doesn’t show these variations in its magnetic field. 

As it spiraled closer to the Sun, Parker Solar Probe confirmed there are indeed two types. Its close-up views are also helping scientists differentiate the origins of the two types, which scientists believe are unique. The non-Alfvénic wind may come off features called helmet streamers — large loops connecting active regions where some particles can heat up enough to escape — whereas Alfvénic wind might originate near coronal holes, or dark, cool regions in the corona. 

In its current orbit, bringing the spacecraft just 3.8 million miles from the Sun, Parker Solar Probe will continue to gather additional data during its upcoming passes through the corona to help scientists confirm the slow solar wind’s origins. The next pass comes Sept. 15, 2025.

“We don’t have a final consensus yet, but we have a whole lot of new intriguing data,” said Adam Szabo, Parker Solar Probe mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

By Mara Johnson-Groh
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share

Details

Last Updated

Jul 10, 2025

Related Terms Explore More

8 min read NASA’s Webb Scratches Beyond Surface of Cat’s Paw for 3rd Anniversary

Article


7 hours ago

6 min read Smarter Searching: NASA AI Makes Science Data Easier to Find

Article


1 day ago

2 min read Polar Tourists Give Positive Reviews to NASA Citizen Science in Antarctica

Article


1 day ago

Keep Exploring Discover More Topics From NASA

Missions


Humans in Space


Climate Change


Solar System

Categories: NASA

NASA’s Parker Solar Probe Snaps Closest-Ever Images to Sun

NASA News - Thu, 07/10/2025 - 2:05pm

7 min read

NASA’s Parker Solar Probe Snaps Closest-Ever Images to Sun

KEY POINTS

  • NASA’s Parker Solar Probe has taken the closest ever images to the Sun, captured just 3.8 million miles from the solar surface.
  • The new close-up images show features in the solar wind, the constant stream of electrically charged subatomic particles released by the Sun that rage across the solar system at speeds exceeding 1 million miles an hour.
  • These images, and other data, are helping scientists understand the mysteries of the solar wind, which is essential to understanding its effects at Earth.

On its record-breaking pass by the Sun late last year, NASA’s Parker Solar Probe captured stunning new images from within the Sun’s atmosphere. These newly released images — taken closer to the Sun than we’ve ever been before — are helping scientists better understand the Sun’s influence across the solar system, including events that can affect Earth.

“Parker Solar Probe has once again transported us into the dynamic atmosphere of our closest star,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “We are witnessing where space weather threats to Earth begin, with our eyes, not just with models. This new data will help us vastly improve our space weather predictions to ensure the safety of our astronauts and the protection of our technology here on Earth and throughout the solar system.”

Parker Solar Probe started its closest approach to the Sun on Dec. 24, 2024, flying just 3.8 million miles from the solar surface. As it skimmed through the Sun’s outer atmosphere, called the corona, in the days around the perihelion, it collected data with an array of scientific instruments, including the Wide-Field Imager for Solar Probe, or WISPR. 

Parker Solar Probe has revolutionized our understanding of the solar wind thanks to the spacecraft’s many passes through the Sun’s outer atmosphere.
Credit: NASA’s Goddard Space Flight Center/Joy Ng

The new WISPR images reveal the corona and solar wind, a constant stream of electrically charged particles from the Sun that rage across the solar system. The solar wind expands throughout of the solar system with wide-ranging effects. Together with outbursts of material and magnetic currents from the Sun, it helps generate auroras, strip planetary atmospheres, and induce electric currents that can overwhelm power grids and affect communications at Earth. Understanding the impact of solar wind starts with understanding its origins at the Sun.

The WISPR images give scientists a closer look at what happens to the solar wind shortly after it is released from the corona. The images show the important boundary where the Sun’s magnetic field direction switches from northward to southward, called the heliospheric current sheet. It also captures the collision of multiple coronal mass ejections, or CMEs — large outbursts of charged particles that are a key driver of space weather — for the first time in high resolution.

“In these images, we’re seeing the CMEs basically piling up on top of one another,” said Angelos Vourlidas, the WISPR instrument scientist at the Johns Hopkins Applied Physics Laboratory, which designed, built, and operates the spacecraft in Laurel, Maryland. “We’re using this to figure out how the CMEs merge together, which can be important for space weather.”

To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video

This video, made from images taken by Parker Solar Probe’s WISPR instrument during its record-breaking flyby of the Sun on Dec. 25, 2024, shows the solar wind racing out from the Sun’s outer atmosphere, the corona. NASA/Johns Hopkins APL/Naval Research Lab

When CMEs collide, their trajectory can change, making it harder to predict where they’ll end up. Their merger can also accelerate charged particles and mix magnetic fields, which makes the CMEs’ effects potentially more dangerous to astronauts and satellites in space and technology on the ground. Parker Solar Probe’s close-up view helps scientists better prepare for such space weather effects at Earth and beyond.

Zooming in on Solar Wind’s Origins

The solar wind was first theorized by preeminent heliophysicist Eugene Parker in 1958. His theories about the solar wind, which were met with criticism at the time, revolutionized how we see our solar system. Prior to Parker Solar Probe’s launch in 2018, NASA and its international partners led missions like Mariner 2, Helios, Ulysses, Wind, and ACE that helped scientists understand the origins of the solar wind — but from a distance. Parker Solar Probe, named in honor of the late scientist, is filling in the gaps of our understanding much closer to the Sun.

At Earth, the solar wind is mostly a consistent breeze, but Parker Solar Probe found it’s anything but at the Sun. When the spacecraft reached within 14.7 million miles from the Sun, it encountered zig-zagging magnetic fields — a feature known as switchbacks. Using Parker Solar Probe’s data, scientists discovered that these switchbacks, which came in clumps, were more common than expected.

When Parker Solar Probe first crossed into the corona about 8 million miles from the Sun’s surface in 2021, it noticed the boundary of the corona was uneven and more complex than previously thought.

As it got even closer, Parker Solar Probe helped scientists pinpoint the origin of switchbacks at patches on the visible surface of the Sun where magnetic funnels form. In 2024 scientists announced that the fast solar wind — one of two main classes of the solar wind — is in part powered by these switchbacks, adding to a 50-year-old mystery.

However, it would take a closer view to understand the slow solar wind, which travels at just 220 miles per second, half the speed of the fast solar wind.

“The big unknown has been: how is the solar wind generated, and how does it manage to escape the Sun’s immense gravitational pull?” said Nour Rawafi, the project scientist for Parker Solar Probe at the Johns Hopkins Applied Physics Laboratory. “Understanding this continuous flow of particles, particularly the slow solar wind, is a major challenge, especially given the diversity in the properties of these streams — but with Parker Solar Probe, we’re closer than ever to uncovering their origins and how they evolve.”

Understanding Slow Solar Wind

The slow solar wind, which is twice as dense and more variable than fast solar wind, is important to study because its interplay with the fast solar wind can create moderately strong solar storm conditions at Earth sometimes rivaling those from CMEs.

To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video

This artist’s concept shows a representative state of Earth’s magnetic bubble immersed in the slow solar wind, which averages some 180 to 300 miles per second. NASA’s Goddard Space Flight Center Conceptual Image Lab

Prior to Parker Solar Probe, distant observations suggested there are actually two varieties of slow solar wind, distinguished by the orientation or variability of their magnetic fields. One type of slow solar wind, called Alfvénic, has small-scale switchbacks. The second type, called non-Alfvénic, doesn’t show these variations in its magnetic field. 

As it spiraled closer to the Sun, Parker Solar Probe confirmed there are indeed two types. Its close-up views are also helping scientists differentiate the origins of the two types, which scientists believe are unique. The non-Alfvénic wind may come off features called helmet streamers — large loops connecting active regions where some particles can heat up enough to escape — whereas Alfvénic wind might originate near coronal holes, or dark, cool regions in the corona. 

In its current orbit, bringing the spacecraft just 3.8 million miles from the Sun, Parker Solar Probe will continue to gather additional data during its upcoming passes through the corona to help scientists confirm the slow solar wind’s origins. The next pass comes Sept. 15, 2025.

“We don’t have a final consensus yet, but we have a whole lot of new intriguing data,” said Adam Szabo, Parker Solar Probe mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

By Mara Johnson-Groh
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share

Details

Last Updated

Jul 10, 2025

Related Terms Explore More

8 min read NASA’s Webb Scratches Beyond Surface of Cat’s Paw for 3rd Anniversary

Article


7 hours ago

6 min read Smarter Searching: NASA AI Makes Science Data Easier to Find

Article


1 day ago

2 min read Polar Tourists Give Positive Reviews to NASA Citizen Science in Antarctica

Article


1 day ago

Keep Exploring Discover More Topics From NASA

Missions


Humans in Space


Climate Change


Solar System

Categories: NASA

Meet Mineral Mappers Flying NASA Tech Out West

NASA - Breaking News - Thu, 07/10/2025 - 1:14pm

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA instruments and aircraft are helping identify potential sources of critical minerals across vast swaths of California, Nevada, and other Western states. Pilots gear up to reach altitudes about twice as high as those of a cruising passenger jet.NASA

NASA and the U.S. Geological Survey have been mapping the planets since Apollo. One team is searching closer to home for minerals critical to national security and the economy.

If not for the Joshua trees, the tan hills of Cuprite, Nevada, would resemble Mars. Scalded and chemically altered by water from deep underground, the rocks here are earthly analogs for understanding ancient Martian geology. The hills are also rich with minerals. They’ve lured prospectors for more than 100 years and made Cuprite an ideal place to test NASA technology designed to map the minerals, craters, crusts, and ices of our solar system.

Sensors that discovered lunar water, charted Saturn’s moons, even investigated ground zero in New York City were all tested and calibrated at Cuprite, said Robert Green, a senior research scientist at NASA’s Jet Propulsion Laboratory in Southern California. He’s honed instruments in Nevada for decades.

One of Green’s latest projects is to find and map rocky surfaces in the American West that could contain minerals crucial to the nation’s economy and security. Currently, the U.S. is dependent on imports of 50 critical minerals, which include lithium and rare earth elements used in everything from rechargeable batteries to medicine.

Scientists from the U.S. Geological Survey (USGS) are searching nationwide for domestic sources. NASA is contributing to this effort with high-altitude aircraft and sensors capable of detecting the molecular fingerprints of minerals across vast, treeless expanses in wavelengths of light not visible to human eyes.

The hills of Cuprite, Nevada, appear pink and tan to the eye (top image) but they shine with mica, gypsum, and alunite among other types of minerals when imaged spectroscopically (lower image). NASA sensors used to study Earth and other rocky worlds have been tested there.USGS/Ray Kokaly

The collaboration is called GEMx, the Geological Earth Mapping Experiment, and it’s likely the largest airborne spectroscopic survey in U.S. history. Since 2023, scientists working on GEMx have charted more than 190,000 square miles (500,000 square kilometers) of North American soil.

Mapping Partnership Started During Apollo

As NASA instruments fly in aircraft 60,000 feet (18,000 meters) overhead, Todd Hoefen, a geophysicist, and his colleagues from USGS work below. The samples of rock they test and collect in the field are crucial to ensuring that the airborne observations match reality on the ground and are not skewed by the intervening atmosphere.

The GEMx mission marks the latest in a long history of partnerships between NASA and USGS. The two agencies have worked together to map rocky worlds — and keep astronauts and rovers safe — since the early days of the space race.

For example, geologic maps of the Moon made in the early 1960s at the USGS Astrogeology Science Center in Flagstaff, Arizona, helped Apollo mission planners select safe and scientifically promising sites for the six crewed landings that occurred from 1969 to 1972. Before stepping onto the lunar surface, NASA’s Moon-bound astronauts traveled to Flagstaff to practice fieldwork with USGS geologists. A version of those Apollo boot camps continues today with astronauts and scientists involved in NASA’s Artemis mission.

Geophysicist Raymond Kokaly, who leads the GEMx campaign for USGS, is pictured here conducting ground-based hyperspectral imaging of rock in Cuprite, Nevada, in April 2019.USGS/Todd Hoefen Rainbows and Rocks

To detect minerals and other compounds on the surfaces of rocky bodies across the solar system, including Earth, scientists use a technology pioneered by JPL in the 1980s called imaging spectroscopy. One of the original imaging spectrometers built by Robert Green and his team is central to the GEMx campaign in the Western U.S.

About the size and weight of a minifridge and built to fly on planes, the instrument is called AVIRIS-Classic, short for Airborne Visible/Infrared Imaging Spectrometer. Like all imaging spectrometers, it takes advantage of the fact that every molecule reflects and absorbs light in a unique pattern, like a fingerprint. Spectrometers detect these molecular fingerprints in the light bouncing off or emitted from a sample or a surface.  

In the case of GEMx, that’s sunlight shimmering off different kinds of rocks.  

Compared to a standard digital camera, which “sees” three color channels (red, green, and blue), imaging spectrometers can see more than 200 channels, including infrared wavelengths of light that are invisible to the human eye.

NASA spectrometers have orbited or flown by every major rocky body in our solar system. They’ve helped scientists investigate methane lakes on Titan, Saturn’s largest moon, and study Pluto’s thin atmosphere. One JPL-built spectrometer is currently en route to Europa, an icy moon of Jupiter, to help search for chemical ingredients necessary to support life.

“One of the cool things about NASA is that we develop technology to look out at the solar system and beyond, but we also turn around and look back down,” said Ben Phillips, a longtime NASA program manager who led GEMx until he retired in 2025.

The Newest Instrument

More than 200 hours of GEMx flights are scheduled through fall 2025. Scientists will process and validate the data, with the first USGS mineral maps to follow. During these flights, an ER-2 research aircraft from NASA’s Armstrong Flight Research Center in Edwards, California, will cruise over the Western U.S. at altitudes twice as high as a passenger jet flies.

At such high altitudes, pilot Dean Neeley must wear a spacesuit similar to those used by astronauts. He flies solo in the cramped cockpit but will be accompanied by state-of-the-art NASA instruments. In the belly of the plane rides AVIRIS-Classic, which will be retiring soon after more than three decades in service. Carefully packed in the plane’s nose is its successor: AVIRIS-5, taking flight for the first time in 2025.

Together, the two instruments provide 10 times the performance of the older spectrometer alone, but even by itself AVIRIS-5 marks a leap forward. It can sample areas ranging from about 30 feet (10 meters) to less than a foot (30 centimeters).

“The newest generation of AVIRIS will more than live up to the original,” Green said.

More About GEMx

The GEMx research project will last four years and is funded by the USGS Earth Mapping Resources Initiative. The initiative will capitalize on both the technology developed by NASA for spectroscopic imaging, as well as the agency’s expertise in analyzing the datasets and extracting critical mineral information from them.

Data collected by GEMx is available here.

News Media Contacts

Andrew Wang / Jane J. Lee
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 818-354-0307
andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov

Karen Fox / Elizabeth Vlock
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / elizabeth.a.vlock@nasa.gov

Written by Sally Younger

2025-086

Share Details Last Updated Jul 10, 2025 Related Terms Explore More 3 min read NASA Aircraft, Sensor Technology, Aid in Texas Flood Recovery Efforts Article 2 days ago 2 min read Polar Tourists Give Positive Reviews to NASA Citizen Science in Antarctica

Citizen science projects result in an overwhelmingly positive impact on the polar tourism experience. That’s…

Article 2 days ago
4 min read NASA Mission Monitoring Air Quality from Space Extended  Article 1 week ago Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

Meet Mineral Mappers Flying NASA Tech Out West

NASA News - Thu, 07/10/2025 - 1:14pm

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA instruments and aircraft are helping identify potential sources of critical minerals across vast swaths of California, Nevada, and other Western states. Pilots gear up to reach altitudes about twice as high as those of a cruising passenger jet.NASA

NASA and the U.S. Geological Survey have been mapping the planets since Apollo. One team is searching closer to home for minerals critical to national security and the economy.

If not for the Joshua trees, the tan hills of Cuprite, Nevada, would resemble Mars. Scalded and chemically altered by water from deep underground, the rocks here are earthly analogs for understanding ancient Martian geology. The hills are also rich with minerals. They’ve lured prospectors for more than 100 years and made Cuprite an ideal place to test NASA technology designed to map the minerals, craters, crusts, and ices of our solar system.

Sensors that discovered lunar water, charted Saturn’s moons, even investigated ground zero in New York City were all tested and calibrated at Cuprite, said Robert Green, a senior research scientist at NASA’s Jet Propulsion Laboratory in Southern California. He’s honed instruments in Nevada for decades.

One of Green’s latest projects is to find and map rocky surfaces in the American West that could contain minerals crucial to the nation’s economy and security. Currently, the U.S. is dependent on imports of 50 critical minerals, which include lithium and rare earth elements used in everything from rechargeable batteries to medicine.

Scientists from the U.S. Geological Survey (USGS) are searching nationwide for domestic sources. NASA is contributing to this effort with high-altitude aircraft and sensors capable of detecting the molecular fingerprints of minerals across vast, treeless expanses in wavelengths of light not visible to human eyes.

The hills of Cuprite, Nevada, appear pink and tan to the eye (top image) but they shine with mica, gypsum, and alunite among other types of minerals when imaged spectroscopically (lower image). NASA sensors used to study Earth and other rocky worlds have been tested there.USGS/Ray Kokaly

The collaboration is called GEMx, the Geological Earth Mapping Experiment, and it’s likely the largest airborne spectroscopic survey in U.S. history. Since 2023, scientists working on GEMx have charted more than 190,000 square miles (500,000 square kilometers) of North American soil.

Mapping Partnership Started During Apollo

As NASA instruments fly in aircraft 60,000 feet (18,000 meters) overhead, Todd Hoefen, a geophysicist, and his colleagues from USGS work below. The samples of rock they test and collect in the field are crucial to ensuring that the airborne observations match reality on the ground and are not skewed by the intervening atmosphere.

The GEMx mission marks the latest in a long history of partnerships between NASA and USGS. The two agencies have worked together to map rocky worlds — and keep astronauts and rovers safe — since the early days of the space race.

For example, geologic maps of the Moon made in the early 1960s at the USGS Astrogeology Science Center in Flagstaff, Arizona, helped Apollo mission planners select safe and scientifically promising sites for the six crewed landings that occurred from 1969 to 1972. Before stepping onto the lunar surface, NASA’s Moon-bound astronauts traveled to Flagstaff to practice fieldwork with USGS geologists. A version of those Apollo boot camps continues today with astronauts and scientists involved in NASA’s Artemis mission.

Geophysicist Raymond Kokaly, who leads the GEMx campaign for USGS, is pictured here conducting ground-based hyperspectral imaging of rock in Cuprite, Nevada, in April 2019.USGS/Todd Hoefen Rainbows and Rocks

To detect minerals and other compounds on the surfaces of rocky bodies across the solar system, including Earth, scientists use a technology pioneered by JPL in the 1980s called imaging spectroscopy. One of the original imaging spectrometers built by Robert Green and his team is central to the GEMx campaign in the Western U.S.

About the size and weight of a minifridge and built to fly on planes, the instrument is called AVIRIS-Classic, short for Airborne Visible/Infrared Imaging Spectrometer. Like all imaging spectrometers, it takes advantage of the fact that every molecule reflects and absorbs light in a unique pattern, like a fingerprint. Spectrometers detect these molecular fingerprints in the light bouncing off or emitted from a sample or a surface.  

In the case of GEMx, that’s sunlight shimmering off different kinds of rocks.  

Compared to a standard digital camera, which “sees” three color channels (red, green, and blue), imaging spectrometers can see more than 200 channels, including infrared wavelengths of light that are invisible to the human eye.

NASA spectrometers have orbited or flown by every major rocky body in our solar system. They’ve helped scientists investigate methane lakes on Titan, Saturn’s largest moon, and study Pluto’s thin atmosphere. One JPL-built spectrometer is currently en route to Europa, an icy moon of Jupiter, to help search for chemical ingredients necessary to support life.

“One of the cool things about NASA is that we develop technology to look out at the solar system and beyond, but we also turn around and look back down,” said Ben Phillips, a longtime NASA program manager who led GEMx until he retired in 2025.

The Newest Instrument

More than 200 hours of GEMx flights are scheduled through fall 2025. Scientists will process and validate the data, with the first USGS mineral maps to follow. During these flights, an ER-2 research aircraft from NASA’s Armstrong Flight Research Center in Edwards, California, will cruise over the Western U.S. at altitudes twice as high as a passenger jet flies.

At such high altitudes, pilot Dean Neeley must wear a spacesuit similar to those used by astronauts. He flies solo in the cramped cockpit but will be accompanied by state-of-the-art NASA instruments. In the belly of the plane rides AVIRIS-Classic, which will be retiring soon after more than three decades in service. Carefully packed in the plane’s nose is its successor: AVIRIS-5, taking flight for the first time in 2025.

Together, the two instruments provide 10 times the performance of the older spectrometer alone, but even by itself AVIRIS-5 marks a leap forward. It can sample areas ranging from about 30 feet (10 meters) to less than a foot (30 centimeters).

“The newest generation of AVIRIS will more than live up to the original,” Green said.

More About GEMx

The GEMx research project will last four years and is funded by the USGS Earth Mapping Resources Initiative. The initiative will capitalize on both the technology developed by NASA for spectroscopic imaging, as well as the agency’s expertise in analyzing the datasets and extracting critical mineral information from them.

Data collected by GEMx is available here.

News Media Contacts

Andrew Wang / Jane J. Lee
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 818-354-0307
andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov

Karen Fox / Elizabeth Vlock
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / elizabeth.a.vlock@nasa.gov

Written by Sally Younger

2025-086

Share Details Last Updated Jul 10, 2025 Related Terms Explore More 3 min read NASA Aircraft, Sensor Technology, Aid in Texas Flood Recovery Efforts Article 1 day ago 2 min read Polar Tourists Give Positive Reviews to NASA Citizen Science in Antarctica

Citizen science projects result in an overwhelmingly positive impact on the polar tourism experience. That’s…

Article 1 day ago
4 min read NASA Mission Monitoring Air Quality from Space Extended  Article 1 week ago Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

NASA’s Roman Space Telescope Team Installs Observatory’s Solar Panels

NASA News - Thu, 07/10/2025 - 10:00am

On June 14 and 16, technicians installed solar panels onto NASA’s Nancy Grace Roman Space Telescope, one of the final steps in assembling the observatory. Collectively called the Solar Array Sun Shield, these panels will power and shade the observatory, enabling all the mission’s observations and helping keep the instruments cool.

In this photo, technicians install solar panels onto the outer portion of NASA’s Nancy Grace Roman Space Telescope. Roman’s inner portion is in the background just left of center. By the end of the year, technicians plan to connect the two halves and complete the Roman observatory. Credit: NASA/Sydney Rohde

“At this point, the observatory is about 90% complete,” said Jack Marshall, the Solar Array Sun Shield lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We just need to join two large assemblies, and then we’ll run the whole Roman observatory through a series of tests. We’re currently on track for launch several months earlier than the promised date of no later than May 2027.” The team is working toward launch as early as fall 2026.

To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

Over the course of two days, eight technicians installed Roman's solar panels onto the outer portion of NASA's Nancy Grace Roman Space Telescope. Each of the six panels is about 23 by 33 feet (7 by 10 meters), fitted with photovoltaic cells which will harness energy from sunlight to power the observatory. The solar panels were designed, built, and installed at NASA's Goddard Space Flight Center in Greenbelt, Md.Credit: NASA/Sophia Roberts

The Solar Array Sun Shield is made up of six panels, each covered in solar cells. The two central panels will remain fixed to the outer barrel assembly (the observatory’s outer shell) while the other four will deploy once Roman is in space, swinging up to align with the center panels.

The panels will spend the entirety of the mission facing the Sun to provide a steady supply of power to the observatory’s electronics. This orientation will also shade much of the observatory and help keep the instruments cool, which is critical for an infrared observatory. Since infrared light is detectable as heat, excess warmth from the spacecraft’s own components would saturate the detectors and effectively blind the telescope.

The solar panels on NASA’s Nancy Grace Roman Space Telescope are covered in a total of 3,902 solar cells that will convert sunlight directly into electricity much like plants convert sunlight to chemical energy. When tiny bits of light, called photons, strike the cells, some of their energy transfers to electrons within the material. This jolt excites the electrons, which start moving more or jump to higher energy levels. In a solar cell, excited electrons create electricity by breaking free and moving through a circuit, sort of like water flowing through a pipe. The panels are designed to channel that energy to power the observatory.Credit: NASA/Sydney Rohde

“Now that the panels have been installed, the outer portion of the Roman observatory is complete,” said Goddard’s Aaron Vigil, a mechanical engineer working on the array. Next, technicians will test deploy the solar panels and the observatory’s “visor” (the deployable aperture cover). The team is also testing the core portion of the observatory, assessing the electronics and conducting a thermal vacuum test to ensure the system operates as planned in the harsh space environment.

This will keep the project on track to connect Roman’s inner and outer segments in November, resulting in a whole observatory by the end of the year that can then undergo pre-launch tests.

Now that the solar panels are installed on the outer portion of NASA’s Nancy Grace Roman Space Telescope, technicians are readying the assembly for vibration testing to ensure it will withstand the extreme shaking experienced during launch.Credit: NASA/Sydney Rohde

To virtually tour an interactive version of the telescope, visit: https://roman.gsfc.nasa.gov/interactive/

Download high-resolution video and images from NASA’s Scientific Visualization Studio

The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.

By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share Details Last Updated Jul 10, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms Explore More 6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies Article 3 months ago 4 min read Core Components for NASA’s Roman Space Telescope Pass Major Shake Test Article 1 month ago 6 min read Team Preps to Study Dark Energy via Exploding Stars With NASA’s Roman Article 4 months ago
Categories: NASA

NASA’s Webb Scratches Beyond Surface of Cat’s Paw for 3rd Anniversary

NASA News - Thu, 07/10/2025 - 10:00am
Explore Webb

8 Min Read NASA’s Webb Scratches Beyond Surface of Cat’s Paw for 3rd Anniversary

NASA’s James Webb Space Telescope’s near-infrared view of the Cat’s Paw Nebula reveals mini “toe beans.” Massive young stars are carving the gas and dust while their bright starlight is producing a bright nebulous glow. Eventually this turbulent region will quench star formation. Full image below.

Credits:
NASA, ESA, CSA, STScI.

It’s the cat’s meow! To celebrate its third year of revealing stunning scenes of the cosmos in infrared light, NASA’s James Webb Space Telescope has “clawed” back the thick, dusty layers of a section within the Cat’s Paw Nebula (NGC 6334). Focusing Webb’s NIRCam (Near-Infrared Camera) on a single “toe bean” within this active star-forming region revealed a subset of mini toe beans, which appear to contain young stars shaping the surrounding gas and dust.

Webb’s look at this particular area of the Cat’s Paw Nebula just scratches the surface of the telescope’s three years of groundbreaking science.

“Three years into its mission, Webb continues to deliver on its design – revealing previously hidden aspects of the universe, from the star formation process to some of the earliest galaxies,” said Shawn Domagal-Goldman, acting director of the Astrophysics Division at NASA Headquarters in Washington. “As it repeatedly breaks its own records, Webb is also uncovering unknowns for new generations of flagship missions to tackle. Whether it’s following up on the mysteries of dark matter with NASA’s nearly complete Nancy Grace Roman Space Telescope, or narrowing our search for life to Earth-like planets with the Habitable Worlds Observatory, the questions Webb has raised are just as exciting as the answers it’s giving us.”

Image: Cat’s Paw Nebula (NIRCam Image) NASA’s James Webb Space Telescope’s near-infrared view of the Cat’s Paw Nebula reveals mini “toe beans.” Massive young stars are carving the gas and dust while their bright starlight is producing a bright nebulous glow. Eventually this turbulent region will quench star formation. NASA, ESA, CSA, STScI. Star Formation Flex

The progression from a large molecular cloud to massive stars entails multiple steps, some of which are still not well understood by astronomers. Located approximately 4,000 light-years away in the constellation Scorpius, the Cat’s Paw Nebula offers scientists the opportunity to study the turbulent cloud-to-star process in great detail. Webb’s observation of the nebula in near-infrared light builds upon previous studies by NASA’s Hubble and retired Spitzer Space Telescope in visible- and infrared-light, respectively.

With its sharp resolution, Webb shows never-before-seen structural details and features: Massive young stars are carving away at nearby gas and dust, while their bright starlight is producing a bright nebulous glow represented in blue. It’s a temporary scene where the disruptive young stars, with their relatively short lives and luminosity, have a brief but important role in the region’s larger story. As a consequence of these massive stars’ lively behavior, the local star formation process will eventually come to a stop.

Opera House’s Intricate Structure

Start with the toe bean at top center, which is nicknamed the “Opera House” for its circular, tiered-like structure. The primary drivers for the area’s cloudy blue glow are most likely toward its bottom: either the light from the bright yellowish stars or from a nearby source still hidden behind the dense, dark brown dust.

Just below the orange-brown tiers of dust is a bright yellow star with diffraction spikes. While this massive star has carved away at its immediate surroundings, it has been unable to push the gas and dust away to greater distances, creating a compact shell of surrounding material.

Look closely to notice small patches, like the tuning fork-shaped area to the Opera House’s immediate left, that contain fewer stars. These seemingly vacant zones indicate the presence of dense foreground filaments of dust that are home to still-forming stars and block the light of stars in the background.

Spotlight on Stars

Toward the image’s center are small, fiery red clumps scattered amongst the brown dust. These glowing red sources mark regions where massive star formation is underway, albeit in an obscured manner.

Some massive blue-white stars, like the one in the lower left toe bean, seem to be more sharply resolved than others. This is because any intervening material between the star and the telescope has been dissipated by stellar radiation.

Near the bottom of that toe bean are small, dense filaments of dust. These tiny clumps of dust have managed to remain despite the intense radiation, suggesting that they are dense enough to form protostars. A small section of yellow at the right notes the location of a still-enshrouded massive star that has managed to shine through intervening material.

Across this entire scene are many small yellow stars with diffraction spikes. Bright blue-white stars are in the foreground of this Webb image, but some may be a part of the more expansive Cat’s Paw Nebula area.

One eye-catching aspect of this Webb image is the bright, red-orange oval at top right. Its low count of background stars implies it is a dense area just beginning its star-formation process. A couple of visible and still-veiled stars are scattered throughout this region, which are contributing to the illumination of the material in the middle. Some still-enveloped stars leave hints of their presence, like a bow shock at the bottom left, which indicates an energetic ejection of gas and dust from a bright source.

Further explore this subset of toe beans by embarking on a narrated tour or getting closer to the image. We also invite you to reminisce about Webb’s three years of science observations.

Video A (Narrated Visualization): Cosmic Caverns in the Cat’s Paw Nebula This visualization explores a subset of toe bean-reminiscent structures within a section of the Cat’s Paw Nebula, a massive, local star-forming region located approximately 4,000 light-years away in the constellation Scorpius.

This image by NASA’s James Webb Space Telescope in near-infrared light was released in honor of the telescope’s third science operations anniversary. Since it began science operations in July 2022, Webb’s observations of our universe have wowed scientists and the public alike.

Glide into the lower left toe bean, moving past many small yellow stars along the way, where filaments of gas and dust frame the cavernous area. The region’s nebulous glow, represented in blue, is from the bright light of massive young stars.

Float toward the top toe bean, which is nicknamed the “Opera House” for its circular, tiered-like structure. As you move, you’ll pass plumes of orange-brown dust that vary in density and small, fiery red clumps where star formation is occurring, albeit in an obscured manner.

Credits: Producers: Greg Bacon (STScI), Frank Summers (STScI); Image Processing: Joe DePasquale (STScI); Music: Joe DePasquale (STScI); Designers: Ralf Crawford (STScI), Leah Hustak (STScI), Christian Nieves (STScI), Alyssa Pagan (STScI); Images: NASA, ESA, CSA, STScI; ESO/VISTA. Video B: Zoom into the Cat’s Paw Nebula This zoom-in video shows the location of the Cat’s Paw Nebula on the sky. It begins with a ground-based photo by the late astrophotographer Akira Fujii, then shows views from the Digitized Sky Survey. The video then hones in on a select portion of the sky to reveal a European Southern Observatory image of the Cat’s Paw Nebula in visible light. The video continues to zoom in on a section of the Cat’s Paw, which gradually transitions to the stunning image captured by NASA’s James Webb Space Telescope in near-infrared light.
 
Credits: Video: NASA, ESA, CSA, Danielle Kirshenblat (STScI); Acknowledgement: Akira Fujii, DSS, VISTA.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

To learn more about Webb, visit:

https://science.nasa.gov/webb

Downloads

Click any image to open a larger version.

View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.

Media Contacts

Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Abigail Majoramajor@stsci.edu
Space Telescope Science Institute, Baltimore, Md.

Hannah Braunhbraun@stsci.edu
Space Telescope Science Institute, Baltimore, Md.

Related Information

View other images of the Cat’s Paw Nebula

Animation Video: “How Dense Pillars Form in Molecular Clouds”

Explore a larger view of the Cat’s Paw Nebula: ViewSpace Video

Read more: Webb Star Formation Discoveries

More Webb News

More Webb Images

Webb Science Themes

Webb Mission Page

Related For Kids

What is the Webb Telescope?

SpacePlace for Kids

En Español

Este artículo en español

Ciencia de la NASA

NASA en español 

Space Place para niños

Keep Exploring Related Topics

James Webb Space Telescope

Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


Stars


Stars Stories


Universe

Share

Details

Last Updated

Jul 09, 2025

Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov

Related Terms
Categories: NASA