"For the sage, time is only of significance in that within it the steps of becoming can unfold in clearest sequence."

— I Ching

Astronomy

Benro Mach3 9X CF Series 3 tripod review

Space.com - Sat, 06/29/2024 - 7:00am
It's one of the most advanced tripods in Benro's catalog — we're testing the Mach3 to see how well it performs for various photographic styles, including astro.
Categories: Astronomy

NASA's Juno probe reveals lava lakes across Jupiter's volcanic moon Io (image)

Space.com - Sat, 06/29/2024 - 6:00am
Infrared images showcase "fire-breathing" lakes all across the Jovian moon.
Categories: Astronomy

<p><a href="https://apod.nasa.gov/apod

APOD - Sat, 06/29/2024 - 12:00am

What creates Saturn's colors?


Categories: Astronomy, NASA

Lynds Dark Nebula 1251

APOD - Sat, 06/29/2024 - 12:00am

Stars are forming in Lynds Dark Nebula


Categories: Astronomy, NASA

These Three Neutron Stars Shouldn't Be So Cold

Universe Today - Fri, 06/28/2024 - 8:23pm

Neutron stars are among the densest objects in the Universe, second only to black holes. Like black holes, neutron stars are what remains after a star reaches the end of its life cycle and undergoes gravitational collapse. This produces a massive explosion (a supernova), in which a star sheds its outer layers and leaves behind a super-compressed stellar remnant. In fact, scientists speculate that matter at the center of the star is compressed to the point that even atoms collapse and electrons merge with protons to create neutrons.

Traditionally, scientists have relied on the “Equation of State” – a theoretical model that describes the state of matter under a given set of physical conditions – to understand what physical processes can occur inside a neutron star. But when a team led by scientists from the Spanish National Research Council (CSIC) examined three exceptionally young neutron stars, they noticed they were 10-100 times colder than other neutron stars of the same age. For this, the researchers concluded that these three stars are inconsistent with most of the proposed equations of state.

The team consisted of astrophysicists from the Institute of Space Sciences (ICE-CSIS) in Barcelona, the Institute d’Estudis Espacials de Catalunya (IEEC), and the Department of Applied Physics at the University of Alacant. Alessio Marino, a postdoctoral fellow in astrophysics at the ICE and IEEC, was the lead author of the team’s paper (“Constraints on the dense matter equation of state from young and cold isolated neutron stars“), which recently appeared in Nature Astronomy.

Three “oddball” neutron stars are too young to be so cold. Credit: ESA/ATG

While astronomers are still unsure which equation of state models are correct for neutron stars, the laws of physics dictate that all neutron stars must obey the same one. What’s more, the cool nature of neutron stars is a reliable method for determining their age – the older they are, the cooler they get. While they are difficult to study invisible light, their rotating nature and magnetic fields (which funnel energy towards the magnetic poles) produce X-ray pulses that can be observed.

After consulting data from the ESA’s XMM-Newton and NASA’s Chandra missions, the team found evidence of three neutron stars. The extreme sensitivity of these telescopes not only allowed the team to detect these neutron stars but also to collect enough light to determine their temperatures and other properties. According to astrophysicist Nanda Rea, whose research group at the ICE-CSIC and the IEEC led the investigation, the results were very surprising:

“The young age and the cold surface temperature of these three neutron stars can only be explained by invoking a fast cooling mechanism. Since enhanced cooling can be activated only by certain equations of state, this allows us to exclude a significant portion of the possible models,”

“Neutron star research crosses many scientific disciplines, spanning from particle physics to gravitational waves. The success of this work demonstrates how fundamental teamwork is to advancing our understanding of the Universe.”

To this end, Rea and her colleagues – Alessio Marino, Clara Dehman, and Konstantinos Kovlakas – benefited from their combined and complementary expertise. Marino, a postdoctoral fellow with the ICE-CSIS and IEEC, led the team’s efforts to deduce the neutron stars’ other physical properties. In addition to determining their temperature from the X-rays emitted, the sizes and speeds of the surrounding supernova remnants gave an accurate indication of their ages.

An outbursting, magnetically strong neutron star called a magnetar is seen here in an artist’s illustration. Courtesy: NASA.

This was followed by Clara, a Postdoctoral Researcher at the University of Alacant, computing the neutron stars’ “cooling curves” of neutron stars based on a range of masses and magnetic field strengths. This consisted of plotting what each “equation of state” model predicts for how a neutron star’s temperature (as indicated by its brightness) changes over time. Last, Kovlakas, a postdoctoral fellow at the ICE-CSIC and IEEC, led a statistical analysis that used machine learning to match the simulated cooling curves with the properties of the three neutron stars.

These simulations revealed that without a fast cooling mechanism, none of the equations of state matched the data. What’s more, the team concluded that the properties of these stars are inconsistent with about 75% of known neutron star models. By narrowing the range of possibilities, astronomers are one step closer to learning which neutron star equation of state governs them all. This could also have important implications for understanding how the fundamental laws of the Universe – General Relativity and Quantum Mechanics – fit together.

This makes neutron stars a perfect laboratory for testing the laws of physics since they have densities and gravitational forces far beyond anything that can be recreated on Earth. Much like black holes, these objects are where the laws of physics begin to break down, where the most profound breakthroughs in our understanding of them can often be found!

Further Reading: ESA, Nature Astronomy

The post These Three Neutron Stars Shouldn't Be So Cold appeared first on Universe Today.

Categories: Astronomy

Growing Habitats and Furniture in Space Out of Mushrooms

Universe Today - Fri, 06/28/2024 - 7:30pm

Over the years we have often seen astronauts gently and deftly moving structures into place with their bare hands. Thinks are easy to move in space but getting them there is slightly more tricky and costly. A new piece of research has explored the possibility of growing structures in space based on food substrates. NASA has now awarded a grant to a proposal to investigate further growing structures using fungal mycelial composites, that’s mushrooms to you and I.

Since we crawled out of our caves we started to make our own homes. Even animals to have found ways to create their own cosy habitats. Turtles are born with and carry their home around with them and whilst that is a terribly useful thing to be able to do, it takes a lot of energy to drag it around with you. NASA have had to take this approach, taking habitats with them to support astronauts on space missions. It’s a tried and tested method but if we could find some way of creating living environments from local resource, much like birds sourcing local material to build nests. 

A team of researchers based at NASA have identified a fascinating way to mimic the animal world with a biological based solution. They are exploring the use of composites made from fungal mycelial to grow, yes grow structures in space. At its most adventurous the team hopes that furniture and even habitats may be possible. Straight out of a science fiction movie, it may even be possible that this living material could self heal to repair damage. 

The team are further than this just being a whimsical dream, they have already completed phase one by exploring the way different fungi grew on different food based substrates. This enabled them to raise the Technology Readiness Level (a measurement system to assess maturity of an emerging new technology) to two ‘Technology Concept or Application Formulated.’

Later the team raised the TRL to three ‘Analytical and Experimental Critical Function or Characteristic Proof of Concept’ during phase two. They ran a proof of concept to analyse the myco-material function after exposure to different expected environmental conditions. Rather intriguingly the proof of concepts have focussed on Artemis inspired habitats and a consideration of what might be needed on Mars. 

NASA have now awarded a grant to take the team into phase three to follow on from the incredible progress so far. A significant amount of work has been undertaken to explore the right fungal/algal/bacterial mix and different food sources. Work is also underway to develop high throughput systems for material production. Sand and Regolith simulants have both been tested and prototype scale model structures successfully grown. 

The team hopes to complete all phases successfully and prove that NASA and other space agencies can grow structures with bioccomposite materials. The solution would be faster, cheaper and far more flexible than existing systems and facilitate the growth of structures of anything needed by our keen astronautical explorers. 

Source : Mycotecture off Planet: En route to the Moon and Mars

The post Growing Habitats and Furniture in Space Out of Mushrooms appeared first on Universe Today.

Categories: Astronomy

Making Rocket Fuel Out of Lunar Regolith

Universe Today - Fri, 06/28/2024 - 6:10pm

In the coming years, NASA and other space agencies plan to extend the reach of human exploration. This will include creating infrastructure on the Moon that will allow for crewed missions on a regular basis. This infrastructure will allow NASA and its international partners to make the next great leap by sending crewed missions to Mars (by 2039 at the earliest). Having missions operate this far from Earth for extended periods means that opportunities for resupply will be few and far between. As a result, crews will need to rely on In-Situ Resource Utilization (ISRU), where local resources are leveraged to provide for basic needs.

In addition to air, water, and building materials, the ability to create propellant from local resources is essential. According to current mission architectures, this would consist of harvesting water ice in the polar regions and breaking it down to create liquid oxygen (LOX) and liquid hydrogen (LH2). However, according to a new study led by engineers from McGill University, rocket propellant could be fashioned from lunar regolith as well. Their findings could present new opportunities for future missions to the Moon, which would no longer be restricted to the polar regions.

The research team was led by Sebastian K. Hampl, a M.Sc. Candidate in Mechanical Engineering at McGill University and part of the Alternative Fuels Laboratory. He was joined by multiple colleagues from McGill’s Department of Mechanical Engineering, as well as researchers from the Department of Aerospace and Mechanical Engineering at the University of Texas at El Paso, the Research Institute of Advanced Materials in Seoul, and the Eindhoven University of Technology in the Netherlands. Their paper, “Conceptual design of rocket engines using regolith-derived propellants,” recently appeared in Acta Astronautica.

Bootprint in the lunar regolith left behind by the Apollo 11 crew. Credit: NASA

Producing propellant from lunar resources is one of several measures designed to reduce the cost of missions to deep space. Whereas resupply missions to the International Space Station (ISS) can be mounted within a few hours, sending one to the Moon would take about three days. Based on current launch costs, sending one to the Moon would cost over $35,000 per kg ($15,909 per lb). When you factor in the time it takes to make a one-way transit to Mars using current propulsion technology – 6 to 9 months – the importance of ISRU becomes all the more apparent.

The need to produce propellant in situ will also reduce the mass and payload requirements of ships. As the Rocket Equation establishes, rockets generate thrust by expelling some of their mass (i.e. propellant). The amount of propellant is directly related to the spacecraft’s full mass and payload, which makes propellant the single greatest source of spacecraft mass. Consider the Block 1 variant of NASA’s Space Launch System (SLS) – the rocket sent the uncrewed Artemis I spacecraft beyond the Moon and farther from Earth than any crew-capable vehicle in history.

While the SLS weighs 1,588 metric tons (3.5 million lbs) when unfueled (aka. dry mass), it weighs up to 2,603 metric tons (5.74 million lbs) fully-fueled. The Starship and Super Heavy, the most powerful launch system in the world, has a total dry mass of 285 metric tons (~630,000 lbs) but weighs a whopping 4,885 metric tons (10.77 million lbs) fully fueled. In short, propellant mass makes up 64% and 94% of these spacecraft launch masses, respectively. As Hampl explained to Universe Today via email:

“We need to produce resources locally as they take up a lot of space in terms of payload on the rocket. That limits the amount of resources we can carry to the lunar surface. Without refueling, the range of the missions is very limited as every drop of propellant needs to be budgeted and if something goes wrong that uses extra propellant, the astronauts might not be able to return back to Earth. The system we currently have could be compared to a car infrastructure where you could only fuel up in one place on the whole globe and any “exploration mission” you want to do would have to be planned meticulously and every mistake could leave you stranded.”

Exposed water ice (green or blue dots) in lunar polar regions and temperature. Credit: Shuai Li

The concept of ISRU is time-honored, though no attempts were made during the Apollo Era when astronauts last stood on the lunar surface. Currently, the main ISRU concept calls for harvested water ice from surface regolith and subjecting it to electrolysis to produce hydrogen and oxygen. But as Hampl indicated, surface water is localized on the Moon, existing in Permanently Shadowed Regions (PSRs) around the poles. In the South Pole-Aitken Basin, craters like Shoemaker, Shackleton, and Faustini all act as “cold traps,” ensuring that water ice does not sublimate from exposure to the Sun.

Furthermore, extraction is a challenge, and hydrogen storage for longer periods of time is very problematic. This imposes many limits, which is why Hampl and his colleagues began investigating an alternative that NASA investigated back in the 80s (but never developed). As Hampl explained:

“We proposed to use lunar regolith to derive propellants that are ubiquitous. From regolith, you can extract metallic components (which will be the fuel) and oxygen (which will be used as the oxidizer). We also investigate how extracting sulfur (which is abundant enough, albeit, not as abundant as the metallic components) to expand our options for rocket engine configurations. As oxygen production from regolith is vital for sustaining the lunar habitat, the reduction technology to extract oxygen from the regolith is being developed. The metallic powder will be a byproduct of the process and we conveniently propose to use it as the rocket fuel.”

A benefit of this process is that it will rely on space mining technologies developed by startups hoping to take advantage of the commercialization of Low Earth Orbit (LEO) and Cis-Lunar space in the coming decades. The process is also “fuel lean,” which refers to having more oxidizer than fuel in a rocket engine. “In our case, a small amount of metallic powder and a large amount of oxygen,” said Hampl. “The ratio of oxidizer and fuel can be adjusted and greatly influences combustion parameters such as temperatures and performance.”

Artist’s concept of an Artemis astronaut deploying an instrument on the lunar surface. Credits: NASA

The advantages of their proposed system are numerous. For starters, it would allow future missions to produce propellant anywhere on the lunar surface with electricity. “The only things one would need, obviously, are the production facility and an electrolyte, which probably will have to be brought from Earth (but the quantities are manageable),” said Hampl. “There are reduction methods only requiring electricity but they are less efficient and do not seem to work as well (research ongoing). Additionally, the propellant is easier to store, more dense than hydrogen, and could be transported more easily.”

Moreover, engines that rely on metallic powder propellant are currently being developed, especially with ramjets and applications for air-breathing propulsion. The one trade-off is that the predicted performance of a rocket using this propellant is less than what a rocket relying on LH2/LOX can deliver. However, the “fuel lean” nature of their propellant results in much lower combustion temperatures, causing less material strain and reducing the cost of repair and refurbishment. In addition, the performance decrease compared to LH2/LOX at lower combustion temperatures is not as pronounced.

This proposed method could open new doors for ISRU on the Moon and greater flexibility when it comes to refueling missions. “Our work focused on the thermodynamic calculations and proposing ways how this could be implemented as well as making the case where the advantages of this technology lie,” said Hampl. “We hope that someone will pick up the idea and start developing and testing such an engine since we strongly believe that this would be a better concept than using hydrogen/oxygen and should get more attention.”

It is fitting that in their plans to return to the Moon (this time, to stay), space agencies like NASA are reexamining concepts that were proposed during the Apollo Era but never developed. These concepts, which include everything from metallic propellants, ISRU, closed-loop habitats, and nuclear propulsion, will also be vital in exploring Mars and beyond. They will also be vital in our efforts to extend humanity’s presence beyond Earth and the Earth-Moon system.

Further Reading: Acta Astronautica

The post Making Rocket Fuel Out of Lunar Regolith appeared first on Universe Today.

Categories: Astronomy

NASA delays next ISS spacewalk until end of July due to spacesuit leak issue

Space.com - Fri, 06/28/2024 - 6:00pm
NASA has delayed the next ISS spacewalk until at least late July while it investigates a spacesuit leak that cut a recent EVA short.
Categories: Astronomy

Seeing Both Sides of the Sun at the Same Time

Universe Today - Fri, 06/28/2024 - 5:34pm

As everybody who saw May’s spectacular auroral displays knows, the Sun is in its most active period in 11 years. The active region sunspot group that unleased the giant X-class flare rotated around the Sun, away from our direct view. But, that isn’t keeping the Solar Orbiter from spotting what’s happening with it and other active regions as they travel around on the Sun.

This European Space Agency solar satellite continuously observed the region as it transited the solar far side. The onboard x-ray instrument (STIX) watched in real time as that sunspot group (dubbed AR3664) belched out another massive flare on May 20th. That outburst is currently the record-holder for strongest flare of the current solar cycle. If it was aimed toward Earth, we’d have seen fantastic auroral displays again. However, the flare could have posed a huge threat to our satellites, communications services, and even astronauts in orbit.

Observing the Whole Sun

Scientists were, until relatively recently, limited to a view of one side of the Sun at the same time, from both Earth-based and space-based observatories and missions. That point of view limits how much information we can get about solar activities. Thanks to the Solar Observer, however, that view is changing and scientists take advantage of its position in space to see the far side of the Sun. It watches from an eccentric orbit that takes it as close as 60 solar radii to the Sun. That’s even closer than the orbit of Mercury. It makes this close approach every half-year.

Solar Orbiter’s view of the sunspot group AR3664 vs. Earth-centric view of the Sun. Courtesy: ESA & NASA/Solar Orbiter/EUI

The Solar Orbiter has returned the closest-ever images of our star, measures the solar wind, and studies the solar polar regions. “Solar Orbiter’s position, in combination with other missions watching the Sun from Earth’s side, gives us a 360-degree view of the Sun for an extended period of time. This will only happen three more times in the future of Solar Orbiter, so we are in a unique situation to observe active regions on the far side that will then rotate into Earth’s view,” said ESA Solar Orbiter Project Scientist Daniel Müller.

Solar Orbiter’s Mission to Observe the Sun

Data from Solar Orbiter allow scientists to understand solar activity and provide improved space weather forecasts. Solar physicists use the term “space weather” as a catch-all for the kinds of geomagnetic storms caused by solar outbursts. Usually, these occur in the form of X-class flares and coronal mass ejections. They happen more frequently during solar maximum—the most active time of the Sun’s 11-year cycle of sunspots. That heightened activity poses a real threat to Earth and human technologies on and off planet.

In the case of sunspot group AR3664, measurements from Solar Orbiter, in conjunction with Mars Express and the BepiColumbo spacecraft showed that it was still very active as it transited around the Sun. The May 20th outburst, for example, turned out to be an estimated class of X12. “This makes it the strongest flare yet of the current solar cycle, and in the top ten flares since 1996,” said ESA research fellow Laura Hayes.

A simulation of charged particles moving out from the Sun through the inner solar system after the outburst of May 27th, 2024. Courtesy: EUHFORIA/J. Pomoell

The Sun continued to be active even as it rotated around toward Earth and erupted again on May 27th. According to Müller, Earth dodged a bullet because the storm bypassed us. “If this flare and coronal mass ejection had been directed towards Earth, it would have caused another major geomagnetic storm for sure. But even like this, it resulted in a strong radio blackout over North America.”

Tracking An Active Sunspot Region

The same pesky sunspot region continues to be active as the Sun rotates and brings it around again and again and spacecraft capture evidence of its eruptions. The May 20th outburst also sent a shower of fast-moving ions and electrons across space. Solar Orbiter’s energetic particle detector measured them, and BepiColumbo and Mars Express were affected. The energetic particles hit memory storage on both spacecraft. That caused numerous errors during spacecraft operations. Interestingly, the memory problems also provided an alternate way to detect space weather events.

The offending sunspot group was also associated with a huge coronal mass ejection, which the Orbiter’s magnetometer measured almost immediately. This outburst was so massive that the Solar and Heliospheric Observatory (SOHO) captured a view from its Lagrange point orbit. It did it again on June 11th, emitting yet another X-class flare. It’s probably only a matter of time before it aims one at Earth again.

The May 27th coronal mass ejection from the Sun as seen by the SOHO and Solar Dynamics Observatories. Courtesy: SOHO (ESA & NASA), NASA/SDO/AIA, JHelioviewer/D. Müller Solar Missions and Space Weather

Thanks to observations from Solar Orbiter and other spacecraft such as the Parker Solar Probe, scientists should be on the watch for outbursts and issue warnings in time for satellite operators, space agencies, and others to prepare. Solar Orbiter’s views of the entire Sun are just the start of complete real-time solar observations. There’s another mission, called Vigil, being designed to monitor the Sun and improve space weather predictions. It won’t launch until at least 2031 and will do its work from an L5 position in space.

“Adding Vigil’s data to our space weather services can give us forecasts up to 4–5 days earlier for certain space weather effects and provides more detail than ever before. Such early warnings give astronauts time to take shelter, and operators of satellites, power grids and telecommunication systems time to take protective measures,” said Giuseppe Mandorlo, Vigil Project Manager at ESA.

For More Information

Can’t Stop, Won’t Stop: Solar Orbiter Shows the Sun Raging On
Solar Orbiter Mission

The post Seeing Both Sides of the Sun at the Same Time appeared first on Universe Today.

Categories: Astronomy

Watch India's reusable space plane prototype ace its final landing test (video)

Space.com - Fri, 06/28/2024 - 4:59pm
India completed a series of tests for autonomously landing its fully reusable launch vehicle, marking another milestone in the country's pursuit of low cost access to space.
Categories: Astronomy

Fact-Checking the Presidential Candidates on Abortion, Drug Pricing and Immigration

Scientific American.com - Fri, 06/28/2024 - 4:30pm

This year’s first presidential debate between President Joe Biden and former president Donald Trump featured clashes over insulin costs, inflation, abortion, immigration, and January 6

Categories: Astronomy

Volcanic Plumes Rise Above Lava Lakes on Io in this Juno Image

Universe Today - Fri, 06/28/2024 - 4:03pm

As the most volcanic object in the Solar System, Jupiter’s moon Io attracts a lot of attention. NASA’s Juno spacecraft arrived at the Jovian system in July 2016, and in recent months, it’s been paying closer attention to Io.

Though Io’s internal workings have been mostly inscrutable, images and data from Juno are starting to provide a fuller picture of the strange moon’s volcanic inner life.

Io’s extreme volcanic activity stems from tidal heating caused by massive Jupiter and its powerful gravity. Some of the moon’s volcanoes spew out plumes of sulphur and sulphur dioxide as high as 500 km (300 miles) above its surface. Sulphur is also ever-present in its lava flows, which colour the moon’s surface in various shades of yellow, red, white, green, and black. Some of the lava flows extend up to 500 km (300 miles) along its surface. These features entice scientists to study the moon more thoroughly.

One of Juno’s instruments is an imager and spectrometer that operates in the infrared. It’s called JIRAM (Jovian Infrared Auroral Mapper.) It was designed to, obviously, map Jupiter’s aurorae. But as Juno’s orbits have brought it progressively closer to Io, JIRAM is delivering high-quality images and data from the volcanic moon.

“The observations show fascinating new information on Io’s volcanic processes.”

Scott Bolton, Principal Investigator for Juno, SwRI

In new research in Nature Communications Earth and Environment, a team of scientists present some new insights into the moon and its vigorous volcanic activity. The title is “Hot rings on Io observed by Juno/JIRAM.” The lead author is Alessandro Mura from the National Institute of Astrophysics—Institute of Space Astrophysics and Planetology, Rome, Italy. Italy provided the JIRAM instrument for the Juno mission.

“We are just starting to wade into the JIRAM results from the close flybys of Io in December 2023 and February 2024,” said Scott Bolton, principal investigator for Juno at the Southwest Research Institute in San Antonio. “The observations show fascinating new information on Io’s volcanic processes. Combining these new results with Juno’s longer-term campaign to monitor and map the volcanoes on Io’s never-before-seen north and south poles, JIRAM is turning out to be one of the most valuable tools to learn how this tortured world works.”

Io has many of what planetary scientists call ‘paterae.’ Paterae are irregular craters or complex craters with scalloped edges. They’re usually broad and shallow, and scientists have wondered if they hold lava lakes. Older observations of Io from NASA’s Galileo spacecraft were inconclusive, but new images from Juno and JIRAM have much higher resolution.

In 2023, Juno came to within 13,000 km (8,100 miles) of Io’s surface, allowing JIRAM to capture greater detail. These images show more detail for a greater number of paterae, and the features the images reveal suggest that many of the craters have active lava lakes. “This new Juno/JIRAM data suggests that hot rings around paterae are a common phenomenon, and that they are indicative of active lava lakes,” the authors write in their paper.

This graphic shows the infrared radiance of Chors Patera, a lava lake on Jupiter’s moon Io. The white ring is the hottest part of the patera, between 232 and 732 Celsius, where lava from the moon’s interior is exposed. The red/green inside the ring is likely a thick crust of molten material that’s -43 Celsius. Outside the patera, the temperature is about -143 Celsius. Image Credit: NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM/MSSS

“The high spatial resolution of JIRAM’s infrared images, combined with the favorable position of Juno during the flybys, revealed that the whole surface of Io is covered by lava lakes contained in caldera-like features,” said Alessandro Mura, the paper’s lead author. “In the region of Io’s surface in which we have the most complete data, we estimate about 3% of it is covered by one of these molten lava lakes.”

Outstanding questions remain about the nature of Io’s volcanic activity and what happens underground. These new images help provide answers.

The lava lakes have only a thin ring of exposed lava. There are no lava flows beyond the rim or inside the rim, which indicates a balance between the magma that erupted into the lake and the magma that flowed back underground.

This figure from the research shows infrared radiance maps for six different paterae on Io. Each one has a lava ring inside the patera’s rim. Image Credit: Mura et al. 2024.

“We now have an idea of what is the most frequent type of volcanism on Io: enormous lakes of lava where magma goes up and down,” said Mura. “The lava crust is forced to break against the walls of the lake, forming the typical lava ring seen in Hawaiian lava lakes. The walls are likely hundreds of meters high, which explains why magma is generally not observed spilling out of the paterae and moving across the moon’s surface.”

The researchers proposed two different geologic models to explain the lava lakes in Io’s paterae: one they call a “central upwelling model” and the other a “piston motion” model.

The central upwelling model explains that the insulating crust “spreads radially via convection processes in the lake and then sinks at the edges, exposing lava,” the authors explain in their research. Basically, heat rises in the patera’s center, pushes outward radially, and hot lava founders at the edge and is exposed.

The problem with that model is the uniformity of the magma crust. JIRAM’s images show uniform heat across the magma crust, meaning it would have to be the same thickness. How could it maintain the same thickness while radiating horizontally?

The piston motion is slightly different. In that model, “a simple up-and-down ‘piston-type’ movement of the entire lake surface may cause disruption of the lava lake crust against the patera walls to reveal hotter material,” the authors explain. There’s no radiating horizontal motion like the central upwelling; rather, the entire lake moves up and down.

That model has problems, too. “For the piston-type lake model, the consistency between individual patera as well as the uniform brightness around the lake perimeter also poses geological challenges,” the authors explain. For all of the ten patera in the study to have hot rings of exposed lava, the vertical motion must be ongoing at all sites. At some sites, JIRAM should’ve detected changes in the depths of the patera. “No such depth changes at a specific patera have been reported,” the authors note, while also writing that the images may lack the temporal and spatial resolution to detect depth changes.

This figure from the research shows the two models the researchers are proposing. On the left in A and B is the central upwelling model. On the right in C and D is the piston motion model. Image Credit: Mura et al. 2024.

Activity at the rim where the lava is hottest may hold the eventual answer. “The observation of activity at the borders of the lake raises the question of whether some type of thermal or mechanical erosion between the lake surface and the patera walls might be taking place,” the authors write. Paterae might grow larger over time, but only by as much as a few hundred meters each year. No changes have been noted between visits by Voyager, Galileo, and Juno. It’s still possible, but the data is inconclusive.

The Juno spacecraft may still be able to provide deeper answers to Io’s volcanic activity. It’s already completed closer flybys of Io, and that data will be available in the future.

“Once the last Juno data are acquired, examining visible images of inactive patera for signs of former lava lake activity would be instructive,” the authors write in their conclusion.

The post Volcanic Plumes Rise Above Lava Lakes on Io in this Juno Image appeared first on Universe Today.

Categories: Astronomy

Perseverance Mars rover team revives life-hunting instrument after 6 months of effort

Space.com - Fri, 06/28/2024 - 4:00pm
The Perseverance rover's SHERLOC instrument has been revived to continue its search for evidence of microbial life on Mars.
Categories: Astronomy

Could A Mound of Dust and Rock Protect Astronauts from Deadly Radiation?

Universe Today - Fri, 06/28/2024 - 3:55pm

Protecting the astronauts of the Artemis program is one of NASA’s highest priorities. The agency intends to have a long-term presence on the Moon, which means long-term exposure to dangerous radiation levels. As part of the development of the Artemis program, NASA also set limits to the radiation exposure that astronauts can suffer. Other hazards abound on the lunar surface, including a potential micrometeoroid strike, which could cause catastrophic damage to mission equipment or personnel. NASA built a team to design and develop a “Lunar Safe Haven” to protect from these hazards. Their working paper was released in 2022 but still stands as NASA’s best approach to long-term living on the lunar surface.

The two hazards mentioned above provided the primary impetus for the design, but there are some nuances to them—in particular, radiation. Astronauts will experience two main types of hazardous radiation on the lunar surface: cosmic rays and solar eruptions. 

Cosmic rays are the more insidious of the two. They have a high energy range, so a shielding material that might work well for higher-energy particles might not do so for lower-energy ones. Moreover, some high-energy particles can interact with shielding, causing even more damaging radiation further down its path. Essentially, this increases the radiation risk inside the shielding compared to outside. The order in which the radiative particles are dealt with is one of the critical design considerations for dealing with this dangerous phenomenon. 

Lunar regolith can be hard to deal with, as Fraser discusses with Dr. Kevin Cannon.

However, solar particle events (SPEs) are the more overtly dangerous of the two types of radiation. While rare, they can cause acute radiation sickness. Current astronauts must shelter in place inside a protected chamber on the ISS when these happen, and building something equivalent on the surface of the Moon is a necessity to ensure that astronauts don’t simply die of acute radiation poisoning within the first six months of arrival.

With the problems to solve firmly in hand, the design team moved on to other considerations—like what the habitat inside the LSH would actually look like and how it would be built. Consideration of the habitat shape focused on one primary distinction—should the habitat be horizontal or vertical? The answer is vertical based on modeling the risk of radiation and micrometeoroid strikes.

So, how do you build a structure around a vertical habitat on the Moon? You employ robots and remotely operated construction equipment. Other groups at NASA had been working on solutions like the Lightweight Surface Manipulation System (LSMS), essentially a large crane that can be constructed in lunar gravity, and the Lunar Attachment Node for Construction and Excavation (LANCE) – a bulldozer module designed to attach to the front of NASA’s Chariot exploration vehicle. Utilizing these ideas and other construction ideas, it’s possible to construct a protective dome of lunar regolith around a long-term habitat for the Artemis missions. 

Fraser overviews the Artemis mission that LSH will attempt to help.

Such a protective habitat has significant advantages over digging one into the ground, which requires moving a massive amount of regolith or utilizing lava tubes with indeterminate structural integrity. But that means the LSH must have an above-ground design. The team developed two separate design ideas – a parabolic arch and a “Round Cake” design using polyethylene. The first is self-explanatory, but the second looks more like a typical cylinder with the radiation and micrometeoroid-blocking polyethylene stored in “beans” at the top of the structure. This could be made of waste materials from the mission, such as discarded food packaging.

Each design has advantages and disadvantages, and the team didn’t pick a final one as part of the paper. However, they did come up with a five-phase development process, from preparing the site in advance to living in interconnected habitats surrounded by regolith and protective shielding. Depending on the amount of automation involved and some real luck, those development phases could take anywhere from a few years to a few decades. 

It remains to be seen if this system will be adopted as an official part of the Artemis program. But it serves a need of critical importance to humanity’s long-term existence on the Moon. If that is indeed NASA’s goal for the end of the 2030s, it would be good to consider how to start making the LSH a reality.

Learn More:
Wok et al. – Design Analysis for Lunar Safe Haven Concepts
Moses & Grande – Lunar Safe Haven Seedling Study
UT – What Could We Build With Lunar Regolith?
UT – There are Four Ways to Build with Regolith on the Moon

Lead Image:
Artist’s depiction of the Parabolic Arc LSH in cutaway.
Credit – Wok et al.

The post Could A Mound of Dust and Rock Protect Astronauts from Deadly Radiation? appeared first on Universe Today.

Categories: Astronomy

Boeing Starliner 1st astronaut flight: Live updates

Space.com - Fri, 06/28/2024 - 3:43pm
Boeing moving toward a June 1 launch of its first-ever Starliner astronaut mission for NASA.
Categories: Astronomy

Time ticks faster on the moon by 57 microseconds per Earth day

New Scientist Space - Cosmology - Fri, 06/28/2024 - 3:00pm
With lunar exploration ramping up, NASA has been tasked with defining a time zone for the moon. New calculations show that time is ever so slightly faster on the lunar surface, which can affect navigation
Categories: Astronomy

Time ticks faster on the moon by 57 microseconds per Earth day

New Scientist Space - Space Headlines - Fri, 06/28/2024 - 3:00pm
With lunar exploration ramping up, NASA has been tasked with defining a time zone for the moon. New calculations show that time is ever so slightly faster on the lunar surface, which can affect navigation
Categories: Astronomy

Collins backs out of ISS spacesuit contract with NASA

Space.com - Fri, 06/28/2024 - 3:00pm
Collins Aerospace has exited a contract to develop new spacesuits for NASA following talks with the agency.
Categories: Astronomy

The Maze is Afoot

NASA Image of the Day - Fri, 06/28/2024 - 2:35pm
This labyrinth – with a silhouette of the fictional detective Sherlock Holmes at its center – is used as a calibration target for the cameras and laser that are part of SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals), one of the instruments aboard NASA's Perseverance Mars rover. The image was captured by the Autofocus and Context Imager on SHERLOC on May 11, 2024, the 1,147th day, or sol, of the mission, as the rover team sought to confirm it had successfully addressed an issue with a stuck lens cover.
Categories: Astronomy, NASA

Mars is an asteroid punching bag, NASA data reveals

Space.com - Fri, 06/28/2024 - 2:00pm
Small asteroids have the Red Planet in their crosshairs more often than not, as Mars lander's seismometer detects their impacts.
Categories: Astronomy