“...all the past is but a beginning of a beginning, and that all that is and has been is but the twilight of dawn.”

— H.G. Wells
1902

Astronomy

Astrophotographer captures Comet C/2023 E1 Atlas in rare encounter with Flying Bat and Squid Nebula

Space.com - Mon, 09/02/2024 - 10:01am
The detailed deep-sky image captured by astrophotographer Miguel Claro shows the dramatic scene unfolding at different wavelengths.
Categories: Astronomy

Astronomers discover oldest known eclipse reference in 6,000-year-old Hindu text

Space.com - Mon, 09/02/2024 - 9:00am
Astronomers combed through an ancient Hindu text and discovered that it referenced a total solar eclipse that occurred roughly 6,000 years ago, making it the oldest known mention of an eclipse.
Categories: Astronomy

NASA astronaut Butch Wilmore reports 'strange noise' coming from Boeing's Starliner spacecraft, 'I don't know what's making it'

Space.com - Mon, 09/02/2024 - 8:00am
The eerie sound was likened to a pulsing sonar-like ping.
Categories: Astronomy

Scientists Make ‘Cyborg Worms’ with a Brain Guided by AI

Scientific American.com - Mon, 09/02/2024 - 6:45am

AI and tiny worms team up to get to treats

Categories: Astronomy

1 month until the annular solar eclipse 2024: Here's what you need to know

Space.com - Mon, 09/02/2024 - 5:59am
With just one month to go until the annular solar eclipse on Oct. 2, here is everything you need to know to prepare for the dazzling spectacle, either in person or online.
Categories: Astronomy

Watch Sentinel-2C launch live on the final Vega rocket

ESO Top News - Mon, 09/02/2024 - 5:15am

Owing to electrical issues, the VV24 Vega launch with Copernicus Sentinel-2C planned for 4 September was postponed. Arianespace has confirmed a new launch attempt for 5 September at 03:50 CEST (4 September 22:50 local time in French Guiana). 

The launcher and its passenger, the Copernicus Sentinel-2C satellite, are in stable and safe conditions.

Categories: Astronomy

How to avoid being fooled by AI-generated misinformation

New Scientist Space - Cosmology - Mon, 09/02/2024 - 4:00am
Advances in generative AI mean fake images, videos, audio and bots are now everywhere. But studies have revealed the best ways to tell if something is real
Categories: Astronomy

How to avoid being fooled by AI-generated misinformation

New Scientist Space - Space Headlines - Mon, 09/02/2024 - 4:00am
Advances in generative AI mean fake images, videos, audio and bots are now everywhere. But studies have revealed the best ways to tell if something is real
Categories: Astronomy

Fourth Mercury flyby begins BepiColombo’s new trajectory

ESO Top News - Mon, 09/02/2024 - 3:00am

Teams from across ESA and industry have worked continuously over the past four months to overcome a glitch that prevented BepiColombo’s thrusters from operating at full power. The ESA/JAXA mission is still on track, with a new trajectory that will take it just 165 km from Mercury’s surface on Wednesday.

Taking BepiColombo closer to Mercury than it’s ever been before, this flyby will reduce the spacecraft’s speed and change its direction. It also gives us the opportunity to snap images and fine-tune science instrument operations at Mercury before the main mission begins. Closest approach is scheduled for 23:48 CEST (21:48 UTC) on 4 September.

Categories: Astronomy

A Global Color Map of Mars, Courtesy of China’s Tianwen-1 Mission

Universe Today - Sun, 09/01/2024 - 7:37pm

In July 2020, China’s Tianwen-1 mission arrived in orbit around Mars, consisting of six robotic elements: an orbiter, a lander, two deployable cameras, a remote camera, and the Zhurong rover. As the first in a series of interplanetary missions by the China National Space Administration (CNSA), the mission’s purpose is to investigate Mars’s geology and internal structure, characterize its atmosphere, and search for indications of water on Mars. Like the many orbiters, landers, and rovers currently exploring Mars, Tianwen-1 is also searching for possible evidence of life on Mars (past and present).

In the almost 1298 days that the Tianwen-1 mission has explored Mars, its orbiter has acquired countless remote-sensing images of the Martian surface. Thanks to a team of researchers from the Chinese Academy of Sciences (CAS), these images have been combined to create the first high-resolution global color-image map of Mars with spatial resolutions greater than 1 km (0.62 mi). This is currently the highest-resolution map of Mars and could serve as a global base map that will support crewed missions someday.

The team was led by Professor Li Chunlai from the National Astronomical Observatories of China (NOAC) and Professor Zhang Rongqiao from the Lunar Exploration and Space Engineering Center. They were joined by multiple colleagues from the Key Laboratory of Lunar and Deep Space Exploration, the Institute of Optics and Electronics, the University of Chinese Academy of Sciences, and the Shanghai Institute of Technical Physics. The paper detailing their research, “A 76-m per pixel global color image dataset and map of Mars by Tianwen-1,” recently appeared in the journal Science Bulletin.

The optical camera (MoRIC) and imaging spectrometer (MMS) onboard the Tianwen-1 orbiter were used to obtain remote-sensing images of the entire Martian surface. Credit and ©: Science China Press

Several global maps of Mars have been created using remote-sensing images acquired by instruments aboard six previous missions. These include the visual imaging systems of the Mariner 9 probe, the Viking 1 and 2 orbiters, the Mars Orbiter Camera-Wide Angle (MOC-WA) aboard the Mars Global Surveyor (MGS), the Context Camera (CTX) aboard the Mars Reconnaissance Orbiter (MRO), the High-Resolution Stereo Camera (HRSC) of Mars Express (MEX), and the Thermal Emission Imaging System (THEMIS) on the Mars Odyssey orbiter.

However, these maps all had a spatial resolution significantly less than what the CAS team created using images acquired by the Tianwen-1 orbiter. For example, the MGS MOC-WA Atlas Mosaic has a spatial resolution of 232 meters per pixel (280 yards per pixel) in the visible band, and the THEMIS Global Mosaic of the Mars Odyssey mission offers a spatial resolution of approximately 100 m/pixel (~110 ft/pixel) in the infrared band. While the MRO Global CTX Mosaic of Mars covered 99.5% of the Martian surface (88° north to 88° south) in the visible band, it has a spatial resolution of about 5 m/pixel (5.5 yards/pixel).

There has also been a lack of global color images of Mars with spatial resolutions of a hundred meters (110 yards) or higher. In terms of global color images, the Mars Viking Colorized Global Mosaic v1 and v2 have spatial resolutions of approximately 925 m/pixel and 232 m/pixel (~1010 and 255 yards/pixel), respectively. Meanwhile, the MoRIC instrument acquired 14,757 images during the more than 284 orbits executed by the Tianwen-1 orbiter, with spatial resolutions between 57 and 197 m (62 and 215 yards).

During this same time, Tianwen-1’s Mars Mineralogical Spectrometer acquired a total of 325 strips of data in the visible and near-infrared bands, with spatial resolutions varying from 265 to 800 m (290 to 875 yards). The collected images also achieved global coverage of the Martian surface. Using this data, Professor Li Chunlai, Professor Zhang Rongqiao, and their colleagues processed the image data that led to this latest global map of Mars. The team also optimized the original orbit measurement data using bundle adjustment technology.

(a) Level 2C data product as the input, (b) image corrected by atmospheric correction, (c) image corrected by photometric correction, and (d) image corrected after color correction. Credit and ©: Science China Press

By treating Mars as a unified adjustment network, the team was able to reduce the position deviation between individual images to less than 1 pixel and create a “seamless” global mosaic. The true colors of the Martian surface were achieved thanks to data acquired by the MMS, while color correction allowed for global color uniformity. This all culminated with the release of the Tianwen-1 Mars Global Color Orthomosaic 76 m v1, which has a spatial resolution of 76 m (83 yards) and a horizontal accuracy of 68 m (74 yards).

This map is currently the highest-resolution true-color global map of Mars and significantly improves the resolution and color authenticity of previous Mars maps. This map could serve as a geographic reference for other space agencies and partner organizations to map the Martian surface with even greater resolution and detail. It could also be used by space agencies to select sites for future robotic explorers that will continue searching for clues about Mars’ past. It could also come in handy when NASA and China send crewed missions to Mars, which are slated to commence by the early 2030s or 2040s.

Further Reading: Eureka Alert!, Science Bulletin

The post A Global Color Map of Mars, Courtesy of China’s Tianwen-1 Mission appeared first on Universe Today.

Categories: Astronomy

<p><a href="https://apod.nasa.gov/apod

APOD - Sun, 09/01/2024 - 4:00pm

Did you see it?


Categories: Astronomy, NASA

Gravitational Wave Observatories Could Detect Primordial Black Holes Speeding Through the Solar System

Universe Today - Sun, 09/01/2024 - 12:34pm

Cosmologists have long hypothesized that the conditions of the early universe could have caused the formation of black holes not long after the Big Bang. These ‘primordial black holes’ have a much wider mass range than those that formed in the later universe from the death of stars, with some even condensed to the width of a single atom.

No primordial black holes have yet been observed. If they exist, they might be an explanation for at least some of the ‘dark matter’ in the universe: matter that does not appear to interact with normal matter through electromagnetism, but does affect the gravitational dynamics of galaxies and other objects in the universe.

Now, we might have a new way to detect primordial black holes, although in a severely limited form.

This method comes via gravitational waves.

This illustration shows the merger of two black holes (detected by LIGO on Dec 26, 2016) and the gravitational waves that ripple outward as the black holes spiral toward each other. Credit: LIGO/T. Pyle

First detected in 2015 by the LIGO gravitational wave observatory, gravitational waves are ‘ripples’ in spacetime caused by dramatic events in the universe – most often the collision of giant objects like stellar mass black holes and neutron stars. About 90 confirmed gravitational wave sources have been found by the LIGO-Virgo-KAGRA (LKV) program since 2015.

In a research note published this month, Harvard astrophysicist Avi Loeb examined whether the LKV detectors could catch the signature of primordial black holes – specifically those racing by near the speed of light – or other similar objects moving at high speeds.

“All gravitational wave sources detected sofar involve mergers of stellar-mass astrophysical objects, such as black holes or neutron stars, at cosmological distances,” wrote Loeb in a Medium post in August. But these are not the only possible sources.

“Imagine a relativistic object moving near the speed of light within a distance from LIGO that is comparable to the radius of the Earth. At closest approach, such an object would generate a gravitational signal,” one heavily dependant on its mass and the speed at which it is moving, says Loeb.

With LKV’s current capabilities, the detectors would be able to see any objects moving near to the speed of light with a mass of 100 megatons (the mass of a smallish asteroid several hundred meters across), but only if it came within half the Earth’s diameter of the detectors.

In other words, the LKV detectors would have noticed if an object of this mass passed through the Earth, or very near its surface, in the decade since 2015, if it was traveling at very high speeds.

Of course, if an asteroid of that mass hit Earth at that speed, we’d be well aware of it from the devastating impact. As such, this capability is really of interest particularly for compact objects like primordial black holes, with diameters the size of an atom or smaller, that might pass nearby or even through the Earth without anyone noticing.

No such object has been seen by the LKV detectors.

It is not a surprising result, given that this is a very limited detection capability. It doesn’t tell us about objects further than ~6000 kilometers from Earth’s surface, and also fails to detect slower moving objects.

Future gravitational wave detectors, like ESA’s LISA detector, expected to launch next decade, will expand this range, though not by a lot.

Still, when you are seeking answers to some of the hardest questions in the universe, it’s worth checking where you can. This particular stone hasn’t been left unturned.

Read the Research Note in RNASS here.

The post Gravitational Wave Observatories Could Detect Primordial Black Holes Speeding Through the Solar System appeared first on Universe Today.

Categories: Astronomy

Best Alien comic books of all time

Space.com - Sun, 09/01/2024 - 10:59am
The perfect organism is as menacing on the pages as it is on the big screen. These are the must-read Alien comic books you should look out for.
Categories: Astronomy

Weird mystery waves that baffle scientists may be 'everywhere' inside Earth's mantle

Space.com - Sun, 09/01/2024 - 10:00am
Structures that scatter seismic waves deep in Earth's mantle seem to be everywhere researchers look.
Categories: Astronomy

Astrophotographer captures Comet 13P/Olbers and the Black Eye Galaxy M64 in stunning detail (photo)

Space.com - Sun, 09/01/2024 - 6:00am
Astrophotographer Greg Meyer had just one hour to capture this iconic image of Comet 13P/Olbers and the Black Eye Galaxy (M64).
Categories: Astronomy

By Watching the Sun, Astronomers are Learning More about Exoplanets

Universe Today - Sat, 08/31/2024 - 6:55pm

Watching the Olympics recently and the amazing effort of the hammer throwers was a wonderful demonstration of the radial velocity method that astronomers use to detect exoplanets. As the hammer spins around the athlete, their body and head bobs back and forth as the weight from the hammer tugs upon them. In the same way we can detect the wobble of a star from the gravity of planets in orbit. Local variations in the stars can add noise to the data but a team of researchers have been studying the Sun to help next-generation telescopes detect more Earth-like planets. 

To date 5,288 exoplanets have been discovered, that’s 5,288 planets in orbit around other star systems. Before 1992 we had no evidence of other planetary systems around other stars. Since then, and using various methods astronomers have detected more and more of the alien worlds. Techniques to detect the exoplanets range from monitoring starlight for tiny dips in brightness to studying the spectra of stars. Just over 1,000 exoplanets have been discovered using the radial technique making it one of the most successful methods. 

“Icy and Rocky Worlds” is a new exoplanet infographic from Martin Vargic, an artist and space enthusiast from Slovakia. It’s available as a wall poster on his website. Image Credit and Copyright: Martin Vargic.

The local variations in the properties of stars has made it difficult to find smaller planets using the radial technique but a team of astronomers led by Eric B. Ford from the Department of Astronomy and Astrophysics at the Penn State University has just published a report of their findings following observations of the Sun. Observations of the Sun between January 2021 and June 2024 using the NEID Solar spectrograph at the WIYN Observatory have informed their study. 

A gas giant exoplanet [right] with the density of a marshmallow has been detected in orbit around a cool red dwarf star [left] by the NASA-funded NEID radial-velocity instrument on the 3.5-meter WIYN Telescope at Kitt Peak National Observatory, a Program of NSF’s NOIRLab. The planet, named TOI-3757 b, is the fluffiest gas giant planet ever discovered around this type of star.

Across the 3 years and 5 months of observations, the team identified 117,600 features which are not likely to have been caused by the weather, hardware or calibration issues so they could be used for their study. Given that the distance between the Sun and Earth is precisely known the team can use this to analyse solar observations and measure other solar variability. 

Impressively the team have been able to show that the NEID instrumentation is able to measure radial velocity of the Sun accurate to 0.489 m/s-1. Using this data the team conclude that Scalpels algorithm (a technique developed for medicine that uses machine learning to analyse and extract data from images) performs particularly well. It can reduce the root mean square (used to analyse signal amplitude) of solar radial velocity from over 2 m/s-1 down to 0.277 m/s-1! 

The results are significantly better than previous studies at removing solar variability from its radial velocity observations. This suggests that the next generation of exoplanet radial velocity instruments are capable, at least technically at detecting Earth-massed planets orbiting a star like the Sun. This does of course require sufficient observing time which the team estimate would be about 103 nights of observations. 

Source : Earths within Reach: Evaluation of Strategies for Mitigating Solar Variability using 3.5 years of NEID Sun-as-a-Star Observations

The post By Watching the Sun, Astronomers are Learning More about Exoplanets appeared first on Universe Today.

Categories: Astronomy

Coronal Loops-Digital Art Combination Captures Power of the Sun, Rendered by Andrew McCarthy

Universe Today - Sat, 08/31/2024 - 5:52pm

Our Sun is one of the most fascinating objects in the universe and photographing it with specialized equipment to capture its splendor and beauty has become increasingly more common around the world. This is most evident with the work obtained by renowned astrophotographer, Andrew McCarthy (@AJamesMcCarthy), who owns Cosmic Background Studios in Florence, Arizona.

On July 27, 2024, McCarthy posted an image of the Sun on X (formerly known as Twitter) taken with his specialized equipment designed to safely photograph our life-giving star, which revealed active coronal loops and plasma within the solar chromosphere that are some of the many intriguing features of the Sun. However, McCarthy is quick to mention in his post that this image isn’t entirely genuine, but a combination of several attributes.

My recent solar print release drew a lot of questions about some of the features of the sun… particularly in this close up. The second post in this thread features a time-lapse showing how these coronal loops moved over time. pic.twitter.com/AdzVOhr55S

— Andrew McCarthy (@AJamesMcCarthy) July 27, 2024

“This image is a piece of digital art that combines real astrophotos with some rendered features,” McCarthy tells Universe Today. “I captured the solar chromosphere with a solar-modified telescope, designed to block out the photosphere’s light to reveal the faint structure in the Sun’s atmosphere. The corona was captured during April’s total solar eclipse. Between the large-scale and small-scale structures of the photos, there’s a lot going on invisibly with the Sun’s magnetic field. Using some real data of that field as reference, I rendered coronal loops in a plausible way to show a more complete image of the scales of magnetic structure on the Sun.”

The solar chromosphere is the second layer of the Sun’s atmosphere residing above the Sun’s surface, known as the photosphere (4,130 to 6,330 °C), and below the corona (just under 1,000,000 °C). The chromosphere is known for its red color that is observed hydrogen-alpha electromagnetic emissions and extends between 3,000 to 5,000 kilometers (1,900 to 3,100 miles) in height, which is approximately one percent of the Sun’s radius, while exhibiting temperatures ranging between 3,500 to 35,000 °C. It is the solar chromosphere that is responsible for producing coronal loops, which are arch-like structures produced by the Sun’s magnetic field activity, typically occurring from sunspots. In addition to the incredible image, McCarthy also posted an equally incredible 14-second video of these incredible features in action.

You can see the plasma guided back onto the solar chromosphere by the magnetic loops in this time-lapse. Wild!

See the full photo of the sun featuring the solar corona on my website here. I also have limited edition prints available for a short time. https://t.co/jHkqjin72c pic.twitter.com/sBK0N8KFMV

— Andrew McCarthy (@AJamesMcCarthy) July 27, 2024

McCarthy tells Universe Today, “These are an example of the magnetic loops captured authentically by isolating the plasma caught in them. This produces coronal rain, plasma raining back onto the photosphere.”

Our Sun is essentially a giant ball of plasma that is undergoing constant change, both within its interior and on its surface, including radio waves, solar wind, and magnetic field. Studying the magnetic field teaches scientists about 22-year cycles where the poles of the magnetic field flip and then return to their initial position, resulting in increased solar activity occurring over 11-year cycles during each transition. This increased magnetic field activity results in increased solar wind emanating from the Sun, leading to solar storms that can strike Earth, causing auroras near our planet’s poles while also harming satellites in orbit and electronic ground stations. One of the most revered incidents of solar storms on Earth was the Carrington Event, which occurred between September 1-2, 1859, resulting in worldwide auroras and telegraph station fires across the globe, as well.

Scientists who study the Sun and its various features are known as solar physicists who use a combination of ground- and space-based telescopes to obtain data regarding the Sun’s activity on a 24/7 basis. Arguably one of the most successful missions to study the Sun is NASA’s Parker Solar Probe, which was launched on August 12, 2018, and has traveled closer to the Sun than any human-made spacecraft in history, coming within 7.26 million kilometers (4.51 million miles) from the Sun’s surface in September 2023 and again in March 2024. During its mission, the Parker Solar Probe encountered magnetic field switchbacks, which is when the magnetic field reverses its direction, resulting in heating the solar corona.

Examples of ground-based telescopes that study the Sun include the Mauna Loa Solar Observatory, which like McCarthy, uses specialized equipment to safely study the Sun and its various features, providing data and images that can be used for research and public outreach. Therefore, how can McCarthy’s work be used for scientific research, and has his past work been used for scientific research purposes?

“This image is in no way intended for scientific research, but rather a product of scientific research,” McCarthy tells Universe Today. “That said, hydrogen alpha images of the sun offer real insight into the behavior of the sun’s magnetic field and are used by scientists worldwide. Amateurs capturing the sun in detail can complement the data produced by professional observatories on earth and in space and play a role in public outreach that can sometimes be lacking by professional institutions.”

McCarthy has become well-known for capturing incredible images of the Sun and sharing them with the public, including breathtaking images and videos of tornado-like prominences emanating from the solar chromosphere in March 2023, which also captured images of the solar corona. Along with these images, McCarthy provides detailed descriptions of the events occurring in his work with the goal of exciting the public about the Sun and its many incredible features.

“The Sun is unique in that every time I photograph it, it looks completely different,” McCarthy tells Universe Today. “The features are always changing. For that reason, it’s a target I will keep coming back to. While intended purely as a piece of digital art, my goal with this piece was to inspire people to ponder our fragile existence kept in balance by our host star. Hopefully it inspires more people to study it, as it gives us a better understanding of this universe we live in!”

What new discoveries will we make about our Sun in the coming years and decades? Only time will tell, and this is why we science!

As always, keep doing science & keep looking up!

Links:

Andrew McCarthy: X (Twitter) & Website

The post Coronal Loops-Digital Art Combination Captures Power of the Sun, Rendered by Andrew McCarthy appeared first on Universe Today.

Categories: Astronomy

SpaceX launches back-to-back Falcon 9 rockets within 65 minutes and aces 2 landings days after a failed booster touchdown (video)

Space.com - Sat, 08/31/2024 - 5:42pm
SpaceX launched two Falcon 9 rockets in just over an hour early Saturday (Aug. 31) and nailed back-to-back booster landings just days after a recent failure.
Categories: Astronomy

Estimating the Basic Settings of the Universe

Universe Today - Sat, 08/31/2024 - 5:34pm

The Standard Model describes how the Universe has evolved at large scale. There are six numbers that define the model and a team of researchers have used them to build simulations of the Universe. The results of these simulations were then fed to a machine learning algorithm to train it before it was set the task of estimating five of the cosmological constants, a task which it completed with incredible precision. 

The Standard Model incorporates a number of elements; the Big Bang, dark energy, cold dark matter, ordinary matter and the cosmic background radiation. It works well to describe the large scale structure of the Universe but there are gaps in our understanding. Quantum physics can describe the small scale of the Universe but struggles with gravity and there are questions around dark matter and dark energy too. Understanding these can help in our understanding of the evolution and structure of the Universe. 

Enlarged region of the Saraswati Supercluster, the largest known structure in the Universe, showing the distribution of galaxies. Credit: IUCAA

A team of researchers from the Flatiron Institute have managed to extract some hidden information in the distribution of galaxies to estimate the values of five of the parameters. The accuracy was a great improvement on values that were attained during previous attempts. Using AI technology the team’s results had less than half the uncertainty for the element that describes the clumpiness of the Universe than in the previous attempt. Their results also revealed estimates of other parameters that closely resembled observation. The paper was published in Nature Astronomy on 21 August. 

The team generated 2,000 simulated universes after carefully specifying their cosmological parameters. These included expansion rate, the distribution and clumpiness of ordinary matter, dark matter and dark energy and using these the team ran the simulations. The output was then compressed into manageable data sets and this was used to compare against over one hundred thousand real galaxies data. From this, it was possible for the researchers to estimate the parameters for the real Universe. 

The parameters the team managed to fine tune are those that describe how the Universe operates at the largest scale. These are essentially, the settings for the Universe and include the amount of ordinary matter, dark matter, dark energy, the conditions following the Big Bang and just how clumpy the matter is. Previously these settings were calculated using observations from the structure of galaxy clusters. To arrive at a more accurate group of settings observations needed to go down to smaller scale but this has not been possible. 

The full-sky image of the temperature fluctuations (shown as color differences) in the cosmic microwave background, made from nine years of WMAP observations. These are the seeds of galaxies, from a time when the universe was under 400,000 years old. Credit: NASA/WMAP

Instead of using observations, the team used their AI approach to extract the small scale information that was hidden in the existing observational data. At the heart of the approach was the AI system that learned how to correlate the parameters with the observed structure of the Universe – but at small scale. 

In the future the team hope to be able to use their new approach to solve other problems. The uncertainty about the Hubble Constant is an example where the team hope AI can help to fine tune its value. Over the next few years though, and as observational data becomes more detailed both Hubble’s Constant and the Settings of the Universe will become far better understood along with our understanding of the Universe. 

Source : Astrophysicists Use AI to Precisely Calculate Universe’s ‘Settings’

The post Estimating the Basic Settings of the Universe appeared first on Universe Today.

Categories: Astronomy