"When beggars die, there are no comets seen;
The heavens themselves blaze forth the death of princes."

— William Shakespeare
Julius Cæsar

Feed aggregator

ChatGPT got an upgrade to make it seem more human

New Scientist Space - Space Headlines - Mon, 05/13/2024 - 6:45pm
OpenAI's new ChatGPT model, called GPT-4o, provides more human-like interactions through a voice mode, and it is capable of conversations that incorporate text, audio and video in real time
Categories: Astronomy

'Kingdom of the Planet of the Apes' reinvigorates an aging 'Apes' franchise (review)

Space.com - Mon, 05/13/2024 - 6:13pm
"Kingdom of the Planet of the Apes" is a triumph of solid storytelling, cutting-edge motion capture work by the actors and a multi-layered score.
Categories: Astronomy

SpaceX Starship's next launch 'probably 3 to 5 weeks' away, Elon Musk says

Space.com - Mon, 05/13/2024 - 6:00pm
SpaceX's Starship megarocket will likely conduct its fourth-ever test flight in the next month or so, according to Elon Musk.
Categories: Astronomy

Ep. 719 – Galaxy Series: Spirals

Astronomy Cast - Mon, 05/13/2024 - 5:38pm

Our galaxy series continues, on to spiral galaxies. In fact, you’re living in one right now, but telescopes show us the various shapes and sizes these galaxies come in. Thanks to JWST, we’re learning how these spirals got big, early on in the Universe.

Image: M33 Transcript

(Automatically generated)

Fraser Cain [00:01:11] Astronomy Cast episode 719 – The Galaxy series: Spiral Galaxies. Welcome to Astronomy Cast, a weekly fact based journey through the cosmos where we help you understand not only what we know, but how we know what we know. I’m Fraser Cain the publisher of Universe Today. With me, as always, is Doctor Pamela Gay, a senior scientist for the Planetary Science Institute and the director of CosmoQuest. Hey, Pamela, how you doing?

Pamela Gay [00:01:33] I am doing well. When folks are hearing this episode, you’re going to be off in Japan. And that is amazing.

Fraser Cain [00:01:43] Yeah, yeah, we’re making up for that trip. So four years ago in 2020, I booked a trip. Actually, in 2019, I booked a trip to Japan for my son and with my son. And then Covid hit and things got pretty dicey. And so we decided to cancel the trip. And it’s been four years. And now, like, what’s Covid? Who remembers that anymore? So .. so we’re going to do it again. And you know now he’s older and a lot wiser. And I think it’s going to be a really fun time. So yeah yeah. By the time you listen to this we will have been in Japan for a week. And you know, people are like, are you going to do this? Or you can do that. Like, I have no plans. This is purely vacation. I and you know, if I run across Jaxa as I turn a corner in some neighborhood, then sure, I’ll walk in. But I had no plans. I’m not booking things, doing interviews, any of that. I’m going to bring a camera. But … but apart from that, no, this is just purely fun. I want to eat some tasty sushi and noodles. I want to walk around cool parks and temples. I want to ride bullet trains. And I want to meet people there.

Pamela Gay [00:02:53] So yeah, I, I have to say, I haven’t found sushi there that was any better than what I’ve gotten in the US. Other than you can get Fugu there, which you can’t get in the U.S..

Fraser Cain [00:03:05] No, thanks.

Pamela Gay [00:03:06] But the ramen, I had ramen. That is the stuff of dreams. And may you find such.

Fraser Cain [00:03:15] I’m looking forward.

Pamela Gay [00:03:15] To the ramen places.

Fraser Cain [00:03:17] Yeah, yeah, that sounds great.

Our Galaxy series continues on to spirals. In fact, you’re living in one right now. But telescopes show us the various shapes and sizes these galaxies come in. Thanks, Joe is t. We are learning how these spirals got big early on in the universe. All right, Pamela, spiral galaxies. And this is obviously familiar territory because we live in one.

Pamela Gay [00:03:44] We do. Although living in it has made it particularly challenging to study.

Fraser Cain [00:03:49] Right.

Pamela Gay [00:03:50] Like we figured out, there’s a bar in the center of our galaxy only within the past couple of decades. We still see every few years, they change their mind on exactly how far we are from the core of the galaxy.

Fraser Cain [00:04:07] How many arms the Milky Way have, right? Is the last episode we talked about. You know, different controversies are still unfolding. And one of those is how many spiral arms does the Milky Way have? This is a question that is a two. Is it four? Is it two. But then two other kind of arms that are broken off of it. It’s a it is a tricky question because you’re embedded inside like quick. Yes. You know, imagine yourself in a random house. What color is the paint on the outside of your house?

Pamela Gay [00:04:40] It’s a challenge. Is a challenge.

Fraser Cain [00:04:42] Yeah, yeah. Maybe you’ll see it in reflected windows of cars as they drive by.

Pamela Gay [00:04:48] And. And what makes the challenge all the more fun is we have this Andromeda galaxy looming so very close. And at first glance, it seems to be so much bigger than we are. And yet every time we revise our mass estimates, it seems that our galaxy and Andromeda get closer and closer in size. And so it just turns out, trying to understand things that take more than one field of view of a telescope to look at is really hard. Really hard.

Fraser Cain [00:05:21] Yeah, I love those images of what Andromeda would look like if you if it was bright like before and you could see it, it is the size of what is it like nine full moons in the sky? It’s a tick.

Pamela Gay [00:05:34] Yeah. Yeah. And. And then there’s also the challenge of the size of galaxies varies depending on what color of light you’re looking in. And this has been one of the challenges with classifying galaxies, especially spiral galaxies. So the the old school still taught tried and true way of classifying spiral galaxies. Is the Hubble tuning fork diagram. And in this diagram you have ellipticals of varying, roundness to flatness that eventually become what’s called a lenticular galaxy, where you have a nucleus in the center. And then just like a disk of no structure around it, and then it forks. Thus the tuning fork part of the analogy and the arms on on the galaxies for the spirals and the barred spirals just get more and more unwound. But it turns out if you look at galaxies in different colors of light, you’re able to see their arms in different degrees. And so when it comes to trying to figure out how do we write software to classify galaxies, how do we get human beings to classify galaxies? It is a glorious disaster.

Fraser Cain [00:06:59] Right? Right. And I mean, it’s just it’s a mess because galaxies are weird. Yeah. Yeah. It’s not. It’s like humans. It’s the galaxies problem.

Pamela Gay [00:07:10] Go.

Fraser Cain [00:07:10] Galaxies go. Right? Yeah. It keeps keeping weird galaxies. Yeah. So then then how do they form? I mean, we look at these. I mean, there’s some beautiful examples. The whirlpool galaxy, the Pinwheel Galaxy, their nice face on spiral galaxies where we look just right down on to them, as well as ones that are farther away, that are less famous, that are equally as beautiful and indistinct. How do we get this, this, you know, weird shape and some of the structures that we see.

Pamela Gay [00:07:38] So how exactly you go from either blob of mass to spiral galaxy or a whole bunch of dwarf galaxies merging together, which is how these probably formed. But the universe likes to have exceptions to every rule, and I’m just gonna throw that out there. There are always exceptions. Yeah. It looks like we get spiral galaxies through the merger, with the correct angular momentum coming together to set things in a nice, coherent spiral. Then it gets tricky. Tricky, though, because spirals come in different varieties, separate from just how much of their arms splayed out. We have what are called flocculant spiral galaxies, which are spiral galaxies. When you look at them, you see there is what appears to be feathers, flock, flocculant of of spirally bits all throughout them. But there isn’t a clearly defined pair or multitude of arms. It’s just like arm bits all the way down. Then you have galaxies usually that have a companion. We think that it’s the gravitational interactions that drive the, the, spiral density waves that create these grand design spirals, which have two arms, only two arms perfectly formed.

Fraser Cain [00:09:08] And the number shall be two.

Pamela Gay [00:09:09] And the number shall be two, and.

Fraser Cain [00:09:11] Is the arms. Yes.

Pamela Gay [00:09:13] And, and and so going between these extremes is every possible version of massy and glorious. And then we see some spiral galaxies have, rings in their centers, have bars in their centers. And again, this is all driven, we think, from the gravity of companions. And then we have things like the see for 1 in 2 galaxies that have active galactic nuclei that are shooting out jets of radio waves. Spirals are just out there trying to show off. They are the drama queens. They’re the pageant queens.

Fraser Cain [00:09:59] You know, the peacocks galaxy world. Yeah. So this this shape, I mean, it really looks like someone is winding up a bunch of stars from the middle, and you get these spiral arms that form. What? What are the spiral arms?

Pamela Gay [00:10:19] They they are actually just places where material lingers as it goes on its orbit around and around the galaxy. It’s not that galaxies have solid disk rotation where those arms are intact, and the whole thing is bulk rotating like a pinwheel. That is not happening. I just want that very clear. Yeah, yeah. The structure might look like a pinwheel. It is not rotating like a pinwheel. So what’s happening is as material goes around and around the core, there are regions that have higher density. The regions that have higher density accelerate material towards them. So it gets there faster and then holds on to it. So it slows down as it exits. So the amount of time that material stays in the arms is increased compared to the amount of time that it spends on the other parts of its orbit. So you can have material zoom into. I don’t know why I said that like that. You can have material that zooms into a galaxy’s arm, passes through ever so slowly interacting a lot. Star formation gets triggered in arms and then passes out the other side until it gets to the next arm. Rinse and repeat.

Fraser Cain [00:11:41] Yeah. So like analogy that I love to use. Like, imagine you’re in a balloon above the Super Bowl and you’re looking down and the wave is happening. I don’t if do the wave at the Super Bowl. But imagine the wave is happening is you got human beings standing up, shaking their banners, cheering, and then sitting back down again, and you’re seeing this wave propagate through the entire arena. And from your blimp view, it looks like something is turning inside the stadium. But it is not what’s turning. It is the people standing up and sitting back down creating this illusion. And that’s the same thing as what’s happening with the spiral galaxy. Now the whole galaxy can be spinning. That’s a separate thing. But those spiral arms that you’re seeing are these density waves that are just rotating through as all of the stars are doing the wave and they take their time, they have their turn? Yeah. In the in in the arms. And then times when they’re not in the arms.

Pamela Gay [00:12:44] And to be clear, the majority of material in a spiral galaxy, not all. There’s always exceptions. That’s just going to keep coming up. The majority of material in a spiral galaxy will be orbiting all in one direction, like cars on a racetrack should, in theory, all be going in the same direction. And and what we’re seeing is all these things that are going more or less in the same direction are just lingering longer, where there’s a higher amount of mass to pull them in and hold on to them as they try to continue their orbit.

Fraser Cain [00:13:16] But we clearly see these star forming regions in the spiral arms of these galaxies. So what’s that about?

Pamela Gay [00:13:21] So if you think about it, star formation gets triggered through interactions, through shocks, through something taking a nice stable cloud of gas that is supported through the balance of gravity inwards and thermal pressure outwards. It doesn’t take a lot to knock that kind of a cloud out of equilibrium. So as these nice, friendly clouds enter the region of crowding, the probability that something they got there before them is gonna have a supernova go off, the probability that a couple of these clouds are going to interact with each other and knock each other out of equilibrium is a whole lot higher than when that cloud is all by itself in the space between arms. So when these clouds get to the high density region of the arm, they tend to get knocked around. And that knocks them out of that very careful thermo gas dynamics versus gravity balancing act. And you get star formation right.

Fraser Cain [00:14:23] So parts of the cloud are. Hold in, and then you get the densities that can begin and trigger this star formation.

Pamela Gay [00:14:31] Or it could. It could literally just be the shockwave from the supernova hit it to these clouds. And there’s a lot more supernova going off in the arms where you have a lot more star formation, and supernovae go off when you have star formation, and those first giant stars die.

Fraser Cain [00:14:48] Right, right. It’s this cycle that just gets rolling. It’s it’s crazy. Like I just sort of imagine this wave sweeping past. And as the wave is sweeping past through space, you’re getting clouds of stars start to form in this and then supernova are going off in this triggers more star formation. And then the wave passes and the fuel is depleted and you have less stars in that region. But now the next region gets filled with stars. It’s a it’s a very, I don’t know, very evocative concept to think about.

Pamela Gay [00:15:22] A better analogy might be a traffic jam. I don’t know if you’ve ever been like driving along on a road trip, full tilt buggy, and all of the sudden, three miles ahead, there is an accident on the complete other side of the highway. There’s no reason for your side of the highway to slow down. Yeah, but it turns out because human beings are human beings, they will race forward. And end up piling up. And then when they get close to that, that accidents are like must look, must look.

Fraser Cain [00:15:57] Must the what is it? How many.

Pamela Gay [00:15:59] Feet.

Fraser Cain [00:16:00] Yeah.

Pamela Gay [00:16:01] And so you end up with this, this compression wave triggered by looky loos. And that causes a compression of cars in that one place. Well, here it’s the gravitational wave of looking at the car accident that’s causing the compression and the lingering in the galaxy. It’s the gravitational pull of all the cool stuff going on that has mass and is holding you in place.

Fraser Cain [00:16:31] So once again, g t has joined in the hunt for galaxies. And because these things are fairly large and fairly bright, it’s seeing spiral galaxies early on in the universe. Yeah. So give me give me some surprising discoveries about spiral galaxies thanks to J team.

Pamela Gay [00:16:51] So so we thought that they would come very slowly in the being. It would take billion, couple billion years for them to exist, built up through the slow aggregation of smaller systems into larger systems. And it turns out something happened. We we don’t know exactly what happened. J t still looking and hundreds of billions of years, not a billion years, hundreds of millions of years. We’re already starting to see spiral structure. It’s not perfect, at least not what we can see through j w s t which admittedly isn’t that many pixels across, but still, it’s enough that we can see the spiral structure. Wow. And and so it turns out that somehow these things are forming faster and earlier than we thought through means that are still being defined. And there’s so much to figure out. Like if if you look at the velocity curve of a dwarf irregular galaxy, they have the same velocity curve structure as a spiral galaxy. So these dwarf irregulars that look like dead bugs on the sky have stars that are mostly going around and around in one direction in a known way related to dark matter. And then we see spiral galaxies. And so how are these things merging to get us bigger systems? Are they forming just big and spiral? We don’t know. We’re figuring it out. It’s a really cool time to realize everything we knew was wrong. And we get to start over and try. Right?

Fraser Cain [00:18:28] Right. And the other thing that this is fairly recent news, I don’t know if you have been following the story, but they’ve found that the galaxies have bars as well early on.

Pamela Gay [00:18:39] And that implies companions.

Fraser Cain [00:18:41] Right? Right. Which was what you were talking about earlier, that there’s some kind of interaction between the galaxy and its companions, leading to this bar forming in the middle. What is this bar?

Pamela Gay [00:18:53] There are so many different papers that don’t say the same thing. So what it is. For reasons that have many explanations, and I am not going to make a personal opinion right now because someone will send me a nasty letter, right? There are galaxies, including our own, that have a companion and have a structure in the center that is linear and radiating out from the black hole, and then these spiral structures appear to spiral off of the ends of this bar.

Fraser Cain [00:19:26] Right.

Pamela Gay [00:19:27] That companion is the consistent part, exactly how the barred structure forms. There’s lots of theories. I’m just going to leave it there and write. Deal with the letters in my inbox.

Fraser Cain [00:19:41] Yeah. So it’s a couple of things. One is that, you know, about two thirds of galaxies have bars, and they appear to come and go over time.

Pamela Gay [00:19:50] Yes.

Fraser Cain [00:19:51] Yeah.

Pamela Gay [00:19:52] So it’s a transient phase, which is consistent with the companion galaxies coming and going, changing in distance, getting consumed actively.

Fraser Cain [00:20:01] Yeah, yeah. And so you can get some event that causes the bar to buckle to, to collapse in on itself and disappear again. And then other times the bar will start to spread out and stretch out, and the arms end up at the end of the, of the bar. So it’s a weird thing. Spirals have them. Yeah. And and yet, as you know, I mentioned this, that the now there’s observations that they’re seeing these spiral bars in galaxies that are under a billion years old, like, you should not have seen these mature structures in galaxies. And yet there they are. So once again, the universe is speed running, its large scale structures, its more mature structures. And this is a surprise.

Pamela Gay [00:20:55] And what I’m really loving is we already knew quasars, active galaxies were much more common in the early universe. We haven’t been able to really make out consistently the structure around them. I studies that you slowed in digital Sky survey to do extremely statistically rigorous looks. Found that there were the same fraction of mergers among quasars as non quasars. So there’s just something special in the systems with quasars that causes them. But there’s something of the early universe. There was more gas than there was more material than. And and so we have all of these weird things that were high energy events creating amazing forces. There was more stuff around to do the mergers that hadn’t formed large galaxies yet. It was basically the pottery waiting to be formed.

Fraser Cain [00:21:51] Right. We talked a lot about dark matter in the last episode, and I think we should definitely talk about dark matter as it relates to a spiral galaxy as well. To what role does dark matter play in the behavior of the galaxy?

Pamela Gay [00:22:06] It changes how they rotate or it changes. I guess a better way to put it, how the stars at a variety of different distances orbit around the galaxy. This was one of the things discovered by Vera Rubin. And what’s was remarkable here is Vera Rubin was trying very hard to do non-confrontational research. Right. She moved away from other topics because she was like, nope, don’t want to deal with the the politics just when you do science. Yeah. And she quite accidentally discovered that as you move out from the core of a galaxy and you get more and more material inside your orbit, it was expected that things would be, going at lower and lower orbital velocities.

Fraser Cain [00:22:54] Like the solar system.

Pamela Gay [00:22:56] Like the solar system. Right. And instead what happens is it just flattens off. This flattens off. Right? So the outer parts of galaxies out to the greatest distances we can see beyond a certain point, everything just keeps rotating at the same rate. Right. And this is because the distribution of dark matter is such that it’s counterbalancing what we see with the baryonic luminous matter and changing the rotation curves. And so we’re essentially trying to map out the distribution of material we can’t otherwise see by looking at the rates at which stars, globular clusters, clouds of neutral gas are going round and around our Milky Way. And poor Vera Rubin, who was trying to do non-confrontational research, discovered this, ended up having to spend about a decade proving that she was right. Along the way, she demonstrated that work done in the 30s by, Fritz Zwicky on, galaxy clusters was the exact same effect. And then the poor woman never got the Nobel Prize for everything that she went through. She got many awards, but it is generally seen as a great oversight that she didn’t get the Nobel Prize for what she did.

Fraser Cain [00:24:11] And I want to I want to sort of just reiterate this, this discovery because I think it it is it is so foundational.

Pamela Gay [00:24:18] And yeah.

Fraser Cain [00:24:19] You can’t hear this and roll your eyes at dark matter, right? Which is what I see a lot of in the comments. And so if you’re like, you know, astronomers just make up this thing called dark matter to blah, blah, blah. You know what? No, no, no absolutely not. That is incorrect. And let me let me sort of give you this insight, right. You measure like here in the solar system, the Earth is going at 30km per second around the sun. Neptune is going five kilometers per second around the sun. There is this drop off in the velocities of the planets as you get farther from the sun. It is this steady line going downward that measures the velocities. You look at a galaxy. Yeah, close to the center of the galaxy. The the rotation rate is increasing. And then you hit this point where you then as you measure outward, it’s like, what is it, 250km per second and little farther away. It’s hundred and 50km per second, a little farther away, you know, still 50. It’s still the same. Or the two one. I forget the exact numbers 220 or 250, whatever. And it just it remains the same all the way out to the outskirts of the galaxy. And so the galaxy is not a little solar system. It is something else. Yeah. And you cannot you just can’t get that rotation curve without ten times the mass in the galaxy that if that if there was, you know, you could see. Ten times the mass in black holes all around the galaxy, and they were visible somehow. Then that would explain it.

Pamela Gay [00:25:51] Yeah, it’s it’s the equivalent amount of matter of taking one Acme brick per solar system sized volume in the outer galaxy. So you can imagine just all these Acme bricks floating around. And the Matcha project has gone looking for the the universal version, which is neutron stars, stellar mass black holes, white dwarfs and hasn’t found them.

Fraser Cain [00:26:17] Yeah. And so you can take a person who like doesn’t who rolls their eyes at this and you say, okay, fine. So how how does this work? How do you get the the stars not slowing down in their orbital velocity like you would see in a solar system? Right. And then the person has to say, oh, I don’t know. Right. Done. You you now are part of the dark matter belief system, right? You like weird observation. Why is this happening? I don’t know, good enough. Join the club. Here’s your membership card. You’re now one of us. And so, yeah, it’s called dark matter. But. But who knows what it could be. As you said, particles. It could be black holes. And it could be that we don’t understand gravity at the longest scale. Doesn’t matter. It’s still dark matter.

Pamela Gay [00:27:06] And it can be a combination. I just want to make that clear.

Fraser Cain [00:27:10] It is almost certainly a combination of all of them. And and done. You are like you are part of the confusion that nobody knows what this thing is. And yet you can people can make these observations with relatively small telescopes. If your Rubin did it in the, you know, almost a hundred years ago. And yet here we are still arguing about what it is.

Pamela Gay [00:27:37] And little tiny radio telescopes that universities have allow us to go even further out in the galaxy than what your Rubin initially did with optical light, because we can start seeing the neutral gas that is the furthest stuff out in our galaxy. And so, yeah, grab yourself a small optical telescope and a small radio telescope and you’re done. You can prove there has to be something invisible out there. You’re affecting the rotation curve.

Fraser Cain [00:28:06] And there’s one last piece of spiral galaxy that I think is really important, which is the monster at the heart of them.

Pamela Gay [00:28:13] And and as recently as the 1990s, people were drying on overhead sheets, little tiny monsters, usually with antennae and giant mouths like vomiting jets out of the cause of spiral galaxies. So much has been lost now that professors aren’t hand drawing on overhead sheets. I it’s truly a lost art, and we are suffering so many fewer cartoons as a result of it. Right. So yeah, spiral galaxies. There is a relationship. And this works for ellipticals as well. There’s a relationship between the size of the bulge and the size of the, supermassive black hole in the center. There are some galaxies, like less than ten last I looked, that looked like quite maybe. Possibly it could be they don’t actually have a supermassive black hole and they don’t have a bulge, but still working on it. Yeah.

Fraser Cain [00:29:18] Millions do. Ten don’t.

Pamela Gay [00:29:21] Right. Exactly. Yeah. And and so when you see these systems with large bulges in the core with lots of high velocity stars in those bulges, they’re going to have the big supermassive black holes, smaller bulge, lower motions, smaller supermassive black hole. And yeah. And what’s neat is, depending on the angle that we’re able to look in on a supermassive black hole that’s feeding, we get all sorts of different cool effects. So if you have a system that’s that’s edge on and has a supermassive black hole in the center, it’s called a siefert two. They’re kind of boring. They don’t have very exciting lines that do very much, but they are active and they show up in the radio in new and interesting ways. Now tilt that towards us and you start to get what’s called a Seyfert one, tilt it straight towards us and give it a really powerful jet. And you start to get what’s called a blazer. And here, because of the the distance that it that the time that it takes light from the far jet to get to us and the time that it takes for light from the near jet to get to us, it gives the perspective of faster than light motion between the two ends of the jet. So there’s this really cool physics.

Fraser Cain [00:30:40] Yeah, that’s really awesome. All right, well, I think we can cover two spiral galaxies. And so next week, we pick up the story with the giant elliptical galaxies. Thanks, Pamela.

Pamela Gay [00:30:54] Thank you, Fraser, and thank you to all the folks out there that support us through Patreon. We we really rely on you so very much. Beth, pulled together pretty. In these three episodes for us on a dime. When? When I told her yesterday. Surprise. Yeah, I guess what. And and Rich is out there doing all of the editing, hiding so many blunders. We thank you, Rich. Ali’s out there helping with our YouTube channel. It takes a team to make this happen. This week, I want to thank Kimberly Kimberly Wright. Jesus. Trina, Jeff Wilson, Tim Gerrish, Greg wilde, John Drake, Robert Cordova, Paul de Disney, Veronica cure, Michelle Cullin, Philip Walker, Benjamin Davies, Dwight. Ilke, Brian. Kilby. Daniel. Loosely, Sabra. Lark, Sydney. Walker, David. Borghetti, evil. Melky, Justin. Ace, Maxime. Leavitt, Hal McKinney. Bebop. Apocalypse. I love that one. Daniel Phillips on Bruno. Let’s Ruben McCarthy, Larry Dart’s Bob, Zach, ski time Lord, I row Frank Stewart and Jason could Dorcas folks who donated $10. We are grateful and this means I mispronounce your names. I am sorry you won.

Fraser Cain [00:32:18] Thanks everyone, and we’ll see you next week.

Pamela Gay [00:32:20] Goodbye. Astronomy cast is a joint product of the Universe Today and the Planetary Science Institute. Astronomy cast is released under a Creative Commons Attribution license. So love it, share it, and remix it, but please credit it to our hosts, Fraser Cain and Doctor Pamela Gay. You can get more information on today’s show topic on our website. Astronomy. Cars.com. This episode was brought to you. Thanks to our generous patrons on Patreon. If you want to help keep the show going, please consider joining our community at Patreon.com Slash Astronomy Cast. Not only do you help us pay our producers a fair wage, you will also get special access to content right in your inbox and invites to online events. We are so grateful to all of you who have joined our Patreon community already. Anyways, keep looking up. This has been Astronomy Cast.

Categories: Astronomy

Aurora over Idaho

NASA Image of the Day - Mon, 05/13/2024 - 5:33pm
The aurora turns the sky near Malad City, Idaho, red, purple, and green in this 8-second exposure taken on May 11, 2024.
Categories: Astronomy, NASA

Aurora over Idaho

NASA - Breaking News - Mon, 05/13/2024 - 5:20pm
NASA/Bill Dunford

The aurora paints the sky near Malad City, Idaho, red, purple, and green in this May 11, 2024, image. This aurora was sparked by multiple eruptions of solar material—called coronal mass ejections—colliding with Earth’s magnetic field. This interaction with Earth’s magnetic field can spark a geomagnetic storm and send particles from space rocketing down magnetic field lines toward Earth, where they excite molecules in our planet’s upper atmosphere, releasing light and creating auroras.

Image Credit: NASA/Bill Dunford

Categories: NASA

Ultrasound therapy could treat lung condition linked to heart failure

New Scientist Space - Cosmology - Mon, 05/13/2024 - 5:06pm
Mice benefitted from ultrasound therapy for a rare lung condition – the treatment might work for common forms of high blood pressure, too
Categories: Astronomy

Ultrasound therapy could treat lung condition linked to heart failure

New Scientist Space - Space Headlines - Mon, 05/13/2024 - 5:06pm
Mice benefitted from ultrasound therapy for a rare lung condition – the treatment might work for common forms of high blood pressure, too
Categories: Astronomy

AI may be to blame for our failure to make contact with alien civilizations

Space.com - Mon, 05/13/2024 - 5:00pm
The rise of AI might explain why the search for extraterrestrial intelligence (SETI) has yet to detect the signatures of advanced technical civilizations elsewhere in the galaxy.
Categories: Astronomy

Meet NASA Women Behind World’s Largest Flying Laboratory

NASA - Breaking News - Mon, 05/13/2024 - 4:30pm

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

NASA’s DC-8 aircraft – the world’s largest flying science laboratory – began its science missions in 1987 and since then, has flown in service of the science community over places like Antarctica, Greenland, and Thailand. Aircraft like the DC-8 have enabled scientists to ask questions about life on Earth and explore them in a way that only NASA’s Airborne Science program can make happen. After 37 years, the DC-8 will retire to Idaho State University, where it will serve as an educational tool for students. 

As the DC-8 approaches its retirement, we highlight five of the women who have made the aircraft and program a success.    

 Kirsten Boogaard, Nicki Reid, Carrie Worth, Erin Waggoner, and WendyBereda of NASA’s Armstrong Flight Research Center in Edwards, California, are building the legacy of women who are helping pave the way for the next generation.

Kirsten Boogaard, Deputy Project Manager for the DC-8 aircraft, leads and manages project planning, integration and resources for airborne science missions since 2020.NASA/Ken Ulbrich Kirsten Boogaard Deputy Project Manager

Kirsten Boogaard wears many hats for the DC-8 program, including deputy project manager, mission manager, and assistant mission director.    

Since 2020, she has served as the deputy project manager on the DC-8 Airborne Science laboratory, leading and managing project planning, integration, and resources.  She is one of three women qualified in the mission director role for the flying laboratory. 

“I am really proud of what I accomplish at work,” Boogaard said. “And I am most proud of being able to work full-time and support numerous deployments while having a child.”

Nickelle Reid Operations Engineer   

As operations engineer, Nicki Reid authorizes the airworthiness for the aircraft by ensuring that the science instruments added onboard sustain the aircraft’s safety. She also serves as the mission director, where she manages communications with the cabin and cockpit crews.    

“It takes a lot of practice to get used to hearing all the different conversations and weeding out what’s important, staying focused, and staying on top of all the action that’s happening,” Reid said.     

For a science mission project, that focus is essential to maintaining efficient communication between scientists and pilots.  Reid has been honing that skill since she started as an intern at NASA Armstrong.

Airborne science missions are not for the faint of heart! Pilot Carrie Worth and Operations Engineer Nicki Reid are all smiles after landing from a successful science flight.Photo courtesy of Carrie Worth Carrie Worth Pilot    

Carrie Worth is part of a team uniquely qualified to fly the DC-8. Her journey to her career as a pilot began as a child.

“When I was a little kid, I saw Patty Wagstaff perform aeronautical stunts at the airshow in Oshkosh, Wisconsin,” Carrie Worth, NASA DC-8 pilot, said. “I decided then and there that I wanted to be a pilot.”     

Before joining NASA, Worth served 21 years in the U.S. Air Force as a special operations and search and rescue pilot, and then worked as a 747 pilot for United Parcel Service in Anchorage, Alaska. As a woman working in a male-majority industry, Worth is grateful for the supportive work environment at NASA and the DC-8 program.    

“I feel incredibly lucky for the support I have and have had from my male peers,” she said. “I have seen a significant improvement in the [aviation] culture, but there’s still work to be done.”

Branch Chief of the Research Aerodynamics and Propulsion Branch, Erin Waggoner is all smiles onboard the DC-8 during an airborne science mission deployment.Photo courtesy of Erin Waggoner Erin Waggoner Research Aerodynamics and Propulsion Branch Chief   

In 2011, Erin Wagonner joined the Research Aerodynamics and Propulsion Branch at NASA Armstrong to support sonic boom research. Today, she is the branch chief.   

“I’m thankful for all the mentorship I’ve received throughout my career,” Waggoner said. “Everyone from the maintenance crew to the researchers are very welcoming, willing to share their expertise, and mission-focused.”   

Waggoner’s experience with the DC-8 program inspired her to recognize the value of a team spirit in a successful project.    

“I’ve learned a lot about team dynamics from my time on the DC-8, like how to integrate new members into an existing team,” Waggoner said. “I love being able to encourage young women interested in NASA and aviation, and learning from the women who blazed the trails ahead of me.”

Keeping things running: Wendy Bereda finds a moment to smile with Operations Engineer Nicki Reid on a maintenance day for the DC-8. She has served the DC-8 program for 25 years.Photo courtesy of Wendy Bereda Wendy Bereda Site Supervisor  

Wendy Bereda started working on the DC-8 aircraft in 1999, first as a logistics clerk, later as a project support supply tech. She is now the site supervisor for the maintenance contract at NASA Armstrong. 

“Through the years, I’ve received different accolades, but the one that meant the most to me was given to me by Headquarters for my administrative excellence in finding parts and keeping the DC-8 flying.”     

As a science-driven platform, the DC-8 project is composed of a team driven to provide the best customer service.    

“Our team has so much love for the DC-8,” Bereda said. “We live and breathe to make things happen.  This is why I’m proud to have been a big part of the DC-8 life at Armstrong.” 

Experts like the women above enrich NASA’s legacy of innovation and exploration, and make programs like the DC-8 a success.

Share Details Last Updated May 13, 2024 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms Explore More 8 min read Hubble Celebrates the 15th Anniversary of Servicing Mission 4

Fifteen years ago, human hands touched NASA’s Hubble Space Telescope for the last time. As…

Article 3 days ago
2 min read Hubble Glimpses a Star-Forming Factory

The celestial object showcased in this image from the NASA/ESA Hubble Space Telescope is the…

Article 4 days ago
3 min read NASA Licenses 3D-Printable Superalloy to Benefit US Economy Article 4 days ago Keep Exploring Discover More Topics From NASA

Armstrong Flight Research Center

Armstrong Science Projects

Aircraft Flown at Armstrong

Science in the Air

Categories: NASA

Space Force aims to launch 1st 'Foo Fighter' satellites in 2027 to track hypersonic threats

Space.com - Mon, 05/13/2024 - 4:12pm
The U.S. Space Force's Space Development Agency has ordered the first eight satellites for its upcoming 'FOO Fighter' hypersonic missile-tracking constellation.
Categories: Astronomy

Tech Today: A NASA-Inspired Bike Helmet with Aerodynamics of a Jet  

NASA - Breaking News - Mon, 05/13/2024 - 4:03pm

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Jim Gentes wearing the Jiro Prolight bicycle helmet.Credit: Jiro

Before the U.S. Cycling Federation adopted a requirement for all bike racers to wear helmets in 1986, most people rode without one. The only helmet options at the time drew rider complaints for being too hot and heavy. But, with a bit inspiration from a NASA aircraft wing design used during World War II, more than 20,000 competitive biker racers would soon have a lighter-weight option to protect their heads. 

Jim Gentes, an industrial designer, and bicycling enthusiast developing an aerodynamic bike helmet, saw the new rule as an opportunity. He started Giro Sport Design Inc., now based in Irvine, California, to provide bike racers a speed and safety advantage. Then came the Giro Prolight, a lightweight racing helmet that was cool and aerodynamic, drawing upon a NASA-developed aircraft wing technology.

The National Advisory Committee for Aeronautics (NACA), NASA’s predecessor, developed the NACA 6-series airfoil during World War II to reduce drag in fighter aircraft. Raymond Hicks, an aerodynamicist at NASA’s Ames Research Center in California’s Silicon Valley, helped Gentes adapt that wing design to improve airflow over the helmet, reducing drag. Compared with bareheaded racing, wind tunnel tests confirmed that the reduced drag could save one second in a little over half a mile.

To keep it lightweight, the Prolight used expanded polystyrene foam with a removable Lycra cover. Vents in the front and rear of the helmet let air flow through, using the vacuum created by the rear vents to pull air into the helmet. The vent design also smoothed airflow, reducing turbulence and drag.

In 1986, Gentes added a foam model called the Aerohead. The Hammerhead, a Prolight with a thin shell, came next, followed by the newer, streamlined Aerohead. When Gentes’ friend Greg LeMond won the 1989 Tour de France wearing the Aerohead, worldwide acclaim followed. 

Giro has changed hands several times since the 1980s and today, the brand continues to offer bike helmets and other sporting equipment and apparel. 

Read More Share Details Last Updated May 13, 2024 Related Terms Explore More 2 min read Tech Today: NASA’s Ion Thruster Knowhow Keeps Satellites Flying Article 1 week ago 2 min read Tech Today: Stay Safe with Battery Testing for Space

NASA battery safety exams influence commercial product testing

Article 2 weeks ago
3 min read NASA Data Helps Beavers Build Back Streams Article 3 weeks ago Keep Exploring Discover Related Topics

Technology Transfer & Spinoffs

Ames Research Center

Aeronautics

Technology

Categories: NASA

Sticky oil sprayed onto plants offers alternative to pesticides

New Scientist Space - Cosmology - Mon, 05/13/2024 - 4:00pm
A sticky liquid made from vegetable oil could be sprayed onto plants to catch small pests such as thrips without affecting larger insects such as bees
Categories: Astronomy

Sticky oil sprayed onto plants offers alternative to pesticides

New Scientist Space - Space Headlines - Mon, 05/13/2024 - 4:00pm
A sticky liquid made from vegetable oil could be sprayed onto plants to catch small pests such as thrips without affecting larger insects such as bees
Categories: Astronomy

Some Clever Ways to Search for Primordial Black Holes

Universe Today - Mon, 05/13/2024 - 3:50pm

Primordial Black Holes (PBHs) have recently received much attention in the physics community. One of the primary reasons is the potential link to dark matter. In effect, if PBHs can be proven to exist, there’s a very good chance that they are what dark matter, the invisible thing that makes up 85% of the universe’s mass, is made of. If proven, that would surely be a Nobel-level discovery in astrophysics. 

But to prove it, someone has to find them first. So far, PBHs exist only in theory. But we’re getting closer to proving they do exist, and a new paper from Marcos Flores of the Sorbonne and Alexander Kusenko of UCLA traces some ideas on how we might be able to finally find PBHs and thereby prove or disprove their connection to dark matter.

Drs. Flores and Kusenko focus on understanding PBH formation theories and then extrapolate how those formations might be detectable, even with modern equipment. A typical black hole, which we know exists, forms when supermassive stars collapse under their own weight.

Fraser discusses PBHs.

PBHs were formed before any stars of such size were available to collapse, so they must be formed using a different mechanism. The paper details a theorized PBH formation process that involves a detailed mathematical look at particle asymmetry and how that fits in with other models of particle physics. But how can astronomers see those formations?

One way is by watching a loss of angular momentum. Astronomers can observe “halos” of particles early on in the universe. In many cases, they are spinning rapidly. However, if their spin slows dramatically, it may indicate that a PBH was forming in the vicinity, sapping some of the energy from that angular momentum by pulling the particles towards themselves.

Another way is by watching a new favorite mechanism of astronomers everywhere – gravitational waves. It’s not completely clear whether the formation of PBHs can cause gravitational waves. Still, the paper discusses some frameworks that can potentially lead to a theory of whether they do. 

Fraser discusses how hard it is to find PBHs with Dr. Celeste Keith.

Supersymmetry provides one of those frameworks. In some cases, the early universe operating under the principles of supersymmetry could form a PBH that would form a gravitational wave that the next generation of gravitational wave detectors could potentially detect. In particular, it would involve what the paper calls a “poltergeist mechanism” resulting from space-time perturbations in certain theories. 

A final way to detect these PBHs is to watch for gravitational lenses. Some experiments like the Optical Gravitational Lensing Experiment (OGLE) and the Hyper Suprime-Cam (HSC) of the Subaru telescope have noticed gravitational microlensing where there is no known massive object to cause such lensing. PBHs, which would be effectively invisible to those telescopes, could offer one explanation, though other explanations must be ruled out first.

Other theories offer other opportunities for PBH detection, including watching the interaction of “Q-balls” or theoretical large “blobs” of matter. If enough of these are collected together, they could potentially form a PBH. 

Ultimately, there are more questions than answers surrounding these mysterious objects. If they do exist, they could answer plenty of them. However, more data is needed to prove that beyond any reasonable doubt. Experimentalists are already pushing forward as quickly as they can to develop new and better detectors that can help in the hunt for PBHs. If they do exist, it’s only a matter of time before we find them.

Learn More:
Flores & Kusenko – New ideas on the formation and astrophysical detection of primordial black holes
UT – The Universe Could Be Filled With Ultralight Black Holes That Can’t Die
UT – If We Could Find Them, Primordial Black Holes Would Explain a Lot About the Universe
UT – Neutron Stars Could be Capturing Primordial Black Holes

Lead Image:
Illustration of colliding black holes.
Credit – Caltech / R. Hurt (IPAC)

The post Some Clever Ways to Search for Primordial Black Holes appeared first on Universe Today.

Categories: Astronomy

NASA to Discuss New Polar Climate Mission During Media Teleconference

NASA - Breaking News - Mon, 05/13/2024 - 3:14pm
The PREFIRE mission will launch the first of two CubeSats – depicted in this artist’s concept orbiting Earth – into space on Wednesday, May 22, 2024, to study how much heat the planet absorbs and emits from its polar regions. These measurements will inform climate and ice models.Credits: NASA/JPL-Caltech

NASA is hosting a media call at 3 p.m. EDT, Wednesday, May 15, to discuss the agency’s PREFIRE (Polar Radiant Energy in the Far-InfraRed Experiment) mission, which aims to improve life on Earth by studying heat loss from Earth’s polar regions and provide information on our changing climate.

The first of two shoebox-sized satellites is targeted to launch aboard a Rocket Lab Electron rocket no earlier than Wednesday, May 22. The launch date for the second satellite will be announced shortly after the launch of the first satellite.

Earth absorbs a lot of energy from the Sun at the tropics. Weather and ocean currents move that heat energy toward the poles, where the heat radiates upward into space. Much of that heat is in far-infrared wavelengths and has never been systematically measured. The data from PREFIRE will address this knowledge gap for the benefit of all by improving predictions of climate change and sea level rise.

The audio-only teleconference streamed live on the agency’s website.

Participants include:

  • Karen St. Germain, director, Earth Science Division, NASA Headquarters in Washington
  • Mary White, project manager, PREFIRE, NASA’s Jet Propulsion Laboratory, Southern California
  • Tristan L’Ecuyer, principal investigator, PREFIRE, University of Wisconsin-Madison
  • Peter Beck, CEO and founder, Rocket Lab

To participate by telephone, media must RSVP no later than two hours before the start of the call, to Elizabeth Vlock at: elizabeth.a.vlock@nasa.gov.

For more information about NASA’s PREFIRE mission, visit:

https://science.nasa.gov/mission/prefire

-end-

Karen Fox / Elizabeth Vlock
Headquarters, Washington
karen.c.fox@nasa.gov / elizabeth.a.vlock@nasa.gov

Jane Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov

Share Details Last Updated May 13, 2024 LocationNASA Headquarters Related Terms
Categories: NASA

Station Science 101 | Research in Microgravity: Higher, Faster, Longer

NASA - Breaking News - Mon, 05/13/2024 - 3:05pm
5 Min Read Station Science 101 | Research in Microgravity: Higher, Faster, Longer NASA astronaut Megan McArthur services donor cells inside the Kibo laboratory module’s Life Science Glovebox for the Celestial Immunity study. Credits: NASA

The International Space Station provides unique features that enable innovative research, including microgravity, exposure to space, a unique orbit, and hands-on operation by crew members.

Microgravity

The space station provides consistent, long-term access to microgravity. Eliminating the effects of Earth’s gravity on experiments is a game-changer across many disciplines, including research on living things and physical and chemical processes. For example, without gravity hot air does not rise, so flames become spherical and behave differently. Removing the forces of surface tension and capillary movement allows scientists to examine fluid behavior more closely.

A flame created in microgravity during the SoFIE-GEL experiment.NASA A Unique Orbit

The speed, pattern, and altitude of the space station’s orbit provide unique advantages. Traveling at 17,500 miles per hour, it circles the planet every 90 minutes, passing over a majority of Earth’s landmass and population centers in daylight and darkness. Its 250-mile-high altitude is low enough for detailed observation of features, atmospheric phenomena, and natural disasters from different angles and with varying lighting conditions. At the same time, the station is high enough to study how space radiation affects material durability and how organisms adapt and examine phenomena such as neutron stars and blackholes. The spacecraft also places observing instruments outside Earth’s atmosphere and magnetic field, which can interfere with observations from the ground.

Instruments on the outside of the space station.NASA Crewed Laboratory

Other satellites in orbit contain scientific experiments and conduct Earth observations, but the space station also has crew members aboard to manage and maintain scientific activities. Human operators can respond to and assess events in real time, swap out experiment samples, troubleshoot, and observe results first-hand. Crew members also pack experiment samples and send them back to the ground for detailed analysis.

NASA astronaut Mark Vande Hei uses a microscope to capture images for an engineered tissue study.NASA Twenty Years and Counting

Thanks to the space station’s longevity, experiments can continue for months or even years. Scientists can design follow-up studies based on previous results, and every expedition offers the chance to expand the number of subjects for human research.

One area of long-term human research is on changes in vision, first observed when astronauts began spending months at a time in space. Scientists wondered whether fluids shifting from the lower to the upper body in microgravity caused increased pressure inside the head that changed eye shape. The Fluid Shifts investigation began in 2015 and continued to measure the extent of fluid shifts in multiple astronauts through 2020.1

Whether the original study is long or short, it can take years for research to go from the lab into practical applications. Many steps are involved, some of them lengthy. First, researchers must come up with a question and a possible answer, or hypothesis. For example, Fluid Shifts questioned what was causing vision changes and a possible answer was increased fluid pressure in the head. Scientists must then design an experiment to test the hypothesis, determining what data to collect and how to do so.

NASA astronaut Nick Hague collects intraocular pressure from NASA astronaut Andrew Morgan for the Fluid Shifts study.NASA

Getting research onto the space station in the first place takes time, too. NASA reviews proposals for scientific merit and relevance to the agency’s goals. Selected investigations are assigned to a mission, typically months in the future. NASA works with investigators to meet their science requirements, obtain approvals, schedule crew training, develop flight procedures, launch hardware and supplies, and collect any preflight data needed. Once the study launches, in-flight data collection begins. When scientists complete their data collection, they need time to analyze the data and determine what it means. This may take a year or more.

Scientists then write a paper about the results – which can take many months – and submit it to a scientific journal. Journals send the paper to other experts in the same field, a process known as peer review. According to one analysis, this review takes an average of 100 days.2 The editors may request additional analysis and revisions based on this review before publishing.

Adding Subjects Adds Time

Aspects of research on the space station can add more time to the process. Generally, the more test subjects, the better – from 100 to 1,000 subjects for statistically significant results for clinical research. But the space station typically only houses about six people at a time.

Lighting Effects shows how the need for more subjects adds time to a study. This investigation examined whether adjusting the intensity and color of lighting inside the station could help improve crew circadian rhythms, sleep, and cognitive performance. To collect data from enough crew members, the study ran from 2016 until 2020.

Other lengthy studies about how humans adapt to life in space include research on loss of heart muscle and a suite of long-term studies on nutrition, including producing fresh food in space.

NASA astronaut Jessica Watkins works on an investigation testing equipment for growing high-protein food on the space station.NASA

For physical science studies, investigators can send batches of samples to the space station and collect data more quickly, but results can create a need for additional research. Burning and Suppression of Solids (BASS) examined the characteristics of a wide variety of fuel samples from 2011 to 2013, and BASS-II continued that work through 2017. The Saffire series of fire safety demonstrations began in 2016 and wrapped up in 2024. Researchers have answered many burning (pun intended) questions, but still have much to learn about preventing, detecting, and extinguishing fires in space.

A sample of a composite cotton and fiberglass fabric burns during the Saffire-IV experiment.NASA

The timeline for scientific results can run long, especially in microgravity. But those results can be well worth the wait.

Melissa Gaskill
International Space Station Research Communications Team
Johnson Space Center

Search this database of scientific experiments to learn more about those mentioned above.

Citations:

1 Macias BR, Liu JHK, Grande-Gutierrez N, Hargens AR. Intraocular and intracranial pressures during head-down tilt with lower body negative pressure. Aerosp Med Hum Perform. 2015; 86(1):3–7.  https://www.ingentaconnect.com/content/asma/amhp/2015/00000086/00000001/art00004;jsessionid=31bonpcj2e8tj.x-ic-live-01

2 Powell K. Does it take too long to publish research? Nature 530, pages148–151 (2016). https://www.nature.com/articles/530148a

Keep Exploring Discover More Topics

Station Science 101

Latest News from Space Station Research

Space Station Research and Technology Resources

Station Benefits for Humanity

Share Details Last Updated May 13, 2024 Related Terms
Categories: NASA

NASA appoints 1st AI chief to keep agency on 'the cutting edge'

Space.com - Mon, 05/13/2024 - 3:00pm
NASA has appointed its first-ever chief artificial intelligence officer, a move designed to ensure that the agency keeps up with the vital and rapidly evolving tech.
Categories: Astronomy

Record-Breaking Ocean Heat Wave Foreshadows a Dangerous Hurricane Season

Scientific American.com - Mon, 05/13/2024 - 2:00pm

An active hurricane season could be in store because of ocean temperatures in the North Atlantic that broke records for more than a year

Categories: Astronomy

NASA’s Juno Mission Spots Jupiter’s Tiny Moon Amalthea

NASA - Breaking News - Mon, 05/13/2024 - 1:37pm

NASA’s Juno mission captured these views of Jupiter during its 59th close flyby of the giant planet on March 7, 2024. They provide a good look at Jupiter’s colorful belts and swirling storms, including the Great Red Spot. Close examination reveals something more: two glimpses of the tiny moon Amalthea (see Figure B below).

Figure B NASA’s Juno mission captured these views of Jupiter during its 59th close flyby of the giant planet on March 7, 2024. They provide a good look at Jupiter’s colorful belts and swirling storms, including the Great Red Spot. Close examination reveals something more: two glimpses of the tiny moon Amalthea.Image data: NASA/JPL-Caltech/SwRI/MSSS. Image processing by Gerald Eichstädt

With a radius of just 52 miles (84 kilometers), Amalthea has a potato-like shape, lacking the mass to pull itself into a sphere. In 2000, NASA’s Galileo spacecraft revealed some surface features, including impact craters, hills, and valleys. Amalthea circles Jupiter inside Io’s orbit, which is the innermost of the planet’s four largest moons, taking 0.498 Earth days to complete one orbit.

Amalthea is the reddest object in the solar system, and observations indicate it gives out more heat than it receives from the Sun. This may be because, as it orbits within Jupiter’s powerful magnetic field, electric currents are induced in the moon’s core. Alternatively, the heat could be from tidal stresses caused by Jupiter’s gravity.

At the time that the first of these two images was taken, the Juno spacecraft was about 165,000 miles (265,000 kilometers) above Jupiter’s cloud tops, at a latitude of about 5 degrees north of the equator.

Citizen scientist Gerald Eichstädt made these images using raw data from the JunoCam instrument, applying processing techniques to enhance the clarity of the images.

JunoCam’s raw images are available for the public to peruse and process into image products at https://missionjuno.swri.edu/junocam/processing. More information about NASA citizen science can be found at https://science.nasa.gov/citizenscience and https://www.nasa.gov/solve/opportunities/citizenscience.

More information about Juno is at https://www.nasa.gov/juno and https://missionjuno.swri.edu. For more about this finding and other science results, see https://www.missionjuno.swri.edu/science-findings.

Image credit:
Image data: NASA/JPL-Caltech/SwRI/MSSS
Image processing by Gerald Eichstädt

Share Details Last Updated May 13, 2024 Related Terms

Explore More 3 min read NASA’s New Mobile Launcher Stacks Up for Future Artemis Missions  Article 3 days ago 4 min read NASA Selects Students for Europa Clipper Intern Program

NASA has selected 40 undergraduate students for the first year of its Europa ICONS (Inspiring…

Article 2 weeks ago
9 min read Orbits and Kepler’s Laws

Kepler’s Laws of Planetary Motion The story of how we understand planetary motion could not…

Article 2 weeks ago
Categories: NASA