“...all the past is but a beginning of a beginning, and that all that is and has been is but the twilight of dawn.”

— H.G. Wells
1902

Feed aggregator

Fall Into a Black Hole With this New NASA Simulation

Universe Today - Tue, 05/07/2024 - 5:05pm

No human being will ever encounter a black hole. But we can’t stop wondering what it would be like to fall into one of these massive, beguiling, physics-defying singularities.

NASA created a simulation to help us imagine what it would be like.

Jeremy Schnittman is an astrophysicist at NASA’s Goddard Space Flight Center and he created the visualizations. “People often ask about this, and simulating these difficult-to-imagine processes helps me connect the mathematics of relativity to actual consequences in the real universe,” he said. “So I simulated two different scenarios, one where a camera — a stand-in for a daring astronaut — just misses the event horizon and slingshots back out, and one where it crosses the boundary, sealing its fate.”

In one, the viewpoint plunges directly into the black hole like a free-falling astronaut, with explanatory text to guide us through what we’re seeing. The other is a 360-degree view of the black hole.

Schnittman created them with a NASA supercomputer called Discover in only five days, generating about 10 terabytes of data. The computer used only about 0.3% of its power. The same visualization would’ve taken more than a decade to create on an average laptop computer.

The black hole in the visualization is the same size as Sagittarius A star, the supermassive black hole (SMBH) at the heart of the Milky Way. It has 4.3 million solar masses and dominates the galaxy’s inner regions. Its event horizon reaches about 25 million km (16 million miles). That’s about 17% of the distance from Earth to the Sun. The event horizon is surrounded by an accretion disk, a swirling disk of superheated material drawn in by the black hole’s overpowering gravity.

Another type of black hole, the stellar-mass black hole, is much less massive. Schnittman says that if you’re going to fall into a black hole, you’d rather fall into the supermassive one.

“If you have the choice, you want to fall into a supermassive black hole,” Schnittman explained. “Stellar-mass black holes, which contain up to about 30 solar masses, possess much smaller event horizons and stronger tidal forces, which can rip apart approaching objects before they get to the horizon.”

Powerful gravity is the reason. The SMBH’s gravity is so strong that it pulls harder on the end of the object nearest it. That stretches the object and elongates it. Stephen Hawking was the first to call this ‘spaghettification,’ and the name has stuck. Presumably, you’d get a better look if you fall into an SMBH.

In the movies, the camera begins at a distance of 640 million km (400 million miles.) Since space-time is warped around a black hole, so are the images of the sky, the black hole’s disk, and the photon ring. It takes the camera three hours of real-time to fall into the event horizon, and it completes almost two 30-minute orbits as it falls. A distant observer would never see an object ever reach the black hole. From a distance, the object would freeze at the event horizon.

When a falling object reaches the event horizon, it and space-time itself reach the speed of light. After crossing the horizon, the object and the space-time around it surge toward the singularity, a point of infinite density and gravity. “Once the camera crosses the horizon, its destruction by spaghettification is just 12.8 seconds away,” Schnittman said.

In the second video, the camera never crosses the event horizon and instead escapes. But the powerful black hole still has an effect. Imagine if the camera were an astronaut, and they flew this six-hour roundtrip while a separate astronaut stayed far away from the SMBH. The astronaut would return and be 36 minutes younger than the astronaut who never approached the black hole.

“This situation can be even more extreme,” Schnittman noted. “If the black hole were rapidly rotating, like the one shown in the 2014 movie ‘Interstellar,’ she would return many years younger than her shipmates.”

The bottom line is, don’t fall into a black hole. In fact, resist your fascination and don’t even approach one.

Leave them for the physicists.

The post Fall Into a Black Hole With this New NASA Simulation appeared first on Universe Today.

Categories: Astronomy

Next-gen satellites will paint a clearer picture of a changing Earth

Space.com - Tue, 05/07/2024 - 5:00pm
From tracking hazards in the ocean to predicting the strength of hurricanes, NOAA's GeoXO series continues on the legacy of the GOES-R series — but with exciting upgrades.
Categories: Astronomy

NASA’s TESS Returns to Science Operations

NASA - Breaking News - Tue, 05/07/2024 - 4:51pm

4 min read

NASA’s TESS Returns to Science Operations

NASA’s TESS (Transiting Exoplanet Survey Satellite) returned to science operations May 3 and is once again making observations. The satellite went into safe mode April 23 following a separate period of down time earlier that month.

The operations team determined this latest safe mode was triggered by a failure to properly unload momentum from the spacecraft’s reaction wheels, a routine activity needed to keep the satellite properly oriented when making observations. The propulsion system, which enables this momentum transfer, had not been successfully repressurized following a prior safe mode event April 8. The team has corrected this, allowing the mission to return to normal science operations. The cause of the April 8 safe mode event remains under investigation. 

The TESS mission is a NASA Astrophysics Explorer operated by the Massachusetts Institute of Technology in Cambridge, Massachusetts. Launched in 2018, TESS has been scanning almost the entire sky looking for planets beyond our solar system, known as exoplanets. The TESS mission has also uncovered other cosmic phenomena, including star-shredding black holes and stellar oscillations. Read more about TESS discoveries at nasa.gov/tess.

Media contact:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

April 24 NASA’s Planet-Hunting Satellite Temporarily on Pause

During a routine activity April 23, NASA’s TESS (Transiting Exoplanet Survey Satellite) entered safe mode, temporarily suspending science operations. The satellite scans the sky searching for planets beyond our solar system.

The team is working to restore the satellite to science operations while investigating the underlying cause. NASA also continues investigating the cause of a separate safe mode event that took place earlier this month, including whether the two events are connected. The spacecraft itself remains stable.

The TESS mission is a NASA Astrophysics Explorer operated by the Massachusetts Institute of Technology in Cambridge, Massachusetts. Launched in 2018, TESS recently celebrated its sixth anniversary in orbit. Visit nasa.gov/tess for updates.

Media contact:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

April 17, 2024 NASA’s TESS Returns to Science Operations

NASA’s TESS (Transiting Exoplanet Survey Satellite) has returned to work after science observations were suspended on April 8, when the spacecraft entered into safe mode. All instruments are powered on and, following the successful download of previously collected science data stored in the mission’s recorder, are now making new science observations.

Analysis of what triggered the satellite to enter safe mode is ongoing.

The TESS mission is a NASA Astrophysics Explorer operated by MIT in Cambridge, Massachusetts. Launched in 2018, TESS has been scanning almost the entire sky looking for planets beyond our solar system, known as exoplanets. The TESS mission has also uncovered other cosmic phenomena, including star-shredding black holes and stellar oscillations. Read more about TESS discoveries at nasa.gov/tess.

Media contact:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

April 11, 2024 NASA’s TESS Temporarily Pauses Science Observations

NASA’s TESS (Transiting Exoplanet Survey Satellite) entered into safe mode April 8, temporarily interrupting science observations. The team is investigating the root cause of the safe mode, which occurred during scheduled engineering activities. The satellite itself remains in good health.

The team will continue investigating the issue and is in the process of returning TESS to science observations in the coming days.

The TESS mission is a NASA Astrophysics Explorer operated by MIT in Cambridge, Massachusetts. Launched in 2018, TESS has been scanning almost the entire sky looking for planets beyond our solar system, known as exoplanets. The TESS mission has also uncovered other cosmic phenomena, including star-shredding black holes and stellar oscillations. Read more about TESS discoveries at nasa.gov/tess.

Media Contact:
Claire Andreoli
(301) 286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share

Details

Last Updated

May 07, 2024

Related Terms
Categories: NASA

NASA Challenge Gives Artemis Generation Coders a Chance to Shine

NASA - Breaking News - Tue, 05/07/2024 - 4:16pm

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

NASA’s Office of STEM Engagement selected seven student teams to participate in a culminating event for the 2024 App Development Challenge (ADC), one of the agency’s Artemis Student Challenges, at NASA’s Johnson Space Center in Houston from April 15-18, 2024.

The 2024 App Development Challenge top teams in front of the Orion Capsule in the Space Vehicle Mockup Facility at NASA’s Johnson Space Center in Houston.

The coding challenge, celebrating its fifth year and a part of NASA’s Next Generation STEM project, invites middle and high school student teams to create an application visualizing the Moon’s South Pole region and display essential information for navigating the lunar surface. Additionally, students learn about the complexities of communicating from the lunar surface with Earth-based assets from NASA’s Space Communications and Navigation (SCaN) team.

Five of the top ADC teams traveled to Johnson and shared their applications with the public at Space Center Houston, and with the NASA workforce including Deputy Associate Administrator for SCaN Kevin Coggins, flight director Chloe Mehring and NASA astronaut Andre Douglas. Additionally, the teams toured Johnson’s unique facilities including Johnson’s simulation lab, robotics lab, the Space Vehicle Mockup Facility, the Neutral Buoyancy Lab, and Mission Control.

NASA Astronaut Andre Douglas reviews DV Explorers’, a 2024 App Development Challenge top team from Baton Rouge Magnet School in Baton Rouge, Louisiana, application for traversing the lunar surface.

Two ADC teams that received honorable mentions were invited to attend virtually where they presented their applications to the NASA workforce including Chief Architect for SCaN and ADC Technical Advisor Jim Schier, and to the five top teams.

“The NASA ADC project helped us learn a lot about Unreal Engine 5, Unity, and Blender,” said Team Big Bang from Falcon Cove Middle School in Weston, Florida. “Not to mention, this project also provided us with life lessons such as communication and time management skills…our team will come out of this project as winners because of everything we learned.”

2024 was the inaugural year for the Artemis Student Challenge awards. Michelle Freeman, the lead teacher for Team Big Bang, was awarded the Artemis Educator Award for the ADC. She was nominated by her student team for inspiring and motivating them to work hard and achieve more than the team thought possible.

Additionally, Team FrostByte from North High School in Des Moines, Iowa, earned the Pay It Forward award. The team conducting impactful education engagement events in their community. There efforts inspired the community to support their efforts and to ensure future ADC teams would have support.

“We’ve said that they are walking an unlit path because no one at our school or in our district has lit it before them. Now, they’re the ones lighting the way,” stated Jessie Nunes, lead teacher of Team FrostByte.

Student team members of FrostByte, a 2024 App Development Challenge top team from North High School in Des Moines, Iowa, explain their computer application for exploring the lunar surface to members of the public at Space Center Houston.

The following five schools were selected as top teams:

  • Baton Rouge Magnet High School: Baton Rouge, Louisiana
  • Dougherty Valley High School: San Ramon, California
  • North High School: Des Moines, Iowa
  • Sherman Oaks Center for Enriched Studies: Reseda, California
  • Trinity Christian School: Morgantown, West Virginia

The following schools were selected as honorable mentions:

  • Eddison Academy Magnet School: Edison, New Jersey
  • Falcon Cove Middle School: Weston, Florida
Previous Years

2024: NASA Challenge Invites Artemis Generation Coders to Johnson Space Center – NASA

2023: Artemis Generation Coders Earn Invite to Johnson Space Center

2021: NASA App Development Challenge Selects Artemis Generation Coders for Virtual Culminating Event – NASA

Explore More 3 min read White Sands Propulsion Team Tests 3D-Printed Orion Engine Component Article 12 hours ago 5 min read How NASA’s Roman Mission Will Hunt for Primordial Black Holes Article 14 hours ago 4 min read A Different Perspective – Remembering James Dean, Founder of the NASA Art Program Article 1 day ago
Categories: NASA

New Proposals to Help NASA Advance Knowledge of Our Changing Climate

NASA - Breaking News - Tue, 05/07/2024 - 4:14pm
On May 7, 2024, NASA announced the selection of four proposals for concept studies of missions to benefit humanity through the study of Earth science. Most of what we know about Earth has been gathered through NASA’s 60 years of observations from space, such as this image of our home planet as shown as a mosaic of data from MODIS (Moderate Resolution Imaging Spectroradiometer). Credits: NASA

NASA has selected four proposals for concept studies of missions to help us better understand Earth science key focus areas for the benefit of all including greenhouse gases, the ozone layer, ocean surface currents, and changes in ice and glaciers around the world.

These four investigations are part of the agency’s new Earth System Explorers Program – which conducts principal investigator-led space science missions as recommended by the National Academies of Sciences, Engineering, and Medicine 2017 Decadal Survey for Earth Science and Applications from Space. The program is designed to enable high-quality Earth system science investigations to focus on previously identified key targets. For this set of missions, NASA is prioritizing greenhouse gases as one of its target observables.

“The proposals represent another example of NASA’s holistic approach to studying our home planet,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “As we continue to confront our changing climate, and its impacts on humans and our environment, the need for data and scientific research could not be greater. These proposals will help us better prepare for the challenges we face today, and tomorrow.”

As the first step of a two-step selection process, each of these proposals will receive $5 million to conduct a one-year mission concept study. After the study period, NASA will choose two proposals to go forward to launch with readiness dates expected in 2030 and 2032. The total mission cost cap is $310 million for each chosen investigation, excluding the rocket and access to space, which will be provided by NASA. 

Most of what we know about our changing planet is rooted in more than 60 years of NASA’s Earth observations. NASA currently has more than two dozen Earth-observing satellites and instruments in orbit. The missions ultimately selected from this set of proposals will make their own unique contributions to this great Earth observatory – which works together to provide layers of complementary information on Earth’s oceans, land, ice, and atmosphere.

The four proposals selected for concept studies are: 

  • The Stratosphere Troposphere Response using Infrared Vertically-Resolved Light Explorer (STRIVE)
    This mission would provide daily, near-global, high-resolution measurements of temperature, a variety of atmospheric elements, and aerosol properties from the upper troposphere to the mesosphere – at a much higher spatial density than any previous mission. It would also measure vertical profiles of ozone and trace gasses needed to monitor and understand the recovery of the ozone layer – another identified NASA Earth sciences target. The proposal is led by Lyatt Jaegle at the University of Washington in Seattle.
  • The Ocean Dynamics and Surface Exchange with the Atmosphere (ODYSEA)
    This satellite would simultaneously measure ocean surface currents and winds to improve our understanding of air-sea interactions and surface current processes that impact weather, climate, marine ecosystems, and human wellbeing. It aims to provide updated ocean wind data in less than three hours and ocean current data in less than six hours. The proposal is led by Sarah Gille at the University of California in San Diego.
  • Earth Dynamics Geodetic Explorer (EDGE)
    This mission would observe the three-dimensional structure of terrestrial ecosystems and the surface topography of glaciers, ice sheets, and sea ice as they are changing in response to climate and human activity. The mission would provide a continuation of such measurements that are currently measured from space by ICESat-2 and GEDI (Global Ecosystem Dynamics Investigation). The proposal is led by Helen Amanda Fricker at the University of California in San Diego.
  • The Carbon Investigation (Carbon-I)
    This investigation would enable simultaneous, multi-species measurements of critical greenhouse gases and potential quantification of ethane – which could help study processes that drive natural and anthropogenic emissions. The mission would provide unprecedented spatial resolution and global coverage that would help us better understand the carbon cycle and the global methane budget. The proposal is led by Christian Frankenberg at the California Institute of Technology in Pasadena.

For more information about the Earth System Explorers Program, visit:

https://explorers.larc.nasa.gov/2023ESE/

-end-

Liz Vlock
Headquarters, Washington
202-358-1600
elizabeth.a.vlock@nasa.gov

Share Details Last Updated May 07, 2024 LocationNASA Headquarters Related Terms
Categories: NASA

Could alien life be hiding in the rings of Saturn or Jupiter?

Space.com - Tue, 05/07/2024 - 3:00pm
The rings that circle gas giants like Saturn are composed mostly of water-ice particles. Could life exist in these beautiful and enigmatic structures?
Categories: Astronomy

Jupiter’s Great Red Spot

NASA Image of the Day - Tue, 05/07/2024 - 2:15pm
This image of Jupiter’s iconic Great Red Spot and surrounding turbulent zones was captured by NASA’s Juno spacecraft. The color-enhanced image is a combination of three separate images taken on April 1, 2018, as Juno performed its 12th close flyby of Jupiter. At the time the images were taken, the spacecraft was 15,379 miles (24,749 kilometers) to 30,633 miles (49,299 kilometers) from the tops of the clouds of the planet.
Categories: Astronomy, NASA

Jupiter’s Great Red Spot

NASA - Breaking News - Tue, 05/07/2024 - 2:07pm
NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt/Seán Doran

This April 1, 2018, enhanced-color image of Jupiter’s Great Red Spot was captured by NASA’s Juno spacecraft. The image is a combination of three separate images taken as Juno performed its 12th close flyby of the planet.

The Great Red Spot, a swirling oval of clouds twice as wide as Earth, has been observed on the giant planet for more than 300 years. In 2021, findings from Juno showed that Jupiter’s storms are far taller than expected, with some extending 60 miles (100 kilometers) below the cloud tops and others, including the Great Red Spot, extending over 200 miles (350 kilometers).

Juno is a solar-powered spacecraft that spans the width of a basketball court and makes long, looping orbits around Jupiter. It seeks answers to questions about the origin and evolution of Jupiter, our solar system, and giant planets across the cosmos.

Image Credit: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt/Seán Doran

Categories: NASA

James Webb Space Telescope suggests supermassive black holes grew from heavy cosmic 'seeds'

Space.com - Tue, 05/07/2024 - 2:00pm
The mystery of how early universe supermassive black holes grew so quickly may be solved, with the James Webb Space Telescope finding the first evidence of "heavy seeds."
Categories: Astronomy

International SWOT Mission Can Improve Flood Prediction

NASA - Breaking News - Tue, 05/07/2024 - 1:05pm

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Flooding on the Souris River inundated this community in North Dakota in 2011. The U.S.-French SWOT satellite is giving scientists and water managers a new tool to look at floods in 3D, information that can improve predictions of where and how often flooding will occur.Credit: North Dakota State Water Commission

A partnership between NASA and the French space agency, the satellite is poised to help improve forecasts of where and when flooding will occur in Earth’s rivers, lakes, and reservoirs.

Rivers, lakes, and reservoirs are like our planet’s arteries, carrying life-sustaining water in interconnected networks. When Earth’s water cycle runs too fast, flooding can result, threatening lives and property. That risk is increasing as climate change alters precipitation patterns and more people are living in flood-prone areas worldwide.

Scientists and water managers use many types of data to predict flooding. This year they have a new tool at their disposal: freshwater data from the Surface Water and Ocean Topography (SWOT) satellite. The observatory, a collaboration between NASA and the French space agency, CNES (Centre National d’Études Spatiales), is measuring the height of nearly all water surfaces on Earth. SWOT was designed to measure every major river wider than about 300 feet (100 meters), and preliminary results suggest it may be able to observe much smaller rivers.

Flooding from monsoon rains covers a wide region of northeast Bangladesh in this Oct. 8, 2023, image showing data from SWOT. The U.S.-French satellite is the first to provide timely, precise water surface elevation information over entire regions at high resolution, enabling improved flooding forecasts. Credit: NASA/JPL-Caltech/UNC-Chapel Hill/Google Earth SWOT river slope data — like that depicted here for California’s Sacramento River — can improve predictions of how fast water flows through rivers and off landscapes. To calculate slope, scientists subtract the lower water elevation (right) from the higher one (left) and divide by segment length. Credit: NASA/JPL-Caltech/UNC-Chapel Hill/Google Earth

Stream gauges can accurately measure water levels in rivers, but only at individual locations, often spaced far apart. Many rivers have no stream gauges at all, particularly in countries without resources to maintain and monitor them. Gauges can also be disabled by floods and are unreliable when water overtops the riverbank and flows into areas they cannot measure.

SWOT provides a more comprehensive, 3D look at floods, measuring their height, width, and slope. Scientists can use this data to better track how floodwaters pulse across a landscape, improving predictions of where flooding will occur and how often.

Building a Better Flood Model

One effort to incorporate SWOT data into flood models is led by J. Toby Minear of the Cooperative Institute for Research in Environmental Sciences (CIRES) in Boulder, Colorado. Minear is investigating how to incorporate SWOT data into the National Oceanic and Atmospheric Administration’s National Water Model, which predicts the potential for flooding and its timing along U.S. rivers. SWOT freshwater data will fill in spatial gaps between gauges and help scientists like Minear determine the water levels (heights) at which flooding occurs at specific locations along rivers. 

UNC-Chapel Hill doctoral student Marissa Hughes levels a tripod to install a GPS unit to precisely measure the water surface elevation of a segment of New Zealand’s Waimakariri River. The measurements were used to calibrate and validate data from the U.S.-French SWOT satellite.Credit: Alyssa LaFaro/UNC Research

He expects SWOT to improve National Water Model data in multiple ways. For example, it will provide more accurate estimates of river slopes and how they change with streamflow. Generally speaking, the steeper a river’s slope, the faster its water flows. Hydrologic modelers use slope data to predict the speed water moves through a river and off a landscape.

SWOT will also help scientists and water managers quantify how much water lakes and reservoirs can store. While there are about 90,000 relatively large U.S. reservoirs, only a few thousand of them have water-level data that’s incorporated into the National Water Model. This limits scientists’ ability to know how reservoir levels relate to surrounding land elevations and potential flooding. SWOT is measuring tens of thousands of U.S. reservoirs, along with nearly all natural U.S. lakes larger than about two football fields combined.

Some countries, including the U.S., have made significant investments in river gauging networks and detailed local flood models. But in Africa, South Asia, parts of South America, and the Arctic, there’s little data for lakes and rivers. In such places, flood risk assessments often rely on rough estimates. Part of SWOT’s potential is that it will allow hydrologists to fill these gaps, providing information on where water is stored on landscapes and how much is flowing through rivers.

Tamlin Pavelsky, NASA’s SWOT freshwater science lead and a researcher at the University of North Carolina at Chapel Hill, says SWOT can help address the growing threat of flooding from extreme storms fueled by climate change. “Think about Houston and Hurricane Harvey in 2017,” he said. “It’s very unlikely we would have seen 60 inches of rain from one storm without climate change. Societies will need to update engineering design standards and floodplain maps as intense precipitation events become more common.”

Pavelsky says these changes in Earth’s water cycle are altering society’s assumptions about floods and what a floodplain is. “Hundreds of millions of people worldwide will be at increased risk of flooding in the future as rainfall events become increasingly intense and population growth occurs in flood-prone areas,” he added.

SWOT flood data will have other practical applications. For example, insurers can use models informed by SWOT data to improve flood hazard maps to better estimate an area’s potential damage and loss risks. A major reinsurance company, FM Global, is among SWOT’s 40 current early adopters — a global community of organizations working to incorporate SWOT data into their decision-making activities.

“Companies like FM Global and government agencies like the U.S. Federal Emergency Management Agency can fine tune their flood models by comparing them to SWOT data,” Pavelsky said. “Those better models will give us a more accurate picture of where and how often floods are likely to happen.”

More About the Mission

Launched on Dec. 16, 2022, from Vandenberg Space Force Base in central California, SWOT is now in its operations phase, collecting data that will be used for research and other purposes.

SWOT was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the project’s U.S. component. For the flight system payload, NASA provided the KaRIn instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations. CNES provided the Doppler Orbitography and Radioposition Integrated by Satellite (DORIS) system, dual frequency Poseidon altimeter (developed by Thales Alenia Space), KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations. CSA provided the KaRIn high-power transmitter assembly. NASA provided the launch vehicle and the agency’s Launch Services Program, based at Kennedy Space Center, and managed the associated launch services.

For more on SWOT, visit:

https://swot.jpl.nasa.gov/.

News Media Contacts

Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov

Written by Alan Buis

2024-060

Share Details Last Updated May 07, 2024 Related Terms Explore More 6 min read International SWOT Mission Can Improve Flood Prediction 

A partnership between NASA and the French space agency, the satellite is poised to help…

Article 5 hours ago
5 min read NASA Is Helping Protect Tigers, Jaguars, and Elephants. Here’s How.

As human populations grow, habitat loss threatens many creatures. Mapping wildlife habitat using satellites is…

Article 5 days ago
2 min read NASA Partner Zooniverse Receives White House Open Science Award

Congrats to NASA partner Zooniverse for being named winners in the White House’s Year of Open Science Recognition…

Article 5 days ago
Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

'God's Hand' interstellar cloud reaches for the stars in new Dark Energy Camera image (video)

Space.com - Tue, 05/07/2024 - 12:59pm
The Dark Energy Camera has imaged a ghostly hand claw reaching out to grab a distant galaxy. There's nothing supernatural about this structure known as "God's Hand," but it's awe-inspiring nonetheless.
Categories: Astronomy

NASA's James Webb Space Telescope mission — Live updates

Space.com - Tue, 05/07/2024 - 12:05pm
Read the latest news about NASA's James Webb Space Telescope.
Categories: Astronomy

White Sands Propulsion Team Tests 3D-Printed Orion Engine Component

NASA - Breaking News - Tue, 05/07/2024 - 12:05pm

When the Orion spacecraft carries the first Artemis crews to the Moon and back, it will rely on the European Service Module contributed by ESA (European Space Agency) to make the journey. The service module provides electrical power generation, propulsion, temperature control, and consumable storage for Orion, up to the moment it separates from the crew module prior to re-entry into Earth’s atmosphere.

For the first six Artemis missions – Artemis I through Artemis VI – NASA and ESA will use a refurbished Orbital Maneuvering System (OMS) engine from the space shuttle program as the European Service Module’s main engine. Beyond Artemis VI, NASA will need a new engine to support Orion.

That need will be met by the Orion Main Engine (OME) in development with Aerojet Rocketdyne (now L3 Harris), but before the OME can fly, all of its components must be thoroughly tested.

Enter the Propulsion Test Office at NASA’s White Sands Test Facility. From November 2023 to January 2024, this team led rigorous testing of a critical OME component: the injector that delivers propellants to power the engine and provides the thrust necessary to return Orion home from the Moon.

Orion Main Engine injector test team members at NASA’s White Sands Test Facility.NASA/Reed Elliott

The tests were performed on Test Stand 301A in White Sands’ Propulsion 300 Area. The injector was mounted to a test engine that fired multiple times for three seconds each, for a total of 21 tests. With each test, the White Sands team sought to demonstrate the OME injector’s ability to maintain consistent and controlled combustion and to return to normal operations if the combustion process was artificially perturbed.

Many White Sands team members were involved in this effort. James Hess, project manager and operations director, ensured the tests were completed safely and successfully by overseeing operations, and confirming test requirements were met. James Mahoney handled the test schedule and budget as project lead, while Jordan Aday directed operations and the actual tests. Other key roles included lead electrical engineer Sal Muniz, and instrumentation engineer Jesus Lujan-Martino. Aerojet Rocketdyne’s Shaun DeSouza served as test article director, working to ensure the injector operated as expected and that test condition requirements were met. Additional support was provided by OME Program team members at NASA’s Johnson Space Center and Glenn Research Center.

Orion Main Engine injector test engine firing.NASA

The results confirmed that the OME injector could maintain stable combustion, and the team determined the tests were successful. A unique aspect of the OME injector is that it was fabricated through an additive manufacturing process called selective laser machining – basically 3D printing with metallic powders instead of plastics. Demonstrating the effectiveness of 3D printed components could help NASA and its partners lower costs and increase efficiencies in development processes.

The injector design will now be incorporated into a full OME that will be tested as a full engine assembly at White Sands once it is ready.  

Categories: NASA

The Force is strong with new 'Star Wars: The Acolyte' trailer (video)

Space.com - Tue, 05/07/2024 - 12:00pm
Disney+ releases a new trailer for its upcoming series "Star Wars: The Acolyte" that delves into the High Republic era and seems to depict a deep awakening of the Sith.
Categories: Astronomy

Sperm whale clicks could be the closest thing to a human language yet

New Scientist Space - Cosmology - Tue, 05/07/2024 - 12:00pm
Analysis of thousands of exchanges between the intelligent cetaceans suggests they combine short click patterns – similar to letters of the alphabet - into longer sequences
Categories: Astronomy

Sperm whale clicks could be the closest thing to a human language yet

New Scientist Space - Space Headlines - Tue, 05/07/2024 - 12:00pm
Analysis of thousands of exchanges between the intelligent cetaceans suggests they combine short click patterns – similar to letters of the alphabet - into longer sequences
Categories: Astronomy

Scientists Warn against Treating Forests as Carbon Commodities

Scientific American.com - Tue, 05/07/2024 - 12:00pm

Using forests to prop up carbon markets can lead to “perverse effects” on land management, such as cutting out local communities

Categories: Astronomy

Why we are finally within reach of a room-temperature superconductor

New Scientist Space - Cosmology - Tue, 05/07/2024 - 12:00pm
A practical superconductor would transform the efficiency of electronics. After decades of hunting, several key breakthroughs are inching us very close to this coveted prize
Categories: Astronomy

Why we are finally within reach of a room-temperature superconductor

New Scientist Space - Space Headlines - Tue, 05/07/2024 - 12:00pm
A practical superconductor would transform the efficiency of electronics. After decades of hunting, several key breakthroughs are inching us very close to this coveted prize
Categories: Astronomy

Ken Carpenter: Ensuring Top-Tier Science from Moon to Stars

NASA - Breaking News - Tue, 05/07/2024 - 11:43am

Today, Ken Carpenter is a scientist for NASA’s Hubble and Roman space telescopes, but in 1967 he was just a teenager at his local library out to fact-check a “Star Trek” episode.

Name: Kenneth G. Carpenter
Title: Operations Project Scientist for Hubble Space Telescope; Ground System Scientist for Roman Space Telescope; and a NASA Innovative Advanced Concepts (NIAC) Fellow and Principal Investigator for the Artemis-Enabled Stellar Imager (AeSI) NIAC Study.
Formal Job Classification: Astrophysicist
Organization: Exoplanets and Stellar Astrophysics Laboratory, Astrophysics Division, Science Directorate (Code 667)

Ken Carpenter is an operations project scientist for Hubble Space Telescope; ground system scientist for Roman Space Telescope; and a NASA innovative advanced concepts (NIAC) fellow and principal investigator for the Artemis-Enabled Stellar Imager (AeSI) NIAC Study.NASA/Bill Hrybyk

What do you do and what is most interesting about your role here at Goddard?

As the operations project scientist for Hubble Space Telescope, I represent the astronomical community to the project management and help ensure that Hubble produces the best quality science possible consistent with other project requirements like cost and schedule.

I am also the ground system scientist for Roman Space Telescope, a role that entails overseeing the design and operation of the ground system and advising management to ensure we maximize the science.

As a NIAC fellow and principal investigator for the AeSI mission concept study, I am studying the possibility of building a large baseline UV-optical interferometer on the lunar surface in conjunction with the Artemis campaign.

What is your educational background?

In 1977, I graduated from Wesleyan University with a bachelor’s and master’s in astronomy. In 1983, I graduated from The Ohio State University with a Ph.D. in astronomy. That same year, I took a post-doctoral research position at the University of Colorado in Boulder.

What brought you to Goddard?

While at the University of Colorado, my mentor told me about an opportunity at Ball Aerospace to help put a new detector into one of Hubble’s instruments. I helped calibrate that detector for the Goddard High Resolution Spectrograph (GHRS) while in my research position. As a result, the University of Colorado offered me a new position at Goddard to help coordinate the development of the GHRS ground system.

Doing the extra work for Ball Aerospace while with the University of Colorado was an unusual path to take, but it led to my job at Goddard. The lesson here is do not be afraid of an unusual career path because a nontraditional path may lead to a great opportunity.

What is the most interesting thing you do as the operations project scientist for Hubble?

I get to be deeply involved in one of NASA’s flagship missions and help astronomers all over the world explore the leading edge of astronomy. I agreed to take this position for only three years in the early ’90s, but it has remained so exciting, challenging, and rewarding that I am still involved today. Working for Hubble has been an amazing experience and a constant delight. Being involved with enabling Hubble’s ground-breaking science and astronomy has been extraordinarily rewarding for me for more than three decades now.

“One of the most fun parts of my job is talking to people. I enjoy enabling Goddard’s world class science, but I really enjoy seeing a kid’s eyes light up with excitement when explaining some of our cool discoveries,” said Ken (right), shown here at an AwesomeCon booth with Christina Mitchell (left) and Faith Vowler (middle).Courtesy of Ken Carpenter

How did your work on Hubble lead to your involvement in bringing the Roman project forward?

My experience in Hubble’s operations and ground systems led me to get involved with the same for Roman at a very early stage. I was involved in developing the early concepts for Roman and helping it get selected as an official NASA mission. I was in the right place at the right time again. This is another example of taking advantage of an opportunity as it presented itself.

What is your role as the NIAC fellow and principal investigator for the AeSI mission concept study?

I was recently selected as a NIAC fellow to study the possibility of building an interferometer on the surface of the Moon in conjunction with the Artemis campaign. An interferometer is an array of telescope mirrors that work together. A large baseline means that the outer diameter of this array will be about one-third of a mile. We are investigating whether the Artemis infrastructure makes building this on the Moon competitive with, or better than, building such a telescope in free-space.

NIAC fellows are selected to lead visionary studies for technically challenging mission concepts and technologies. We are selected under a NASA-wide program that offers three levels of study. My 2024 Phase One NIAC study is one of only 13 accepted in 2024. We proposed our study four years in a row before we were finally awarded the study this year, reinforcing the lesson that persistence and patience are often needed to achieve great things.

You do a lot of outreach. What is your message?

I do a lot of public outreach, in particular for Hubble, Roman and our new NIAC program. This includes talks and exhibit tables at middle schools, high schools, astronomy societies, and large sci-fi and pop culture conventions, including DragonCon and AwesomeCon.

I try to convey to the audience the excitement of the science results from our various missions and about NASA’s plans for future missions. At schools, I often talk about paths to working at NASA and the job of working here. I point out that NASA needs people with a wide variety of skills, not just scientists and engineers. I usually conclude with an informal question-and-answer period.

One the most fun parts of my job is talking to people. I enjoy enabling Goddard’s world class science, but I really enjoy seeing a kid’s eyes light up with excitement when explaining some of our cool discoveries.

“Working for Hubble has been an amazing experience and a constant delight,” said Ken, shown here with the Hubble outreach team. “Being involved with enabling Hubble’s ground-breaking science and astronomy has been extraordinarily rewarding for me for more than three decades now.”NASA/Robert Andreoli

What is your message as a mentor?

I have mentored people from high school through post-doctoral fellows. I try to give them the benefit of some of the lessons I have learned. I tell them not to be afraid to take nontraditional paths and to take a risk if you see something interesting because it might lead to something even better. I also tell them to look for and take advantage of such opportunities and I try to give them opportunities to be part of investigations, to help write papers and to feel involved so that they experience the excitement of a Goddard and technical career in general.

Most of the people I have mentored have gone on to very exciting careers in astronomy and related fields. Perhaps the most unexpected and exciting result of mentoring for me was a Harvard undergraduate studying astronomy who turned into a deep-sea explorer, a scientist of a different sort.  

What are your hobbies and interests?

I am an amateur photographer of landscapes and also of my everyday experiences and travels. I am also very enthusiastic about all things related to Disney and Star Trek. My Disney fandom includes loving the films and also traveling to their theme parks as often as life permits. If I was not an astronomer, I like to think I might have become a Disney Imagineer, someone who conceives of and designs their attractions and experiences.

As a Trekkie, I attend sci-fi and pop culture conventions, and now I give science talks at them too. I know the science adviser to the modern Star Trek series, and we talk constantly about the synergies between Trek and NASA. I have met over the years a fair number of the stars from all of the series. After 50 years of fandom, this is very neat. Star Trek has always inspired me!

“Growing up, I read a lot of science fiction, said Ken, shown here with actor Nichelle Nichols, who played Lt. Uhura on the original Star Trek series. “The original Star Trek series greatly inspired me,” he said.Courtesy of Ken Carpenter 'Star Trek' Adviser Discusses Sci-Fi's Real Science at NASA Goddard

I also enjoy exploring the past through attending Renaissance festivals. I am lucky that the Maryland Renaissance Festival is one of the top festivals in the county and easy for me to access!

What inspired you to become an astronomer?

Growing up, I read a lot of science fiction. The original Star Trek series greatly inspired me. I also visited the 1964-1965 New York World’s Fair, which showed us the wonderful possibilities for the future that science and technology might create. This was before the internet and was a place where one could see one of the first color TVs, a very early edition Frisbee and be shown many other wonderful things that science and technology would contribute to our exciting future. They even had a Space Park with a rocket garden and memorabilia of the early space programs.

Walt Disney built some of the most popular attractions at the fair and brought them back to his theme parks after the fair ended. This included “It’s a Small World”, the first animatronic Abraham Lincoln, the Ford exhibit that featured cars going through ancient landscapes and seeing “live” animatronic dinosaurs, and the Carousel of Progress, which has the audience revolving around a central area with multiple stages to show how technology supports improvements in everyday living, as houses went from having ice boxes to talking refrigerators.

What got me into the library to pick up an astronomy book for the first time was a particular Star Trek episode during their second season called “Who Mourns for Adonais.” It included a reference to a star named Beta Gem (Pollux) and I wanted to see if it was a real star. In the process of going to the library and confirming the name was real, I also picked up an astronomy book, which hooked me immediately. From that point on, I wanted to be an astronomer. I was around 13. Fifty-plus years later, I actually met the actor, Mike Forest, who guest starred in that episode as the Greek god Apollo, and my mind was appropriately blown!

Who would you like to thank?

I would like to thank my wife Susan and our children David and Bryce for their support over the years including tolerating my long hours at work and their unwavering support as I pursued my dreams in exploring the universe and working at NASA. I could not have done all this amazing work without their love and support.

Beyond the immediate family, there are of course many, many others who have helped steer me through this amazing career and all have my thanks even if I can’t include them here. In particular I want to note folks who helped me so much during my “early career” stages, from Bob Wing at The Ohio State University, Jeff Linsky at the University of Colorado, and Sally Heap and Steve Maran at NASA Goddard. All were instrumental in ensuring my successful entry into the NASA universe.

What are your two favorite phrases that you live by?

“Dreamers need to stick together.” This is from the 2015 Disney movie “Tomorrowland,” one of my favorite movies of all time.

I would also add “IDIC,” for “Infinite Diversity in Infinite Combinations,” which is a Star Trek phrase expressing its core philosophy that people of all different cultures can work together in peace to create a wonderful and accepting future.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share Details Last Updated May 07, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms Explore More 6 min read Lynn Bassford Prioritizes Learning as a Hubble Mission Manager

Lynn Bassford levels decades of experience and a desire for self-growth as she helps lead…

Article 7 months ago
5 min read Melissa Harris: Propelling Space Telescopes Toward Success

Melissa Harris is an engineer working on the propulsion system for the Nancy Grace Roman…

Article 11 months ago
6 min read Glenn Bazemore: Professional Problem-Solver

Glenn Bazemore is a mechanical engineer working on the Nancy Grace Roman Space Telescope Team.…

Article 9 months ago
Categories: NASA