I can calculate the motions of the heavenly bodies, but not the madness of people

— Sir Isaac Newton

Feed aggregator

NASA’s Near Space Network Enables PACE Climate Mission to ‘Phone Home’

NASA - Breaking News - Wed, 04/17/2024 - 1:53pm

The PACE (Plankton, Aerosol, Cloud, ocean Ecosystem) mission has delivered its first operational data back to researchers, a feat made possible in part by innovative, data-storing technology from NASA’s Near Space Network, which introduced two key enhancements for PACE and other upcoming science missions.

As a satellite orbits in space, its systems generate critical data about the spacecraft’s health, location, battery life, and more. All of this occurs while the mission’s science instruments capture images and data supporting the satellite’s overall objective.

To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

Animation of NASA's PACE mission transmitting data to Earth through NASA's Near Space Network. NASA/Kasey Dillahay

This data is then encoded and sent back to Earth via radio waves through NASA’s Near Space Network and Deep Space Network — but not without challenges.

One challenge is extreme distances, where disruptions or delays are common. Satellite disruptions are similar to what internet users experience on Earth with buffering or faulty links. If a disruption occurs, Delay/Disruption Tolerant Networking, or DTN, can safely store and forward the data once a path opens.

NASA’s Near Space Network integrated DTN into four new antennas and the PACE spacecraft to showcase the benefit this technology can have for science missions. The network, which supports communications for space-based mission within 1.2 million miles of Earth, is constantly enhancing its capabilities to support science and exploration missions.

DTN is the future of space communications, providing robust protection of data that could be lost due to a disruption.”

Kevin Coggins

Deputy Associate Administrator for NASA SCaN

“DTN is the future of space communications, providing robust protection of data that could be lost due to a disruption,” said Kevin Coggins, deputy associate administrator for NASA’s Space Communications and Navigation (SCaN) program. “PACE is the first operational science mission to leverage DTN, and we are using it to transmit data to mission operators monitoring the batteries, orbit, and more. This information is critical to mission operations.”

PACE, a satellite located about 250 miles above Earth, is collecting data to help researchers better understand how the ocean and atmosphere exchange carbon dioxide, measure atmospheric variables associated with air quality and climate, and monitor ocean health by studying phytoplankton — tiny plants and algae.

NASA’s PACE satellite’s Ocean Color Instrument (OCI) detects light across a hyperspectral range, which gives scientists new information to differentiate communities of phytoplankton – a unique ability of NASA’s newest Earth-observing satellite. This first image released from OCI identifies two different communities of these microscopic marine organisms in the ocean off the coast of South Africa on Feb. 28, 2024. The central panel of this image shows Synechococcus in pink and picoeukaryotes in green. The left panel of this image shows a natural color view of the ocean, and the right panel displays the concentration of chlorophyll-a, a photosynthetic pigment used to identify the presence of phytoplankton. NASA

While PACE is the first operational science user of DTN, demonstrations of the technology have been done previously on the International Space Station.

In addition to DTN, the Near Space Network worked with commercial partner, Kongsberg Satellite Services in Norway to integrate four new antennas into the network to support PACE.

These new antennas, in Fairbanks, Alaska; Wallops Island, Virginia; Punta Arenas, Chile; and Svalbard, Norway, allow missions to downlink terabytes of science data at once. Just as scientists and engineers constantly improve their instrument capabilities, NASA also advances its communications systems to enable missions near Earth and in deep space.

As PACE orbits Earth, it will downlink its science data 12 to 15 times a day to three of the network’s new antennas. Overall, the mission will send down 3.5 terabytes of science data each day.

The Near Space Network’s new antennas in Alaska, Chile, Norway, and Virginia. These were developed in partnership with KSAT. NASA

Network capability techniques like DTN and the four new antennas are the latest enhancements to the Near Space Network’s catalog of services to support science missions, human spaceflight, and technology experiments.

 “NASA’s Near Space Network now has unprecedented flexibility to get scientists and operations managers more of the precious information they need to ensure their mission’s success,” said Coggins.

An artistic rendering of multiple Earth-observing satellites around the globe using NASA’s Near Space Network to send back critical data. NASA/Kasey Dillahay

In addition to these new capabilities, the network is also increasing the number of commercial antennas within its portfolio. In 2023, NASA issued the Near Space Network Services request for proposal to seek commercial providers for integration into the network’s expanding portfolio. With an increasing capacity, the network can support additional science missions and downlink opportunities.

The Near Space Network is funded by NASA’s Space Communications and Navigation (SCaN) program office at NASA Headquarters in Washington and operated out of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

By Katherine Schauer
NASA’s Goddard Space Flight Center, Greenbelt, Md.

About the AuthorKatherine Schauer

Katherine Schauer is a writer for the Space Communications and Navigation (SCaN) program office and covers emerging technologies, commercialization efforts, exploration activities, and more.

Share Details Last Updated Apr 17, 2024 EditorJamie AdkinsContactKatherine Schauerkatherine.s.schauer@nasa.govLocationGoddard Space Flight Center Related Terms 4 Min Read NASA’s Near Space Network Enables PACE Climate Mission to ‘Phone Home’ An artistic rendering of the PACE spacecraft sending data down over radio frequency links to a Near Space Network antenna. The science images shown are real photos from the PACE mission. Credits: NASA/Kasey Dillahay Explore More 3 min read NASA Seeks Commercial Near Space Network Services

NASA is seeking commercial communication and navigation service providers for the Near Space Network.

Article 1 year ago
3 min read NASA Enables Future of Science Observation through Tri-band Antennas Article 1 year ago 2 min read Working in Tandem: NASA’s Networks Empower Artemis I Article 2 years ago
Categories: NASA

NASA Photographer Honored for Thrilling Inverted In-Flight Image

NASA - Breaking News - Wed, 04/17/2024 - 1:37pm

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA research pilot Nils Larson and photographer Jim Ross complete aerobatic maneuvers in a NASA Armstrong Flight Research Center in Edwards, California owned T-34C aircraft during a proficiency flight. NASA/Jim Ross

Riding in the back seat of a car can be boring. Riding in the back of a NASA aircraft is exhilarating, especially for photographers capturing NASA’s story. Jim Ross, photo lead at NASA’s Armstrong Flight Research Center in Edwards, California, was awarded first place for an image he took while flying upside down in a two-seat T-34C research aircraft.

In the photo, which was announced as the NASA Photo of the Year 2023 in the People category on April 15, 2024. Ross captures NASA research pilot Nils Larson in full flight gear, while the aircraft is doing aerobatic maneuvers. Most of us would struggle to keep our bearings, let alone operate a camera and frame a perfectly balanced image. NASA Armstrong photographers do this every flight day.

“When we fly proficiency flights, my mind is always thinking about what kind of photo I can take that will share what I am experiencing in the aircraft,” Ross said. “This photo was one that I feel is able to tell that story.” It’s telling the story that makes Ross’s work so important to NASA. Much of what NASA works on can only be witnessed by researchers and scientists, but having it capture in photo and video allows us to share the images with the world.

Jim Ross, photo lead at NASA’s Armstrong Flight Research Center in Edwards, California, took a photo of an aerobatic maneuver from the back seat of a T-34C that was selected as first place in the NASA Photo of the Year 2023 Contest in the People category.NASA/Genaro Vavuris

Ross began his aviation photography career in 1989 when he joined the photography staff at NASA’s Armstrong (then Dryden) Flight Research Center, now known as NASA Armstrong. He became the photo lead in 1997, a title he retains. In his 30 years of flying, he has flown on more than 900 missions and has about 1,100 flight hours in aircraft including T-33, T-34, T-38, F-15, F-16, F-18, KC-10, KC-135, C-12, C-20A, Boeing 747SP, and helicopters.

NASA previously recognized Ross for his work with the agency’s Public Service Medal and the Exceptional Public Achievement Medal. NASA also made a photo book of his work titled, “NASA Photo One,” which highlights 100 photos of his career. He also won the Best of the Best award from the Aviation Week & Space Technology photo contest in 2001. His work has appeared in many publications, including Aviation Week & Space Technology, National Geographic, and Air & Space Smithsonian.

Share Details Last Updated Apr 17, 2024 Related Terms Explore More 6 min read Kate A. McGinnis: Ready to “Go” with PACE Testing Article 1 day ago 5 min read Shawnta M. Ball Turns Obstacles into Opportunities in Goddard’s Education Office Article 7 days ago 3 min read NASA Langley Team to Study Weather During Eclipse Using Uncrewed Vehicles Article 2 weeks ago Keep Exploring Discover More Topics From NASA

Armstrong Flight Research Center

NASA Images

Armstrong People

Aeronautics

Categories: NASA

Sometimes Getting the Perfect Picture Really Is Rocket Science

NASA Image of the Day - Wed, 04/17/2024 - 1:35pm
NASA Engineer Cindy Fuentes Rosal waves goodbye to a Black Brant IX sounding rocket launching from NASA’s Wallops Flight Facility in Virginia during the total solar eclipse on April 8, 2024. The rocket was part of a series of three launches for the Atmospheric Perturbations around Eclipse Path (APEP) mission to study the disturbances in the electrified region of Earth’s atmosphere known as the ionosphere created when the Moon eclipses the Sun. The rockets launched before, during, and after peak local eclipse time on the Eastern Shore of Virginia.
Categories: Astronomy, NASA

The Milky Way’s Most Massive Stellar Black Hole is Only 2,000 Light Years Away

Universe Today - Wed, 04/17/2024 - 1:34pm

Astronomers have found the largest stellar mass black hole in the Milky Way so far. At 33 solar masses, it dwarfs the previous record-holder, Cygnus X-1, which has only 21 solar masses. Most stellar mass black holes have about 10 solar masses, making the new one—Gaia BH3—a true giant.

Supermassive black holes (SMBH) like Sagittarius A Star at the heart of the Milky Way capture most of our black hole attention. Those behemoths can have billions of solar masses and have enormous influence on their host galaxies.

But stellar-mass holes are different. Unlike SMBHs that grow massive through mergers with other black holes, stellar black holes result from massive stars exploding as supernovae. SMBHs are always found in the center of a massive galaxy, but stellar black holes can be hidden anywhere.

“This is the kind of discovery you make once in your research life.”

Pasquale Panuzzo, National Centre for Scientific Research (CNRS) at the Observatoire de Paris

Astronomers found BH3 in data from the ESA’s Gaia spacecraft. It’s Gaia’s third stellar black hole. BH3 has a stellar companion, and the black hole’s 33 combined solar masses tugged on its aged, metal-poor companion. The star’s tell-tale wobbling betrayed BH3’s presence. At only 2,000 light-years away, BH3 is awfully close in cosmic terms.

Astronomers have found the most massive stellar black hole in our galaxy, thanks to the wobbling motion it induces on a companion star. This artist’s impression shows the star’s orbits and the black hole, dubbed Gaia BH3, around their common centre of mass. The European Space Agency’s Gaia mission measured this wobbling over several years. Image Credit: ESO/L. Calçada

A new research letter in Astronomy and Astrophysics presented the discovery. Its title is “Discovery of a dormant 33 solar-mass black hole in pre-release Gaia astrometry.” The lead author is Pasquale Panuzzo, an astronomer from the National Centre for Scientific Research (CNRS) at the Observatoire de Paris.

“No one was expecting to find a high-mass black hole lurking nearby, undetected so far,” said Panuzzo. “This is the kind of discovery you make once in your research life.”

This black hole is remarkable for its considerable mass. Researchers have found stellar black holes with similar masses, but always in other galaxies. The size is confounding, but astrophysicists have pieced together how they may become so massive.

They could result from the collapse of metal-poor stars. These stars are composed almost entirely of hydrogen and helium, the primordial elements. Scientists think these stars lose less mass over their lifetimes of fusion than other stars. They retain more mass, so they collapse into more massive black holes. This idea is based on theory; there’s no direct evidence.

But BH3 could change that.

Binary stars tend to form together and have the same metallicity. Follow-up observations showed that BH3’s companion star is likely a remnant of a globular cluster that the Milky Way absorbed more than eight billion years ago. Since binary stars tend to have the same metallicity, this metal-poor companion bolsters the idea that low-metallicity stars can retain more mass and form larger stellar black holes. This is the first evidence supporting the idea that ancient and metal-poor massive stars collapse into massive black holes. It also supports the idea that these early stars may have evolved differently than modern stars of similar masses.

But there’s another interpretation.

Artist’s impression of a Type II supernova explosion, which involves the destruction of a massive supergiant star. When stars explode as supernovae, they eject matter into space, potentially polluting nearby companion stars. Image Credit: ESO

When stars explode as supernovae, they forge heavier elements that are blown out into space. Shouldn’t the companion show evidence of contamination by the metals from BH3’s supernova?

“What strikes me is that the chemical composition of the companion is similar to what we find in old metal-poor stars in the galaxy,” explains Elisabetta Caffau of CNRS, Observatoire de Paris, also a member of the Gaia collaboration. “There is no evidence that this star was contaminated by the material flung out by the supernova explosion of the massive star that became BH3.” From this perspective, the pair may not have formed together. Instead, the black hole could’ve acquired its companion only after its birth, capturing it from another system.

BH3 and the two other black holes found by Gaia are dormant. That means there’s nothing close enough for them to “feed” on. Even though BH3 has a companion, it’s about 16 AU away. If BH3 was actively accreting matter, it would release energy that would betray its presence. Its dormancy enabled it to remain undetected.

Simulation of glowing gas around a spinning black hole. As the gas heats up, it emits energy that makes it visible. If the black hole has no nearby companion, it’s dormant and harder to find. Image Credit: Chris White, Princeton University

At only 2,000 light years away, astronomers are bound to keep studying BH3.

“Finally, the bright magnitude of the system and its relatively small distance makes it an easy target for further observations and detailed analyses by the astronomical community,” the discoverers write in their research letter.

This discovery may have been serendipitous, but it was no accident. A dedicated team of researchers scours Gaia data for stars with odd companions. This includes light and heavy exoplanets, other stars, and black holes. Gaia can’t spot planets or dormant black holes but can spot their effect on their stellar companions.

The researchers behind the discovery released their findings before Gaia’s next official data release. They felt it was too important to sit on. “We took the exceptional step of publishing this paper based on preliminary data ahead of the forthcoming Gaia release because of the unique nature of the discovery,” said co-author Elisabetta Caffau, also a Gaia collaboration member and CNRS scientist from the Observatoire de Paris – PSL.

“We have been working extremely hard to improve the way we process specific datasets compared to the previous data release (DR3), so we expect to uncover many more black holes in DR4,” said Berry Holl of the University of Geneva, in Switzerland, member of the Gaia collaboration.

“This discovery should also be seen as a preliminary teaser for the content of Gaia DR4, which will undoubtedly reveal other binary systems hosting a BH,” the authors conclude.

Gaia DR4 is scheduled to be released no sooner than the end of 2023. If past data releases are any indication, the data will be full of new discoveries. If there are enough binary stellar mass black holes in the data, astronomers may get closer to understanding where they come from and if massive stars behaved differently in the early Universe.

The post The Milky Way’s Most Massive Stellar Black Hole is Only 2,000 Light Years Away appeared first on Universe Today.

Categories: Astronomy

NASA to Hoist Its Sail: Solar Sail Mission Gets Ready for Launch

NASA - Breaking News - Wed, 04/17/2024 - 1:12pm
An artist’s concept of NASA’s Advanced Composite Solar Sail System spacecraft in orbit.NASA/Aero Animation/Ben Schweighart

A NASA mission testing a new way of navigating our solar system is ready to hoist its sail into space – not to catch the wind, but the propulsive power of sunlight. The Advanced Composite Solar Sail System is targeting launch on Tuesday, April 23 (Wednesday, April 24 in New Zealand) aboard a Rocket Lab Electron rocket from the company’s Launch Complex 1 on the Mahia Peninsula of New Zealand.

Rocket Lab’s Electron rocket will deploy the mission’s CubeSat about 600 miles above Earth – more than twice the altitude of the International Space Station. To test the performance of NASA’s Advanced Composite Solar Sail System, the spacecraft must be in a high enough orbit for the tiny force of sunlight on the sail – roughly equivalent to the weight of a paperclip resting on your palm – to overcome atmospheric drag and gain altitude.

After a busy initial flight phase, which will last about two months and includes subsystems checkout, the microwave oven-sized CubeSat will deploy its reflective solar sail. The weeks-long test consists of a series of pointing maneuvers to demonstrate orbit raising and lowering, using only the pressure of sunlight acting on the sail.

Stay tuned for updates as NASA’s Advanced Composite Solar Sail System sets out to prove its ability to sail across space, increasing access and enabling low-cost missions to the Moon, Mars, and beyond.

NASA’s Ames Research Center in California’s Silicon Valley manages the project and designed and built the onboard camera diagnostic system. NASA’s Langley Research Center in Langley, Virginia, designed and built the deployable composite booms and solar sail system. NASA’s Small Spacecraft Technology (SST) program office, within the agency’s Space Technology Mission Directorate (STMD), funds and manages the mission. STMD’s Game Changing Development program developed the deployable composite boom technology. Rocket Lab USA, Inc of Long Beach, California, is providing launch services.

Share Details Last Updated Apr 17, 2024 Related Terms
Categories: NASA

Skin-deep wounds can damage gut health in mice

New Scientist Space - Cosmology - Wed, 04/17/2024 - 1:00pm
We know there is some connection between skin and gut health, but many assumed the gut was the one calling the shots. A new study suggests that the influence can go the other way
Categories: Astronomy

Skin-deep wounds can damage gut health in mice

New Scientist Space - Space Headlines - Wed, 04/17/2024 - 1:00pm
We know there is some connection between skin and gut health, but many assumed the gut was the one calling the shots. A new study suggests that the influence can go the other way
Categories: Astronomy

Intel reveals world's biggest 'brain-inspired' neuromorphic computer

New Scientist Space - Cosmology - Wed, 04/17/2024 - 12:00pm
A computer intended to mimic the way the brain processes and stores data could potentially improve the efficiency and capabilities of artificial intelligence models
Categories: Astronomy

Turning plants blue with gene editing could make robot weeding easier

New Scientist Space - Cosmology - Wed, 04/17/2024 - 12:00pm
Weeding robots can sometimes struggle to tell weeds from crops, but genetically modifying the plants we want to keep to make them brightly coloured would make the job easier, suggest a group of researchers
Categories: Astronomy

Intel reveals world's biggest 'brain-inspired' neuromorphic computer

New Scientist Space - Space Headlines - Wed, 04/17/2024 - 12:00pm
A computer intended to mimic the way the brain processes and stores data could potentially improve the efficiency and capabilities of artificial intelligence models
Categories: Astronomy

Turning plants blue with gene editing could make robot weeding easier

New Scientist Space - Space Headlines - Wed, 04/17/2024 - 12:00pm
Weeding robots can sometimes struggle to tell weeds from crops, but genetically modifying the plants we want to keep to make them brightly coloured would make the job easier, suggest a group of researchers
Categories: Astronomy

A new understanding of tinnitus and deafness could help reverse both

New Scientist Space - Cosmology - Wed, 04/17/2024 - 12:00pm
Investigations of the paradoxical link between tinnitus and hearing loss have revealed a hidden form of deafness, paving the way to possible new treatments
Categories: Astronomy

A new understanding of tinnitus and deafness could help reverse both

New Scientist Space - Space Headlines - Wed, 04/17/2024 - 12:00pm
Investigations of the paradoxical link between tinnitus and hearing loss have revealed a hidden form of deafness, paving the way to possible new treatments
Categories: Astronomy

NASA Announces Winners of Power to Explore Challenge

NASA - Breaking News - Wed, 04/17/2024 - 11:56am
The winners of NASA’s 2024 Power to Explore Student Challenge are: 9-year-old Raine Lin, left, 12-year-old Aadya Karthik, and 18-year-old Thomas Liu. Credit: NASA/Dave Lam

NASA announced the winners on Wednesday of the third annual Power to Explore Challenge, a national writing competition designed to teach K-12 students about the power of radioisotopes for space exploration.

The competition asked students to learn about NASA’s Radioisotope Power Systems (RPS), “nuclear batteries” the agency uses to explore some of the most extreme destinations in the solar system and beyond. In 250 words or less, students wrote about a mission of their own enabled by these space power systems and described their own power to achieve their mission goals.

“The Power to Explore Challenge is the perfect way to inspire students – our Artemis Generation – to reach for the stars and beyond and help NASA find new ways to use radioisotopes to power our exploration of the cosmos,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington.

Entries were split into three groups based on grade level, and a winner was chosen from each. The three winners, along with a guardian, are invited to NASA’s Glenn Research Center in Cleveland for a VIP tour of its world-class research facilities.

The winners are:

  • Rainie Lin, Lexington, Kentucky, kindergarten through fourth grade
  • Aadya Karthik, Redmond, Washington, fifth through eighth grade
  • Thomas Liu, Ridgewood, New Jersey, ninth through 12th grade

“Congratulations to this year’s winners and participants – together, we discover and explore for the benefit of all,” Fox said.

The Power to Explore Challenge offered students the opportunity to learn about space power, celebrate their strengths, and interact with NASA’s diverse workforce. This year’s contest received nearly 1,787 submitted entries from 48 states and Puerto Rico.

Every student who submitted an entry received a digital certificate and an invitation to the Power Up virtual event held on March 15 that announced the 45 national semifinalists. Additionally, the national semifinalists received a NASA RPS prize pack.

NASA announced three finalists in each age group (nine total) during Total Eclipse Fest 2024 in Cleveland on April 8, a day when millions of Americans saw a brief glimpse of life without sunlight, creating an opportunity to shed light on how NASA could power missions without the Sun’s energy at destinations such as deep lunar craters or deep space. Finalists also were invited to discuss their mission concepts with a NASA scientist or engineer during a virtual event.

The challenge is funded by the NASA Science Mission Directorate’s RPS Program Office and administered by Future Engineers under the NASA Open Innovation Services 2 contract. This contract is managed by the NASA Tournament Lab, a part of the Prizes, Challenges, and Crowdsourcing Program in NASA’s Space Technology Mission Directorate.

For more information on radioisotope power systems visit:

https://www.nasa.gov/rps

-end-

Karen Fox / Charles Blue
Headquarters, Washington
301-286-6284 / 202-802-5345
karen.c.fox@nasa.gov / charles.e.blue@nasa.gov

Kristin Jansen
Glenn Research Center, Cleveland
216-296-2203
kristin.m.jansen@nasa.gov

Categories: NASA

James Webb Space Telescope's 'shocking' discovery may hint at hidden exomoon around 'failed star'

Space.com - Wed, 04/17/2024 - 11:01am
JWST's surprise discovery of methane emissions and likely aurorae over a distant brown dwarf could indicate this "failed star" is orbited by an active moon.
Categories: Astronomy

NASA Invites Media for Climate Update, New Earth Missions

NASA - Breaking News - Wed, 04/17/2024 - 10:57am
For a media briefing in advance of Earth Day, NASA will share info about next steps for its Earth research program, as well as highlight our newest Earth-observing satellite PACE (Plankton, Aerosol, Cloud, ocean Ecosystem). This image from PACE shows two different communities of phytoplankton in the ocean off the coast of South Africa on Feb. 28, 2024.Credit: NASA

In anticipation of Earth Day, NASA invites media to a briefing at the agency’s headquarters on Friday, April 19, at 11 a.m. EDT. The event will share updates on NASA’s climate science and early data from the agency’s ocean-watching PACE (Plankton, Aerosol, Cloud, ocean Ecosystem) mission, as well as reveal upcoming Earth airborne missions.

The speakers include:

  • NASA Administrator Bill Nelson
  • Karen St. Germain, division director, NASA Earth Sciences Division
  • Tom Wagner, associate director for Earth Action

The briefing will air live on NASA+, NASA Television, and the agency’s website.

To attend the briefing in person in the James E. Webb Auditorium at 300 E St. SW, Washington, or to participate via teleconference, media should RSVP no later than 9 a.m. Friday to Liz Vlock at elizabeth.a.vlock@nasa.gov. NASA’s media accreditation policy is online.

Media and the public are also invited to participate in NASA’s Earth Day celebration:  “Water Touches Everything.” Attendees will be able to explore the complex connections between sea, air, land, and climate through a mix of in-person and virtual activities, talks, and trivia. The celebration begins Thursday, April 18 at 9 a.m. EDT and continues through April 19 until 5 p.m., both online and in person at the NASA Earth Information Center.

For more information on NASA’s Earth Science Division visit:

https://www.nasa.gov/earth

-end-

Liz Vlock
Headquarters, Washington
202-358-1600
elizabeth.a.vlock@nasa.gov

Share Details Last Updated Apr 17, 2024 LocationNASA Headquarters Related Terms
Categories: NASA

A cicada double brood is coming – it's less rare than you think

New Scientist Space - Cosmology - Wed, 04/17/2024 - 10:53am
Up to 17 US states could be peppered with more than a trillion cicadas this spring, and though it has been a while since these two specific broods emerged at once, double broods are not that rare
Categories: Astronomy

A cicada double brood is coming – it's less rare than you think

New Scientist Space - Space Headlines - Wed, 04/17/2024 - 10:53am
Up to 17 US states could be peppered with more than a trillion cicadas this spring, and though it has been a while since these two specific broods emerged at once, double broods are not that rare
Categories: Astronomy

Tech Today: Taking Earth’s Pulse with NASA Satellites

NASA - Breaking News - Wed, 04/17/2024 - 10:49am

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) This natural-color image of mountains of central Pennsylvania taken by Landsat 8 shows the colors of changing leaves and the unique topography of the region. Thanks to more than 50 years of planetary observation from low-Earth orbit, it’s possible to see natural changes and those engineered by humans.Credit: NASA

Natural disasters like volcanic eruptions, floods, and tornados can dramatically change the surface of Earth to the point where alterations are visible in space. Changes driven by human actions and interventions, such as mining and deforestation, are also visible in satellite imagery.

For over 50 years, NASA’s Landsat satellites have recorded our planet’s changing surface. Now, terraPulse Inc., a North Potomac, Maryland-based company, applies artificial intelligence to create meaningful maps to help academic institutions, nongovernmental organizations, and businesses understand the many impacts of climate change.

By combining data from multiple NASA and European satellites, terraPulse helps businesses make data-driven decisions regarding ecological impacts. That same data helps scientists understand environmental changes and the processes driving them, which can provide practical information to local decision-makers for infrastructure planning and disaster preparedness.

Measurements taken from space are still undergoing significant research and development. NASA’s Earth Sciences Division funds several remote sensing initiatives to expand our understanding of the impact of land cover change, including a terraPulse effort using FitBits to track and assess the health of wild deer and the impacts of their habitat change.

NASA’s Goddard Space Flight Center in Greenbelt, Maryland, which manages many of the agency’s Earth-monitoring satellite missions, supports a comprehensive view of our planet. Industries are looking to satellite data to plan for resilience to climate change by monitoring worldwide facilities, identifying manageable risk factors, and more.

Read More Share Details Last Updated Apr 17, 2024 Related Terms Explore More 2 min read NASA’s TESS Returns to Science Operations

NASA’s TESS (Transiting Exoplanet Survey Satellite) has returned to work after science observations were suspended…

Article 5 hours ago
4 min read NASA’s Near Space Network Enables PACE Climate Mission to ‘Phone Home’ Article 10 hours ago 5 min read Astronauts To Patch Up NASA’s NICER Telescope

NASA is planning to repair NICER (Neutron star Interior Composition Explorer), an X-ray telescope on…

Article 13 hours ago
Keep Exploring Discover Related Topics

Earth Observations

Technology Transfer & Spinoffs

Climate Change

Missions

Categories: NASA

Astronauts To Patch Up NASA’s NICER Telescope

NASA - Breaking News - Wed, 04/17/2024 - 10:43am

4 min read

Astronauts To Patch Up NASA’s NICER Telescope

NASA is planning to repair NICER (Neutron star Interior Composition Explorer), an X-ray telescope on the International Space Station, during a spacewalk later this year. It will be the fourth science observatory in orbit serviced by astronauts.

In May 2023, scientists discovered that NICER had developed a “light leak.” Unwanted sunlight was entering the instrument and reaching the telescope’s sensitive detectors. While the team took immediate steps to mitigate the impact on observations, they also began thinking about a potential repair.

“The sunlight interferes with NICER’s ability to collect viable X-ray measurements during the station’s daytime,” said Zaven Arzoumanian, NICER’s science lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Nighttime observations are unaffected, and the telescope continues to produce incredible science. Hundreds of published papers have used NICER since the mission began. Blocking some of the light leaking in would allow us to return to more normal operations around the clock.”

This image, obtained June 8, 2018, shows NASA’s NICER (Neutron star Interior Composition Explorer) on the International Space Station, where it studies neutron stars and other X-ray sources. NICER is about the size of a washing machine. The sunshades of its X-ray concentrators are visible as an array of circular features. NASA
Download high-resolution images and videos from NASA’s Scientific Visualization Studio.

Arzoumanian presented efforts to address the issue during a talk on Friday, April 12, at the 21st meeting of the High Energy Astrophysics Division of the American Astronomical Society in Horseshoe Bay, Texas.

NICER is located near the station’s inner starboard solar panels. From that perch, it looks out at the X-ray sky, collecting data on many cosmic phenomena, like regular pulses from superdense stellar remnants called neutron stars and “light echoes” from flaring black holes. Observing these objects helps answer questions about their nature and behavior and increases our understanding of matter and gravity. In 2017, NICER also demonstrated the use of pulsing neutron stars in our galaxy to serve as navigational beacons for future deep space exploration through a program called SEXTANT (Station Explorer for X-ray Timing and Navigation Technology).

The telescope has 56 aluminum X-ray concentrators. Each concentrator has a set of nested mirrors, designed to skip X-rays into a detector. In front of the concentrator lies a thin filter, called a thermal shield, that blocks out sunlight. The concentrator is topped by a hollow circular piece of carbon composite, called a sunshade, with six segments that resemble a sliced pie. The sunshade is designed to keep the concentrators cool in sunlight and protect the delicate thermal shields. After the light leak developed, photos revealed several small areas of damage in some of the shields, though what caused them is still unclear.

“We didn’t design NICER for mission servicing. It was installed robotically, and we operate it from the ground,” said Keith Gendreau, NICER’s principal investigator at Goddard. “The possibility of a repair has been an exciting challenge. We considered both spacewalk and robotic solutions, puzzling out how to install patches using what’s already present on the telescope and in space station toolkits.”

The International Space Station appears in this photograph taken by Expedition 56 crew members from a Soyuz spacecraft after undocking on Oct. 4, 2018. NICER is the small white box standing above the station’s main truss at far right, adjacent to the inner solar panel. NASA/Roscosmos

After many months of consideration, the spacewalk was selected as the path forward. NASA’s Hubble Space Telescope and Solar Maximum Mission, as well as AMS (Alpha Magnetic Spectrometer, also on the station) are the only other science observatories repaired by astronauts in orbit.

NICER’s solution is straightforward. Five pie piece-shaped wedges will slot into the sunshades above the areas with the greatest damage and lock into place. The patches are designed to take advantage of an existing piece of astronaut equipment, called a T-handle tool.

“While we worked hard to ensure the patches are mechanically simple, most repair activities in space are very complicated,” said Steve Kenyon, NICER’s mechanical lead at Goddard. “We’ve been conducting tests to confirm the repair work will be both an effective fix for NICER’s light leak and completely safe for the astronauts on the spacewalk and the space station.”

The patches are currently scheduled to launch to the space station aboard Northrop Grumman’s 21st commercial resupply services mission later this year. Astronauts will complete their installation during a spacewalk, along with other tasks.

NICER is an Astrophysics Mission of Opportunity within NASA’s Explorers Program, which provides frequent flight opportunities for world-class scientific investigations from space utilizing innovative, streamlined, and efficient management approaches within the heliophysics and astrophysics science areas. NASA’s Space Technology Mission Directorate supports the SEXTANT component of the mission, demonstrating pulsar-based spacecraft navigation.

NICER also collaborates in automated tandem with JAXA’s (Japan Aerospace Exploration Agency’s) experiment MAXI (Monitor of All-sky X-ray Image) to rapidly observe stars and other objects that flare unpredictably, advancing scientific understanding of our dynamic universe.

By Jeanette Kazmierczak
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media Contact:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share

Details

Last Updated

Apr 17, 2024

Editor Jeanette Kazmierczak Location Goddard Space Flight Center

Related Terms Explore More

5 min read NASA’s NICER Telescope Sees Hot Spots Merge on a Magnetar

Lee esta nota de prensa en español aquí. For the first time, NASA’s Neutron star…



Article


2 years ago

9 min read NASA’s NICER Probes the Squeezability of Neutron Stars

Matter in the hearts of neutron stars ­– dense remnants of exploded massive stars –…



Article


3 years ago

5 min read NASA’s NICER Finds X-ray Boosts in the Crab Pulsar’s Radio Bursts

A global science collaboration using data from NASA’s Neutron star Interior Composition Explorer (NICER) telescope on…



Article


3 years ago

Categories: NASA