Following the light of the sun, we left the Old World.

— Inscription on Columbus' caravels

Feed aggregator

'Vega continues to be unusual:' Lack of planets around young star puzzles astronomers

Space.com - Tue, 11/05/2024 - 9:00am
A joint Hubble and James Webb Space Telescope (JWST) project to learn more about the dusty disk around the bright star Vega has found a surprising lack of planets.
Categories: Astronomy

From Campus to Cosmos: NASA Grants Boost Student, University Innovation

NASA - Breaking News - Tue, 11/05/2024 - 8:16am

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Nicholas Bitner from Candeska Cikana Community College, left, and Jesse Rhoades from the University of North Dakota (UND), right, are pictured in UND’s BiPed lab, where their students test and capture motion data for the Mapi Hapa. Walter Criswell, UND Today

Human exploration on the lunar surface is no small feat. It requires technologists and innovators from all walks of life to tackle many challenges, including feet. 

From designing astronaut boots, addressing hazardous Moon dust, and researching new ways to land on Mars, NASA is funding valuable research through M-STAR (Minority University Research and Education Project’s (MUREP) Space Technology Artemis Research). The M-STAR program provides opportunities for students and faculty at Minority Serving Institutions to participate in space technology development through capacity building and research grants. With more than $11.5 million awarded since 2020, M-STAR aims to ensure NASA isn’t leaving any potential solution behind. 

Best Foot Forward  Candeska Cikana Community College uses selective laser sintering, a type of 3D-printing in which heat and pressure form specific structures using layers of powdered material. Shown here, a student works to remove excess material, in this case a powdered form of nylon with carbon fibers, to reveal a prototype of the “Mapi Hapa,” or “sky shoe.” Candeska Cikana Community College

Supportive boots are required for astronauts who will perform long duration Artemis missions on the Moon. With astronaut foot health in mind, students and faculty of North Dakota’s Candeska Cikana Community College in Fort Totten and the University of North Dakota in Grand Forks are designing a solution for extravehicular activity Moon boots. The project, called Mapi Hapa, proposes a 3D printed device that helps astronauts achieve the range of motion that takes place in the ankle when you draw your toe back towards the shin. 

Candeska Cikana Community College is a tribal college that serves the Spirit Lake Nation, including the Dakota, Lakota, Sisseton, Wahpeton, and Yanktonai peoples.  

Nicholas Bitner, an instructor at Candeska Cikana and graduate student at the University of North Dakota, notes the unique skills that tribal students possess. “Their perspective, which is unlike that of any other student body, thrives on building with their hands and taking time to make decisions.” 

Bitner also attributes many opportunities and successes of their program to M-STAR and its partnership which exemplifies the dire importance of consistent funding. 

“Given the relationships, we have been able to expand our capabilities and our lab, but it has also given us funding. We were able to hire all our students in the engineering department as lab technicians. So, they get paid to do the research that they are a part of, and not only do they have that psychological ownership, but they also have a good paying job that looks nice on their resumes.”  

In addition to addressing astronaut foot health, M-STAR funding is helping develop solutions to combat lunar regolith, or Moon dust, which can damage landers, spacesuits, and human lungs, if inhaled. 

Lunar Dust Development 

With M-STAR, New Mexico State University in Las Cruces developed affordable, reliable lunar regolith simulants to help test lunar surface technologies. The team also designed testing facilities that mimic environmental conditions on the Moon.   

New Mexico State has already started sharing their simulants, including with a fellow M-STAR awardee. An M-STAR project selected in 2023 from the University of Maryland Eastern Shore in Princess Anne uses the simulants to help test their experience in smart agriculture to test applications for crop production on the Moon. 

University of Maryland, Eastern Shore explores the possibility of growing crops in lunar regolith by mixing varying proportions of lunar regolith simulant, horse manure, and potting soil. The lunar regolith simulant was provided by fellow M-STAR awardee at New Mexico State University in in Las Cruces.Stephanie Yeldell/NASA

Douglas Cortez, associate professor in civil engineering at New Mexico State, believes different perspectives are essential to maximizing solutions.  

“There are hundreds of people working at Minority Serving Institutions that are used to looking at the world in a completely different way,” said Cortez. “When they start looking at the same problem and parameters, they come up with very different solutions.” 

As we look to sustainable presence on the Moon, NASA also has its sights set on Mars and M-STAR is helping develop technologies to inform crewed Martian exploration.  

Stick the Landing 

San Diego State University in California was awarded funding for research on Mars entry, descent, and landing technologies. The team aims to achieve optimal trajectory by developing onboard algorithms that guide vehicles to descent autonomously. 

The M-STAR research opportunities have been invaluable to students like Chris Davami and his teammates working to develop improved methods to land on Mars.  

Christopher Davami, who supported San Diego State University’s 2021 M-STAR project, is pictured here at NASA’s Langley Research Center, where he was selected for internships supporting research in aeroelasticity, atmospheric flight, and entry systems research.NASA

“I would definitely not have been able to have these opportunities with NASA if it weren’t for M-STAR,” said Davami. “M-STAR helped pay for my education, which helped me save a lot in student loans. I probably wouldn’t be going to graduate school right now if I did not have this opportunity. This program enabled me to keep pursuing my research and continue doing what I love.” 

Following his contributions to the M-STAR-funded project, Davami was awarded a NASA Space Technology Graduate Research Opportunity in 2023 on his work in autonomous end-to-end trajectory planning and guidance constrained entry and precision power decent.  

Through efforts like M-STAR, NASA aims to seed the future workforce and prepare colleges and universities to win other NASA research opportunities. When it comes to the advancement of space technology, people of different backgrounds and skillsets are needed to achieve what was once known as impossible. Not only can the diversification of ideas spark fundamental innovations in space, but it can also help students apply these technological advancements to solving problems here on Earth. 

To learn more about M-STAR visit: 

https://go.nasa.gov/442k76s

by: Gabrielle Thaw, NASA’s Space Technology Mission Directorate 

Facebook logo @NASATechnology @NASA_Technology Keep Exploring Discover More Topics From NASA

Space Technology Mission Directorate

Student & STEM Opportunities

NASA Grants to Strengthen Diversity in Engineering, STEM Fields

Get Involved

Share Details Last Updated Nov 05, 2024 EditorLoura Hall Related Terms
Categories: NASA

Sharp 'lobster vision:' China's Einstein Probe space telescope already making discoveries during commissioning phase

Space.com - Tue, 11/05/2024 - 8:00am
China's Einstein Probe, an X-ray telescope in Earth orbit, has already made several discoveries during its initial commissioning phase.
Categories: Astronomy

Natural fibres in wet wipes may actually be worse for soil and animals

New Scientist Space - Cosmology - Tue, 11/05/2024 - 6:49am
Fibres in wet wipes and clothes often make their way into soil - and natural versions could be more damaging than synthetic ones
Categories: Astronomy

Natural fibres in wet wipes may actually be worse for soil and animals

New Scientist Space - Space Headlines - Tue, 11/05/2024 - 6:49am
Fibres in wet wipes and clothes often make their way into soil - and natural versions could be more damaging than synthetic ones
Categories: Astronomy

These Bird Nests Show Signs of an Architectural ‘Culture’

Scientific American.com - Tue, 11/05/2024 - 6:45am

Culture may play a role in how birds build collectively in the Kalahari Desert

Categories: Astronomy

Save $300 on the HTC VIVE Pro 2 VR headset, the best high-resolution option

Space.com - Tue, 11/05/2024 - 6:20am
You can save $300 on this early Black Friday VR headset deal as the HTC VIVE Pro 2 headset, the best high-resolution model out there, is on offer.
Categories: Astronomy

Asteroid-mining company AstroForge gets 1st-ever FCC license for commercial deep-space mission

Space.com - Tue, 11/05/2024 - 6:00am
AstroForce has received a commercial license for operating and communicating with a mission headed to a near-Earth asteroid, the first to be granted for beyond Earth orbit.
Categories: Astronomy

Hubble and Webb are the Dream Team. Don't Break Them Up

Universe Today - Tue, 11/05/2024 - 3:16am

Many people think of the James Webb Space Telescope as a sort of Hubble 2. They understand that the Hubble Space Telescope (HST) has served us well but is now old, and overdue for replacement. NASA seems to agree, as they have not sent a maintenance mission in over fifteen years, and are already preparing to wind down operations. But a recent paper argues that this is a mistake. Despite its age, HST still performs extremely well and continues to produce an avalanche of valuable scientific results. And given that JWST was never designed as a replacement for HST — it is an infrared (IR) telescope) — we would best be served by operating both telescopes in tandem, to maximize coverage of all observations.

Let’s not fool ourselves: the Hubble Space Telescope (HST) is old, and is eventually going to fall back to Earth. Although it was designed to be repairable and upgradable, there have been no servicing missions since 2009. Those missions relied on the Space Shuttle, which could capture the telescope and provide a working base for astronauts. Servicing missions could last weeks, and only the Space Shuttle could transport the six astronauts to the telescope and house them for the duration of the mission.

Without those servicing missions, failing components can no longer be replaced, and the overall health of HST will keep declining. If nothing is done, HST will eventually stop working altogether. To avoid it becoming just another piece of space junk, plans are already being developed to de-orbit it and send it crashing into the Pacific Ocean. But that’s no reason to give up on it. It still has as clear a view of the cosmos as ever, and mission scientists are doing an excellent job of working around technical problems as they arise.

The James Webb Space Telescope was launched into space on Christmas dat in 2021. Its system of foldable hexagonal mirrors give it an effective diameter some 2.7 times larger than HST, and it is designed to see down into the mid-IR range. Within months of deployment, it had already seen things that clashed with existing models of how the Universe formed, creating a mini-crisis in some fields and leading unscrupulous news editors to write headlines questioning whether the “Big Bang Theory” was under threat!

This image of NASA’s Hubble Space Telescope was taken on May 19, 2009 after deployment during Servicing Mission 4. NASA

The reason JWST was able to capture such ancient galaxies is that it is primarily an IR telescope: As the Universe expands, photons from distant objects get red-shifted until stars that originally shone in visible light can now only be seen in the IR. But these IR views are proving extremely valuable in other scientific fields apart from cosmology. In fact, many of the most striking images released by JWST’s press team are IR images of familiar objects, revealing hidden complexities that had not been seen before.

This is a key difference between the two telescopes: While HST’s range overlaps slightly with JWST, it can see all the way up into ultraviolet (UV) wavelengths. HST was launched in 1990, seven years late and billions of dollars over budget. Its 2.4 meter primary element needed to be one of the most precisely ground mirrors ever made, because it was intended to be diffraction limited at UV wavelengths. Famously, avoidable problems in the testing process led to it being very precisely figured to a slightly wrong shape, leading to spherical aberration preventing it from coming to sharp focus.

Fortunately the telescope was designed from the start to be serviceable, and even returned to Earth for repairs by the Space Shuttle if necessary. In the end though, NASA opticians were able to design and build a set of corrective optics to solve the problem, and the COSTAR system was installed by astronauts on the first servicing mission. Over the years, NASA sent up three more servicing missions, to upgrade or repair components, and install new instruments.

Illustration of NASA’s James Webb Space Telescope. Credits: NASA

HST could be one of the most successful scientific instruments ever built. Since 1990, it has been the subject of approximately 1200 science press releases, each of which was read more than 400 million times. The more than 46,000 scientific papers written using HST data have been cited more than 900,000 times! And even in its current degraded state, it still provided data for 1435 papers in 2023 alone.

JWST also ran over time and over budget, but had a far more successful deployment. Despite having a much larger mirror, with more than six times the collecting area of HST, the entire observatory only weighs half as much as HST. Because of its greater sensitivity, and the fact that it can see ancient light redshifted into IR wavelengths, it can see far deeper into the Universe than HST. It is these observations, of galaxies formed when the Universe was extremely young (100 – 180 million years), that created such excitement shortly after it was deployed.

As valuable as these telescopes are, they will not last forever. JWST is located deep in space, some 1.5 million kilometers from Earth near the L2 Lagrange point. When it eventually fails, it will become just another piece of Solar System debris orbiting the Sun in the vast emptiness of the Solar System. HST, however, is in Low Earth Orbit (LEO), and suffers very slight amounts of drag from the faint outer reaches of the atmosphere. Over time it will gradually lose speed, drifting downwards until it enters the atmosphere proper and crashes to Earth. Because of its size, it will not burn up completely, and large chunks will smash into the surface.

Because it cannot be predicted where exactly it will re-enter, mission planners always intended to capture it with the Space Shuttle and return it to Earth before this happened. Its final resting place was supposed to be in display in a museum, but unfortunately the shuttle program was cancelled. The current plan is to send up an uncrewed rocket which will dock with the telescope (a special attachment was installed on the final servicing mission for this purpose), and deorbit it in a controlled way to ensure that its pieces land safely in the ocean.

You can find the original paper at https://arxiv.org/abs/2410.01187

The post Hubble and Webb are the Dream Team. Don't Break Them Up appeared first on Universe Today.

Categories: Astronomy

Moon waves goodbye to Hera

ESO Top News - Tue, 11/05/2024 - 1:57am
Image: Moon waves goodbye to Hera
Categories: Astronomy

SpaceX Dragon cargo capsule arrives at ISS on 31st resupply mission (video)

Space.com - Tue, 11/05/2024 - 12:01am
Dragon completed its docking at 10:04 a.m. EST.
Categories: Astronomy

NASA Science, Cargo Launch on 31st SpaceX Resupply Mission to Station

NASA - Breaking News - Mon, 11/04/2024 - 10:04pm
The SpaceX Falcon 9 rocket carrying the Dragon spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Tuesday, Nov. 4, on the company’s 31st commercial resupply services mission for the agency to the International Space Station. Liftoff was at 9:29 p.m. EST. Dragon will deliver several new experiments, including the Coronal Diagnostic Experiment, to examine solar wind and how it forms. Dragon also delivers Antarctic moss to observe the combined effects of cosmic radiation and microgravity on plants. Other investigations aboard include a device to test cold welding of metals in microgravity, and an investigation that studies how space impacts different materials.Credit: SpaceX

Following a successful launch of NASA’s SpaceX 31st commercial resupply mission, new scientific experiments and cargo for the agency are bound for the International Space Station.

The SpaceX Dragon spacecraft, carrying more than 6,000 pounds of supplies to the orbiting laboratory, lifted off at 9:29 p.m. EST Monday, on the company’s Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

Live coverage of the spacecraft’s arrival will begin at 8:45 a.m. Tuesday, Nov. 5, on NASA+ and the agency’s website. Learn how to watch NASA content through a variety of platforms, including social media.

The spacecraft is scheduled to autonomously dock at approximately 10:15 a.m. to the forward port of the space station’s Harmony module.

The resupply mission will support dozens of research experiments conducted during Expedition 72. In addition to food, supplies, and equipment for the crew, Dragon will deliver several new experiments, including the Coronal Diagnostic Experiment, to examine solar wind and how it forms. Dragon also delivers Antarctic moss to observe the combined effects of cosmic radiation and microgravity on plants. Other investigations aboard include a device to test cold welding of metals in microgravity and an investigation that studies how space impacts different materials.

These are just a sample of the hundreds of investigations conducted aboard the orbiting laboratory in the areas of biology and biotechnology, physical sciences, and Earth and space science. Such research benefits humanity and lays the groundwork for future human exploration through the agency’s Artemis campaign, which will send astronauts to the Moon to prepare for future expeditions to Mars.

The Dragon spacecraft is scheduled to remain at the space station until December when it will depart the orbiting laboratory and return to Earth with research and cargo, splashing down off the coast of Florida.

Learn more about space station activities by following @space_station and @ISS_Research on X, as well as the ISS Facebook, ISS Instagram, and the space station blog.

Learn more about the commercial resupply mission at:

https://www.nasa.gov/mission/nasas-spacex-crs-31

-end-

Claire O’Shea / Josh Finch
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov

Stephanie Plucinsky / Steven Siceloff
Kennedy Space Center, Fla.
321-876-2468
stephanie.n.plucinsky@nasa.gov / steven.p.siceloff@nasa.gov

Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov

Share Details Last Updated Nov 05, 2024 EditorJennifer M. DoorenLocationNASA Headquarters Related Terms
Categories: NASA

Sols 4352-4354: Halloween Fright Night on Mars

NASA - Breaking News - Mon, 11/04/2024 - 7:26pm
Curiosity Navigation

3 min read

Sols 4352-4354: Halloween Fright Night on Mars NASA’s Mars rover Curiosity acquired this image of the target surface feature nicknamed “Reds Meadow,” using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm. Curiosity captured the image Oct. 31, 2024, at 19:09:10 UTC, on sol 4350 — Martian day 4,350 of the Mars Science Laboratory Mission. NASA/JPL-Caltech/MSSS

Earth planning date: Friday, Nov. 1, 2024

Yesterday evening (Thursday) was Halloween for many of us here on Earth. My neighborhood in eastern Canada was full of small (and not so small!) children, running around in the dark collecting sweets and candy but also getting scared by the ghostly decorations hung at each house. Little did we suspect that our poor rover on Mars was also getting spooked. Curiosity completed about a meter (about 3 feet) of the planned drive before becoming unsettled … scared, if you will! … when its left front wheel got hung up on a rock and stopped moving.

Luckily, we understood this kind of frightened behavior and were able to resume planning today as per usual. That meter was enough to give us a whole new set of targets to choose from. As APXS Strategic Planner this week, I had chosen darker-looking targets in the workspace — “Ladder Lake” and “Reds Meadow” (shown in the accompanying MAHLI image) — earlier in the week. I was happy that bumping backwards by a meter allowed us to reach some of the more typical pale colored bedrock at “Eureka Valley” and a second APXS analysis on “Black Bear Lake,” which is a mixture of both pale bedrock and some darker layers. MAHLI added in a bonus set of images on “Stag Dome,” focusing on small, rougher patches on the pale bedrock.

ChemCam is taking advantage of the short bump, too, adding a passive observation on the brushed Reds Meadow target, analyzed by APXS and MAHLI in Monday’s plan. A ChemCam LIBS target “Hoist Ridge” focuses on a small vertical face of dark material. Two long distance images planned for ChemCam’s Remote Micro Imager (RMI) look at the distribution of rocks along the Gediz Vallis ridge in the distance.

Mastcam is taking several mosaics this weekend (must have gotten extra energy from the Halloween sugar!). Close to the rover, Mastcam will acquire single-frame images of the targets Hoist Ridge and Eureka Valley, and a small mosaic of some surficial troughs just a little further away. Moving further afield, a small 3×1 mosaic (three images in one row) will image the same area as the ChemCam RMI of the Gediz Vallis ridge, and a larger 9×2 mosaic will focus on the faraway yardang unit, where we hopefully will be in a few years.

Then for the really big images: Mastcam will image the whole landscape in a special 360-degree view, so big it needs to be broken into two parts. The first will have 43×4 frames, the second 34×5 frames. These mosaics are huge, so we save them for when we are at a really good vantage point to allow us to capture as much detail as possible for science and engineering planning.

As ever, we continue our environmental monitoring of conditions, with Mastcam and Navcam movies and images looking at dust in the atmosphere above and around us in Gale crater, and watching out for dust devils.

Written by Catherine O’Connell-Cooper, Planetary Geologist at University of New Brunswick

    Share

    Details

    Last Updated

    Nov 04, 2024

    Related Terms Explore More

    2 min read Sols 4350-4351: A Whole Team Effort

    Article


    4 days ago

    2 min read Sols 4348-4349: Smoke on the Water

    Article


    5 days ago

    2 min read A Spooky Soliday: Haunting Whispers from the Martian Landscape

    Article


    5 days ago

    Keep Exploring Discover More Topics From NASA

    Mars

    Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


    All Mars Resources

    Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


    Rover Basics

    Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


    Mars Exploration: Science Goals

    The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

    Categories: NASA

    Scientists Have Figured out why Martian Soil is so Crusty

    Universe Today - Mon, 11/04/2024 - 7:13pm

    On November 26th, 2018, NASA’s Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight) mission landed on Mars. This was a major milestone in Mars exploration since it was the first time a research station had been deployed to the surface to probe the planet’s interior. One of the most important instruments InSight would use to do this was the Heat Flow and Physical Properties Package (HP3) developed by the German Aerospace Center (DLR). Also known as the Martian Mole, this instrument measured the heat flow from deep inside the planet for four years.

    The HP3 was designed to dig up to five meters (~16.5 ft) into the surface to sense heat deeper in Mars’ interior. Unfortunately, the Mole struggled to burrow itself and eventually got just beneath the surface, which was a surprise to scientists. Nevertheless, the Mole gathered considerable data on the daily and seasonal fluctuations below the surface. Analysis of this data by a team from the German Aerospace Center (DLR) has yielded new insight into why Martian soil is so “crusty.” According to their findings, temperatures in the top 40 cm (~16 inches) of the Martian surface lead to the formation of salt films that harden the soil.

    The analysis was conducted by a team from the Microgravity User Support Center (MUSC) of the DLR Space Operations and Astronaut Training Institution in Cologne, which is responsible for overseeing the HP3 experiment. The heat data it obtained from the interior could be integral to understanding Mars’s geological evolution and addressing theories about its core region. At present, scientists suspect that geological activity on Mars largely ceased by the late Hesperian period (ca. 3 billion years ago), though there is evidence that lava still flows there today.

    The “Mars Mole,” Heat Flow and Physical Properties Package (HP³). Credit: DLR

    This was likely caused by Mars’ interior cooling faster due to its lower mass and lower pressure. Scientists theorize that this caused Mars’ outer core to solidify while its inner core became liquid—though this remains an open question. By comparing the subsurface temperatures obtained by InSight to surface temperatures, the DLR team could measure the rate of heat transport in the crust (thermal diffusivity) and thermal conductivity. From this, the density of the Martian soil could be estimated for the first time.

    The team determined that the density of the uppermost 30 cm (~12 inches) of soil is comparable to basaltic sand – something that was not anticipated based on orbiter data. This material is common on Earth and is created by weathering volcanic rock rich in iron and magnesium. Beneath this layer, the soil density is comparable to consolidated sand and coarser basalt fragments. Tilman Spohn, the principal investigator of the HP3 experiment at the DLR Institute of Planetary Research, explained in a DLR press release:

    “To get an idea of the mechanical properties of the soil, I like to compare it to floral foam, widely used in floristry for flower arrangements. It is a lightweight, highly porous material in which holes are created when plant stems are pressed into it... Over the course of seven Martian days, we measured thermal conductivity and temperature fluctuations at short intervals.

    Additionally, we continuously measured the highest and lowest daily temperatures over the second Martian year. The average temperature over the depth of the 40-centimetre-long thermal probe was minus 56 degrees Celsius (217.5 Kelvin). These records, documenting the temperature curve over daily cycles and seasonal variations, were the first of their kind on Mars.”

    NASA’s In­Sight space­craft land­ed in the Ely­si­um Plani­tia re­gion on Mars on 26 Novem­ber 2018. Credit: Credit: NASA-JPL/USGS/MOLA/DLR

    Because the encrusted Martian soil (aka. “duricrust”) extends to a depth of 20 cm (~8 inches), the Mole managed to penetrate just a little more than 40 cm (~16 inches) – well short of its 5 m (~16.5 ft) objective. Nevertheless, the data obtained at this depth has provided valuable insight into heat transport on Mars. Accordingly, the team found that ground temperatures fluctuated by only 5 to 7 °C (9 to 12.5 °F) during a Martian day, a tiny fraction of the fluctuations observed on the surface—110 to 130 °C (230 to 266 °F).

    Seasonally, they noted temperature fluctuation of 13 °C (~23.5 °F) while remaining below the freezing point of water on Mars in the layers near the surface. This demonstrates that the Martian soil is an excellent insulator, significantly reducing the large temperature differences at shallow depths. This influences various physical properties in Martian soil, including elasticity, thermal conductivity, heat capacity, the movement of material within, and the speed at which seismic waves can pass through them.

    “Temperature also has a strong influence on chemical reactions occurring in the soil, on the exchange with gas molecules in the atmosphere, and therefore also on potential biological processes regarding possible microbial life on Mars,” said Spohn. “These insights into the properties and strength of the Martian soil are also of particular interest for future human exploration of Mars.”

    What was particularly interesting, though, is how the temperature fluctuations enable the formation of salty brines for ten hours a day (when there is sufficient moisture in the atmosphere) in winter and spring. Therefore, the solidification of this brine is the most likely explanation for the duricrust layer beneath the surface. This information could prove very useful as future missions explore Mars and attempt to probe beneath the surface to learn more about the Red Planet’s history.

    Further Reading: DLR

    The post Scientists Have Figured out why Martian Soil is so Crusty appeared first on Universe Today.

    Categories: Astronomy

    Ancient Mesopotamian clay seals offer clues to the origin of writing

    New Scientist Space - Cosmology - Mon, 11/04/2024 - 7:01pm
    Before Mesopotamian people invented writing, they used cylinder seals to press patterns into wet clay – and some of the symbols used were carried over into proto-writing
    Categories: Astronomy

    Ancient Mesopotamian clay seals offer clues to the origin of writing

    New Scientist Space - Space Headlines - Mon, 11/04/2024 - 7:01pm
    Before Mesopotamian people invented writing, they used cylinder seals to press patterns into wet clay – and some of the symbols used were carried over into proto-writing
    Categories: Astronomy

    Spraying rice with sunscreen particles during heatwaves boosts growth

    New Scientist Space - Cosmology - Mon, 11/04/2024 - 5:15pm
    Zinc nanoparticles, a common sunscreen ingredient, can make plants more resilient to climate change – in a surprising way
    Categories: Astronomy

    Spraying rice with sunscreen particles during heatwaves boosts growth

    New Scientist Space - Space Headlines - Mon, 11/04/2024 - 5:15pm
    Zinc nanoparticles, a common sunscreen ingredient, can make plants more resilient to climate change – in a surprising way
    Categories: Astronomy

    Spraying rice with sunscreen particles during heat waves boosts growth

    New Scientist Space - Cosmology - Mon, 11/04/2024 - 5:15pm
    Zinc nanoparticles, a common sunscreen ingredient, can make plants more resilient to climate change – in a surprising way
    Categories: Astronomy

    Spraying rice with sunscreen particles during heat waves boosts growth

    New Scientist Space - Space Headlines - Mon, 11/04/2024 - 5:15pm
    Zinc nanoparticles, a common sunscreen ingredient, can make plants more resilient to climate change – in a surprising way
    Categories: Astronomy