Feed aggregator
ELVIS in orbit: New 3D microscope arrives at the ISS to study microbes in space
Planetary Alignment Provides NASA Rare Opportunity to Study Uranus
When a planet’s orbit brings it between Earth and a distant star, it’s more than just a cosmic game of hide and seek. It’s an opportunity for NASA to improve its understanding of that planet’s atmosphere and rings. Planetary scientists call it a stellar occultation and that’s exactly what happened with Uranus on April 7.
Observing the alignment allows NASA scientists to measure the temperatures and composition of Uranus’ stratosphere – the middle layer of a planet’s atmosphere – and determine how it has changed over the last 30 years since Uranus’ last significant occultation.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
This rendering demonstrates what is happening during a stellar occultation and illustrates an example of the light curve data graph recorded by scientists that enables them to gather atmospheric measurements, like temperature and pressure, from Uranus as the amount of starlight changes when the planet eclipses the star.NASA/Advanced Concepts Laboratory“Uranus passed in front of a star that is about 400 light years from Earth,” said William Saunders, planetary scientist at NASA’s Langley Research Center in Hampton, Virginia, and science principal investigator and analysis lead, for what NASA’s team calls the Uranus Stellar Occultation Campaign 2025. “As Uranus began to occult the star, the planet’s atmosphere refracted the starlight, causing the star to appear to gradually dim before being blocked completely. The reverse happened at the end of the occultation, making what we call a light curve. By observing the occultation from many large telescopes, we are able to measure the light curve and determine Uranus’ atmospheric properties at many altitude layers.”
We are able to measure the light curve and determine Uranus' atmospheric properties at many altitude layers.William Saunders
Planetary Scientist at NASA's Langley Research Center
This data mainly consists of temperature, density, and pressure of the stratosphere. Analyzing the data will help researchers understand how the middle atmosphere of Uranus works and could help enable future Uranus exploration efforts.
To observe the rare event, which lasted about an hour and was only visible from Western North America, planetary scientists at NASA Langley led an international team of over 30 astronomers using 18 professional observatories.
Kunio Sayanagi, NASA’s principal investigator for the Uranus Stellar Occultation Campaign 2025, meeting virtually with partners and observing data from the Flight Mission Support Center at NASA’s Langley Research Center in Hampton, Virginia during Uranus’ stellar occultation event on April 7, 2025.NASA/Dave MacDonnell“This was the first time we have collaborated on this scale for an occultation,” said Saunders. “I am extremely grateful to each member of the team and each observatory for taking part in this extraordinary event. NASA will use the observations of Uranus to determine how energy moves around the atmosphere and what causes the upper layers to be inexplicably hot. Others will use the data to measure Uranus’ rings, its atmospheric turbulence, and its precise orbit around the Sun.”
Knowing the location and orbit of Uranus is not as simple as it sounds. In 1986, NASA’s Voyager 2 spacecraft became the first and only spacecraft to fly past the planet – 10 years before the last bright stellar occultation occured in 1996. And, Uranus’ exact position in space is only accurate to within about 100 miles, which makes analyzing this new atmospheric data crucial to future NASA exploration of the ice giant.
These investigations were possible because the large number of partners provided many unique views of the stellar occultation from many different instruments.
NASA planetary scientist William Saunders and Texas A&M University research assistant Erika Cook in the control room of the McDonald Observatory’s Otto Struve Telescope in Jeff Davis County, Texas, during the Uranus stellar occultation on April 7, 2025.Joshua SantanaEmma Dahl, a postdoctoral scholar at Caltech in Pasadena, California, assisted in gathering observations from NASA’s Infrared Telescope Facility (IRTF) on the summit of Mauna Kea in Hawaii – an observatory first built to support NASA’s Voyager missions.
“As scientists, we do our best work when we collaborate. This was a team effort between NASA scientists, academic researchers, and amateur astronomers,” said Dahl. “The atmospheres of the gas and ice giant planets [Jupiter, Saturn, Uranus, and Neptune] are exceptional atmospheric laboratories because they don’t have solid surfaces. This allows us to study cloud formation, storms, and wind patterns without the extra variables and effects a surface produces, which can complicate simulations very quickly.”
On November 12, 2024, NASA Langley researchers and collaborators were able to do a test run to prepare for the April occultation. Langley coordinated two telescopes in Japan and one in Thailand to observe a dimmer Uranus stellar occultation only visible from Asia. As a result, these observers learned how to calibrate their instruments to observe stellar occultations, and NASA was able to test its theory that multiple observatories working together could capture Uranus’ big event in April.
Researchers from the Paris Observatory and Space Science Institute, in contact with NASA, also coordinated observations of the November 2024 occultation from two telescopes in India. These observations of Uranus and its rings allowed the researchers, who were also members of the April 7 occultation team, to improve the predictions about the timing on April 7 down to the second and also improved modeling to update Uranus’ expected location during the occultation by 125 miles.
This image of Uranus from NIRCam (Near-Infrared Camera) on NASA’s James Webb Space Telescope exquisitely captures Uranus’s seasonal north polar cap and dim inner and outer rings. This Webb image also shows 9 of the planet’s 27 moons – clockwise starting at 2 o’clock, they are: Rosalind, Puck, Belinda, Desdemona, Cressida, Bianca, Portia, Juliet, and Perdita.NASA, ESA, CSA, STScIUranus is almost 2 billion miles away from Earth and has an atmosphere composed of primarily hydrogen and helium. It does not have a solid surface, but rather a soft surface made of water, ammonia, and methane. It’s called an ice giant because its interior contains an abundance of these swirling fluids that have relatively low freezing points. And, while Saturn is the most well-known planet for having rings, Uranus has 13 known rings composed of ice and dust.
Over the next six years, Uranus will occult several dimmer stars. NASA hopes to gather airborne and possibly space-based measurements of the next bright Uranus occultation in 2031, which will be of an even brighter star than the one observed in April.
For more information on NASA’s Uranus Stellar Occultation Campaign 2025:
https://science.larc.nasa.gov/URANUS2025
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Charles Hatfield
Langley Research Center, Hampton, Virginia
757-262-8289
charles.g.hatfield@nasa.gov
Missions
Humans in Space
Climate Change
Solar System
Mars's Atmosphere Used to be Thicker. Has Curiosity Found Where it All Went?
Planetary scientists have plenty of theories about Mars and its environmental past. Two of the most widely accepted are that there was a carbon dioxide atmosphere and, at one point, liquid water on Mars' surface. However, this theory has a glaring problem: Where should the rocks have formed from the interactions between carbon dioxide and water? According to a new paper by scientists at several NASA facilities using data collected by the rover Curiosity, the answer is right under the rover's metaphorical feet.
Giant coral colony discovered in Red Sea tourism hotspot
Giant coral colony discovered in Red Sea tourism hotspot
There's liquid on Titan, Saturn's largest moon. But something's missing and scientists are confused
It's alive! It's alive! Orion throws back its cover | Space picture of the day for April 22, 2025
Yousa in big doo-doo now, as Darth Jar Jar makes his way to Fortnite in the new Star Wars collaboration (video)
Jets wrapped in 'shark skin' material could fly further on less fuel
Jets wrapped in 'shark skin' material could fly further on less fuel
Has the James Webb Space Telescope discovered a 'missing' supermassive black hole? (video)
First Results from the Eclipse Soundscapes Project: Webinar on May 7
2 min read
First Results from the Eclipse Soundscapes Project: Webinar on May 7How do the sudden darkness and temperature changes of a solar eclipse impact life on Earth? The Eclipse Soundscapes project invited you to document changes in the environment during the week of the April 8, 2024 total solar eclipse, using your own senses or an audiomoth sound recorder.
Thanks to your participation, the Eclipse Soundscapes team collected 25 terabytes of audio data during the 2023 and 2024 solar eclipses. “It was really empowering for me to participate in a scientific research study with my son beside me so he could see how scientific data can be (collected),” said one Eclipse Soundscapes volunteer.
More than 500 volunteers collected data using AudioMoth recorders during the April 8, 2024 eclipse for the Eclipse Soundscapes project. Credit: Eclipse SoundscapesSince the eclipse, the Eclipse Soundscapes team has been turning the submitted data into a new, carefully validated data set. They have been assessing recording quality, verifying timestamps, and logging other kinds of information that support the submitted data. With the newly validated data, they are now using machine learning to study wildlife behavior and compare regional differences. They do some of this work using spectrographic analysis—spreading out the sound into different frequency ranges like a prism spreads light into a rainbow. The team is also working to make the validated data freely available to the public on the Zenodo website—a free, open-source research data repository developed by CERN (the European Organization for Nuclear Research) that allows researchers to share and preserve their work, regardless of discipline or format.
The team’s first inspection of the data suggests that some species may mimic dusk-like behavior during totality. Want to hear more early results? You can join the team’s live webinar on May 7, 2025, at 2:00 p.m. EST with Dr. Brent Pease. Register now at EclipseSoundscapes.org. You can also explore this interactive map of data analysis sites, with details about each site, including partner organizations.
Register for the May 7 Preliminary Results WEBINAR
Read the Preliminary Results Blog
Share Details Last Updated Apr 22, 2025 Related Terms Explore More 5 min read Can Solar Wind Make Water on Moon? NASA Experiment Shows Maybe
Article
1 week ago 7 min read Eclipses, Science, NASA Firsts: Heliophysics Big Year Highlights
Article
2 weeks ago 1 min read Join our Virtual Do NASA Science LIVE Event on April 10!
Article
3 weeks ago
Sunshine on Earth
Sunshine on Earth
The Sun’s glint beams off a partly cloudy Atlantic Ocean just after sunrise as the International Space Station orbited 263 miles above on March 5, 2025. The space station serves as a unique platform for observing Earth with both hands-on and automated equipment. Station crew members have produced hundreds of thousands of images, recording phenomena such as storms in real time, observing natural events such as volcanic eruptions as they happen, and providing input to ground personnel for programming automated Earth-sensing systems.
NASA has been observing Earth from space for more than 60 years, with cutting-edge scientific technology that can revolutionize our understanding of our home planet and provide benefits to all humanity.
Image credit: NASA
Why Webb May Never Be Able to Find Evidence of Life on Another World
The exoplanet K2-18b is generating headlines because researchers announced what could be evidence of life on the planet. The JWST detected a pair of atmospheric chemicals that on Earth are produced by living organisms. The astronomers responsible for the results are quick to remind everyone that they have not found life, only chemicals that could indicate the presence of life. The results beg a larger question, though: Can the JWST really ever detect life?
NASA's Lucy probe captures 1st close-up images of asteroid Donaldjohanson, revealing 'strikingly complicated geology'
Quantum batteries could make quantum computers more efficient
Quantum batteries could make quantum computers more efficient
We took a guided tour of the solar system in Elite Dangerous, and now you can too (interview)
Fight, Flee or Freeze? This Tiny Caterpillar Does a Secret Fourth Thing
Baby warty birch caterpillars vibrate when threatened—before swinging away like Spider-Man