Behold, directly overhead, a certain strange star was suddenly seen...
Amazed, and as if astonished and stupefied, I stood still.

— Tycho Brahe

Feed aggregator

Aurora over Idaho

NASA Image of the Day - Mon, 05/13/2024 - 5:33pm
The aurora turns the sky near Malad City, Idaho, red, purple, and green in this 8-second exposure taken on May 11, 2024.
Categories: Astronomy, NASA

Aurora over Idaho

NASA - Breaking News - Mon, 05/13/2024 - 5:20pm
NASA/Bill Dunford

The aurora paints the sky near Malad City, Idaho, red, purple, and green in this May 11, 2024, image. This aurora was sparked by multiple eruptions of solar material—called coronal mass ejections—colliding with Earth’s magnetic field. This interaction with Earth’s magnetic field can spark a geomagnetic storm and send particles from space rocketing down magnetic field lines toward Earth, where they excite molecules in our planet’s upper atmosphere, releasing light and creating auroras.

Image Credit: NASA/Bill Dunford

Categories: NASA

Ultrasound therapy could treat lung condition linked to heart failure

New Scientist Space - Cosmology - Mon, 05/13/2024 - 5:06pm
Mice benefitted from ultrasound therapy for a rare lung condition – the treatment might work for common forms of high blood pressure, too
Categories: Astronomy

Ultrasound therapy could treat lung condition linked to heart failure

New Scientist Space - Space Headlines - Mon, 05/13/2024 - 5:06pm
Mice benefitted from ultrasound therapy for a rare lung condition – the treatment might work for common forms of high blood pressure, too
Categories: Astronomy

AI may be to blame for our failure to make contact with alien civilizations

Space.com - Mon, 05/13/2024 - 5:00pm
The rise of AI might explain why the search for extraterrestrial intelligence (SETI) has yet to detect the signatures of advanced technical civilizations elsewhere in the galaxy.
Categories: Astronomy

Meet NASA Women Behind World’s Largest Flying Laboratory

NASA - Breaking News - Mon, 05/13/2024 - 4:30pm

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

NASA’s DC-8 aircraft – the world’s largest flying science laboratory – began its science missions in 1987 and since then, has flown in service of the science community over places like Antarctica, Greenland, and Thailand. Aircraft like the DC-8 have enabled scientists to ask questions about life on Earth and explore them in a way that only NASA’s Airborne Science program can make happen. After 37 years, the DC-8 will retire to Idaho State University, where it will serve as an educational tool for students. 

As the DC-8 approaches its retirement, we highlight five of the women who have made the aircraft and program a success.    

 Kirsten Boogaard, Nicki Reid, Carrie Worth, Erin Waggoner, and WendyBereda of NASA’s Armstrong Flight Research Center in Edwards, California, are building the legacy of women who are helping pave the way for the next generation.

Kirsten Boogaard, Deputy Project Manager for the DC-8 aircraft, leads and manages project planning, integration and resources for airborne science missions since 2020.NASA/Ken Ulbrich Kirsten Boogaard Deputy Project Manager

Kirsten Boogaard wears many hats for the DC-8 program, including deputy project manager, mission manager, and assistant mission director.    

Since 2020, she has served as the deputy project manager on the DC-8 Airborne Science laboratory, leading and managing project planning, integration, and resources.  She is one of three women qualified in the mission director role for the flying laboratory. 

“I am really proud of what I accomplish at work,” Boogaard said. “And I am most proud of being able to work full-time and support numerous deployments while having a child.”

Nickelle Reid Operations Engineer   

As operations engineer, Nicki Reid authorizes the airworthiness for the aircraft by ensuring that the science instruments added onboard sustain the aircraft’s safety. She also serves as the mission director, where she manages communications with the cabin and cockpit crews.    

“It takes a lot of practice to get used to hearing all the different conversations and weeding out what’s important, staying focused, and staying on top of all the action that’s happening,” Reid said.     

For a science mission project, that focus is essential to maintaining efficient communication between scientists and pilots.  Reid has been honing that skill since she started as an intern at NASA Armstrong.

Airborne science missions are not for the faint of heart! Pilot Carrie Worth and Operations Engineer Nicki Reid are all smiles after landing from a successful science flight.Photo courtesy of Carrie Worth Carrie Worth Pilot    

Carrie Worth is part of a team uniquely qualified to fly the DC-8. Her journey to her career as a pilot began as a child.

“When I was a little kid, I saw Patty Wagstaff perform aeronautical stunts at the airshow in Oshkosh, Wisconsin,” Carrie Worth, NASA DC-8 pilot, said. “I decided then and there that I wanted to be a pilot.”     

Before joining NASA, Worth served 21 years in the U.S. Air Force as a special operations and search and rescue pilot, and then worked as a 747 pilot for United Parcel Service in Anchorage, Alaska. As a woman working in a male-majority industry, Worth is grateful for the supportive work environment at NASA and the DC-8 program.    

“I feel incredibly lucky for the support I have and have had from my male peers,” she said. “I have seen a significant improvement in the [aviation] culture, but there’s still work to be done.”

Branch Chief of the Research Aerodynamics and Propulsion Branch, Erin Waggoner is all smiles onboard the DC-8 during an airborne science mission deployment.Photo courtesy of Erin Waggoner Erin Waggoner Research Aerodynamics and Propulsion Branch Chief   

In 2011, Erin Wagonner joined the Research Aerodynamics and Propulsion Branch at NASA Armstrong to support sonic boom research. Today, she is the branch chief.   

“I’m thankful for all the mentorship I’ve received throughout my career,” Waggoner said. “Everyone from the maintenance crew to the researchers are very welcoming, willing to share their expertise, and mission-focused.”   

Waggoner’s experience with the DC-8 program inspired her to recognize the value of a team spirit in a successful project.    

“I’ve learned a lot about team dynamics from my time on the DC-8, like how to integrate new members into an existing team,” Waggoner said. “I love being able to encourage young women interested in NASA and aviation, and learning from the women who blazed the trails ahead of me.”

Keeping things running: Wendy Bereda finds a moment to smile with Operations Engineer Nicki Reid on a maintenance day for the DC-8. She has served the DC-8 program for 25 years.Photo courtesy of Wendy Bereda Wendy Bereda Site Supervisor  

Wendy Bereda started working on the DC-8 aircraft in 1999, first as a logistics clerk, later as a project support supply tech. She is now the site supervisor for the maintenance contract at NASA Armstrong. 

“Through the years, I’ve received different accolades, but the one that meant the most to me was given to me by Headquarters for my administrative excellence in finding parts and keeping the DC-8 flying.”     

As a science-driven platform, the DC-8 project is composed of a team driven to provide the best customer service.    

“Our team has so much love for the DC-8,” Bereda said. “We live and breathe to make things happen.  This is why I’m proud to have been a big part of the DC-8 life at Armstrong.” 

Experts like the women above enrich NASA’s legacy of innovation and exploration, and make programs like the DC-8 a success.

Share Details Last Updated May 13, 2024 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms Explore More 8 min read Hubble Celebrates the 15th Anniversary of Servicing Mission 4

Fifteen years ago, human hands touched NASA’s Hubble Space Telescope for the last time. As…

Article 3 days ago
2 min read Hubble Glimpses a Star-Forming Factory

The celestial object showcased in this image from the NASA/ESA Hubble Space Telescope is the…

Article 4 days ago
3 min read NASA Licenses 3D-Printable Superalloy to Benefit US Economy Article 4 days ago Keep Exploring Discover More Topics From NASA

Armstrong Flight Research Center

Armstrong Science Projects

Aircraft Flown at Armstrong

Science in the Air

Categories: NASA

Space Force aims to launch 1st 'Foo Fighter' satellites in 2027 to track hypersonic threats

Space.com - Mon, 05/13/2024 - 4:12pm
The U.S. Space Force's Space Development Agency has ordered the first eight satellites for its upcoming 'FOO Fighter' hypersonic missile-tracking constellation.
Categories: Astronomy

Tech Today: A NASA-Inspired Bike Helmet with Aerodynamics of a Jet  

NASA - Breaking News - Mon, 05/13/2024 - 4:03pm

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Jim Gentes wearing the Jiro Prolight bicycle helmet.Credit: Jiro

Before the U.S. Cycling Federation adopted a requirement for all bike racers to wear helmets in 1986, most people rode without one. The only helmet options at the time drew rider complaints for being too hot and heavy. But, with a bit inspiration from a NASA aircraft wing design used during World War II, more than 20,000 competitive biker racers would soon have a lighter-weight option to protect their heads. 

Jim Gentes, an industrial designer, and bicycling enthusiast developing an aerodynamic bike helmet, saw the new rule as an opportunity. He started Giro Sport Design Inc., now based in Irvine, California, to provide bike racers a speed and safety advantage. Then came the Giro Prolight, a lightweight racing helmet that was cool and aerodynamic, drawing upon a NASA-developed aircraft wing technology.

The National Advisory Committee for Aeronautics (NACA), NASA’s predecessor, developed the NACA 6-series airfoil during World War II to reduce drag in fighter aircraft. Raymond Hicks, an aerodynamicist at NASA’s Ames Research Center in California’s Silicon Valley, helped Gentes adapt that wing design to improve airflow over the helmet, reducing drag. Compared with bareheaded racing, wind tunnel tests confirmed that the reduced drag could save one second in a little over half a mile.

To keep it lightweight, the Prolight used expanded polystyrene foam with a removable Lycra cover. Vents in the front and rear of the helmet let air flow through, using the vacuum created by the rear vents to pull air into the helmet. The vent design also smoothed airflow, reducing turbulence and drag.

In 1986, Gentes added a foam model called the Aerohead. The Hammerhead, a Prolight with a thin shell, came next, followed by the newer, streamlined Aerohead. When Gentes’ friend Greg LeMond won the 1989 Tour de France wearing the Aerohead, worldwide acclaim followed. 

Giro has changed hands several times since the 1980s and today, the brand continues to offer bike helmets and other sporting equipment and apparel. 

Read More Share Details Last Updated May 13, 2024 Related Terms Explore More 2 min read Tech Today: NASA’s Ion Thruster Knowhow Keeps Satellites Flying Article 1 week ago 2 min read Tech Today: Stay Safe with Battery Testing for Space

NASA battery safety exams influence commercial product testing

Article 2 weeks ago
3 min read NASA Data Helps Beavers Build Back Streams Article 3 weeks ago Keep Exploring Discover Related Topics

Technology Transfer & Spinoffs

Ames Research Center

Aeronautics

Technology

Categories: NASA

Sticky oil sprayed onto plants offers alternative to pesticides

New Scientist Space - Cosmology - Mon, 05/13/2024 - 4:00pm
A sticky liquid made from vegetable oil could be sprayed onto plants to catch small pests such as thrips without affecting larger insects such as bees
Categories: Astronomy

Sticky oil sprayed onto plants offers alternative to pesticides

New Scientist Space - Space Headlines - Mon, 05/13/2024 - 4:00pm
A sticky liquid made from vegetable oil could be sprayed onto plants to catch small pests such as thrips without affecting larger insects such as bees
Categories: Astronomy

Some Clever Ways to Search for Primordial Black Holes

Universe Today - Mon, 05/13/2024 - 3:50pm

Primordial Black Holes (PBHs) have recently received much attention in the physics community. One of the primary reasons is the potential link to dark matter. In effect, if PBHs can be proven to exist, there’s a very good chance that they are what dark matter, the invisible thing that makes up 85% of the universe’s mass, is made of. If proven, that would surely be a Nobel-level discovery in astrophysics. 

But to prove it, someone has to find them first. So far, PBHs exist only in theory. But we’re getting closer to proving they do exist, and a new paper from Marcos Flores of the Sorbonne and Alexander Kusenko of UCLA traces some ideas on how we might be able to finally find PBHs and thereby prove or disprove their connection to dark matter.

Drs. Flores and Kusenko focus on understanding PBH formation theories and then extrapolate how those formations might be detectable, even with modern equipment. A typical black hole, which we know exists, forms when supermassive stars collapse under their own weight.

Fraser discusses PBHs.

PBHs were formed before any stars of such size were available to collapse, so they must be formed using a different mechanism. The paper details a theorized PBH formation process that involves a detailed mathematical look at particle asymmetry and how that fits in with other models of particle physics. But how can astronomers see those formations?

One way is by watching a loss of angular momentum. Astronomers can observe “halos” of particles early on in the universe. In many cases, they are spinning rapidly. However, if their spin slows dramatically, it may indicate that a PBH was forming in the vicinity, sapping some of the energy from that angular momentum by pulling the particles towards themselves.

Another way is by watching a new favorite mechanism of astronomers everywhere – gravitational waves. It’s not completely clear whether the formation of PBHs can cause gravitational waves. Still, the paper discusses some frameworks that can potentially lead to a theory of whether they do. 

Fraser discusses how hard it is to find PBHs with Dr. Celeste Keith.

Supersymmetry provides one of those frameworks. In some cases, the early universe operating under the principles of supersymmetry could form a PBH that would form a gravitational wave that the next generation of gravitational wave detectors could potentially detect. In particular, it would involve what the paper calls a “poltergeist mechanism” resulting from space-time perturbations in certain theories. 

A final way to detect these PBHs is to watch for gravitational lenses. Some experiments like the Optical Gravitational Lensing Experiment (OGLE) and the Hyper Suprime-Cam (HSC) of the Subaru telescope have noticed gravitational microlensing where there is no known massive object to cause such lensing. PBHs, which would be effectively invisible to those telescopes, could offer one explanation, though other explanations must be ruled out first.

Other theories offer other opportunities for PBH detection, including watching the interaction of “Q-balls” or theoretical large “blobs” of matter. If enough of these are collected together, they could potentially form a PBH. 

Ultimately, there are more questions than answers surrounding these mysterious objects. If they do exist, they could answer plenty of them. However, more data is needed to prove that beyond any reasonable doubt. Experimentalists are already pushing forward as quickly as they can to develop new and better detectors that can help in the hunt for PBHs. If they do exist, it’s only a matter of time before we find them.

Learn More:
Flores & Kusenko – New ideas on the formation and astrophysical detection of primordial black holes
UT – The Universe Could Be Filled With Ultralight Black Holes That Can’t Die
UT – If We Could Find Them, Primordial Black Holes Would Explain a Lot About the Universe
UT – Neutron Stars Could be Capturing Primordial Black Holes

Lead Image:
Illustration of colliding black holes.
Credit – Caltech / R. Hurt (IPAC)

The post Some Clever Ways to Search for Primordial Black Holes appeared first on Universe Today.

Categories: Astronomy

NASA to Discuss New Polar Climate Mission During Media Teleconference

NASA - Breaking News - Mon, 05/13/2024 - 3:14pm
The PREFIRE mission will launch the first of two CubeSats – depicted in this artist’s concept orbiting Earth – into space on Wednesday, May 22, 2024, to study how much heat the planet absorbs and emits from its polar regions. These measurements will inform climate and ice models.Credits: NASA/JPL-Caltech

NASA is hosting a media call at 3 p.m. EDT, Wednesday, May 15, to discuss the agency’s PREFIRE (Polar Radiant Energy in the Far-InfraRed Experiment) mission, which aims to improve life on Earth by studying heat loss from Earth’s polar regions and provide information on our changing climate.

The first of two shoebox-sized satellites is targeted to launch aboard a Rocket Lab Electron rocket no earlier than Wednesday, May 22. The launch date for the second satellite will be announced shortly after the launch of the first satellite.

Earth absorbs a lot of energy from the Sun at the tropics. Weather and ocean currents move that heat energy toward the poles, where the heat radiates upward into space. Much of that heat is in far-infrared wavelengths and has never been systematically measured. The data from PREFIRE will address this knowledge gap for the benefit of all by improving predictions of climate change and sea level rise.

The audio-only teleconference streamed live on the agency’s website.

Participants include:

  • Karen St. Germain, director, Earth Science Division, NASA Headquarters in Washington
  • Mary White, project manager, PREFIRE, NASA’s Jet Propulsion Laboratory, Southern California
  • Tristan L’Ecuyer, principal investigator, PREFIRE, University of Wisconsin-Madison
  • Peter Beck, CEO and founder, Rocket Lab

To participate by telephone, media must RSVP no later than two hours before the start of the call, to Elizabeth Vlock at: elizabeth.a.vlock@nasa.gov.

For more information about NASA’s PREFIRE mission, visit:

https://science.nasa.gov/mission/prefire

-end-

Karen Fox / Elizabeth Vlock
Headquarters, Washington
karen.c.fox@nasa.gov / elizabeth.a.vlock@nasa.gov

Jane Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov

Share Details Last Updated May 13, 2024 LocationNASA Headquarters Related Terms
Categories: NASA

Station Science 101 | Research in Microgravity: Higher, Faster, Longer

NASA - Breaking News - Mon, 05/13/2024 - 3:05pm
5 Min Read Station Science 101 | Research in Microgravity: Higher, Faster, Longer NASA astronaut Megan McArthur services donor cells inside the Kibo laboratory module’s Life Science Glovebox for the Celestial Immunity study. Credits: NASA

The International Space Station provides unique features that enable innovative research, including microgravity, exposure to space, a unique orbit, and hands-on operation by crew members.

Microgravity

The space station provides consistent, long-term access to microgravity. Eliminating the effects of Earth’s gravity on experiments is a game-changer across many disciplines, including research on living things and physical and chemical processes. For example, without gravity hot air does not rise, so flames become spherical and behave differently. Removing the forces of surface tension and capillary movement allows scientists to examine fluid behavior more closely.

A flame created in microgravity during the SoFIE-GEL experiment.NASA A Unique Orbit

The speed, pattern, and altitude of the space station’s orbit provide unique advantages. Traveling at 17,500 miles per hour, it circles the planet every 90 minutes, passing over a majority of Earth’s landmass and population centers in daylight and darkness. Its 250-mile-high altitude is low enough for detailed observation of features, atmospheric phenomena, and natural disasters from different angles and with varying lighting conditions. At the same time, the station is high enough to study how space radiation affects material durability and how organisms adapt and examine phenomena such as neutron stars and blackholes. The spacecraft also places observing instruments outside Earth’s atmosphere and magnetic field, which can interfere with observations from the ground.

Instruments on the outside of the space station.NASA Crewed Laboratory

Other satellites in orbit contain scientific experiments and conduct Earth observations, but the space station also has crew members aboard to manage and maintain scientific activities. Human operators can respond to and assess events in real time, swap out experiment samples, troubleshoot, and observe results first-hand. Crew members also pack experiment samples and send them back to the ground for detailed analysis.

NASA astronaut Mark Vande Hei uses a microscope to capture images for an engineered tissue study.NASA Twenty Years and Counting

Thanks to the space station’s longevity, experiments can continue for months or even years. Scientists can design follow-up studies based on previous results, and every expedition offers the chance to expand the number of subjects for human research.

One area of long-term human research is on changes in vision, first observed when astronauts began spending months at a time in space. Scientists wondered whether fluids shifting from the lower to the upper body in microgravity caused increased pressure inside the head that changed eye shape. The Fluid Shifts investigation began in 2015 and continued to measure the extent of fluid shifts in multiple astronauts through 2020.1

Whether the original study is long or short, it can take years for research to go from the lab into practical applications. Many steps are involved, some of them lengthy. First, researchers must come up with a question and a possible answer, or hypothesis. For example, Fluid Shifts questioned what was causing vision changes and a possible answer was increased fluid pressure in the head. Scientists must then design an experiment to test the hypothesis, determining what data to collect and how to do so.

NASA astronaut Nick Hague collects intraocular pressure from NASA astronaut Andrew Morgan for the Fluid Shifts study.NASA

Getting research onto the space station in the first place takes time, too. NASA reviews proposals for scientific merit and relevance to the agency’s goals. Selected investigations are assigned to a mission, typically months in the future. NASA works with investigators to meet their science requirements, obtain approvals, schedule crew training, develop flight procedures, launch hardware and supplies, and collect any preflight data needed. Once the study launches, in-flight data collection begins. When scientists complete their data collection, they need time to analyze the data and determine what it means. This may take a year or more.

Scientists then write a paper about the results – which can take many months – and submit it to a scientific journal. Journals send the paper to other experts in the same field, a process known as peer review. According to one analysis, this review takes an average of 100 days.2 The editors may request additional analysis and revisions based on this review before publishing.

Adding Subjects Adds Time

Aspects of research on the space station can add more time to the process. Generally, the more test subjects, the better – from 100 to 1,000 subjects for statistically significant results for clinical research. But the space station typically only houses about six people at a time.

Lighting Effects shows how the need for more subjects adds time to a study. This investigation examined whether adjusting the intensity and color of lighting inside the station could help improve crew circadian rhythms, sleep, and cognitive performance. To collect data from enough crew members, the study ran from 2016 until 2020.

Other lengthy studies about how humans adapt to life in space include research on loss of heart muscle and a suite of long-term studies on nutrition, including producing fresh food in space.

NASA astronaut Jessica Watkins works on an investigation testing equipment for growing high-protein food on the space station.NASA

For physical science studies, investigators can send batches of samples to the space station and collect data more quickly, but results can create a need for additional research. Burning and Suppression of Solids (BASS) examined the characteristics of a wide variety of fuel samples from 2011 to 2013, and BASS-II continued that work through 2017. The Saffire series of fire safety demonstrations began in 2016 and wrapped up in 2024. Researchers have answered many burning (pun intended) questions, but still have much to learn about preventing, detecting, and extinguishing fires in space.

A sample of a composite cotton and fiberglass fabric burns during the Saffire-IV experiment.NASA

The timeline for scientific results can run long, especially in microgravity. But those results can be well worth the wait.

Melissa Gaskill
International Space Station Research Communications Team
Johnson Space Center

Search this database of scientific experiments to learn more about those mentioned above.

Citations:

1 Macias BR, Liu JHK, Grande-Gutierrez N, Hargens AR. Intraocular and intracranial pressures during head-down tilt with lower body negative pressure. Aerosp Med Hum Perform. 2015; 86(1):3–7.  https://www.ingentaconnect.com/content/asma/amhp/2015/00000086/00000001/art00004;jsessionid=31bonpcj2e8tj.x-ic-live-01

2 Powell K. Does it take too long to publish research? Nature 530, pages148–151 (2016). https://www.nature.com/articles/530148a

Keep Exploring Discover More Topics

Station Science 101

Latest News from Space Station Research

Space Station Research and Technology Resources

Station Benefits for Humanity

Share Details Last Updated May 13, 2024 Related Terms
Categories: NASA

NASA appoints 1st AI chief to keep agency on 'the cutting edge'

Space.com - Mon, 05/13/2024 - 3:00pm
NASA has appointed its first-ever chief artificial intelligence officer, a move designed to ensure that the agency keeps up with the vital and rapidly evolving tech.
Categories: Astronomy

Record-Breaking Ocean Heat Wave Foreshadows a Dangerous Hurricane Season

Scientific American.com - Mon, 05/13/2024 - 2:00pm

An active hurricane season could be in store because of ocean temperatures in the North Atlantic that broke records for more than a year

Categories: Astronomy

NASA’s Juno Mission Spots Jupiter’s Tiny Moon Amalthea

NASA - Breaking News - Mon, 05/13/2024 - 1:37pm

NASA’s Juno mission captured these views of Jupiter during its 59th close flyby of the giant planet on March 7, 2024. They provide a good look at Jupiter’s colorful belts and swirling storms, including the Great Red Spot. Close examination reveals something more: two glimpses of the tiny moon Amalthea (see Figure B below).

Figure B NASA’s Juno mission captured these views of Jupiter during its 59th close flyby of the giant planet on March 7, 2024. They provide a good look at Jupiter’s colorful belts and swirling storms, including the Great Red Spot. Close examination reveals something more: two glimpses of the tiny moon Amalthea.Image data: NASA/JPL-Caltech/SwRI/MSSS. Image processing by Gerald Eichstädt

With a radius of just 52 miles (84 kilometers), Amalthea has a potato-like shape, lacking the mass to pull itself into a sphere. In 2000, NASA’s Galileo spacecraft revealed some surface features, including impact craters, hills, and valleys. Amalthea circles Jupiter inside Io’s orbit, which is the innermost of the planet’s four largest moons, taking 0.498 Earth days to complete one orbit.

Amalthea is the reddest object in the solar system, and observations indicate it gives out more heat than it receives from the Sun. This may be because, as it orbits within Jupiter’s powerful magnetic field, electric currents are induced in the moon’s core. Alternatively, the heat could be from tidal stresses caused by Jupiter’s gravity.

At the time that the first of these two images was taken, the Juno spacecraft was about 165,000 miles (265,000 kilometers) above Jupiter’s cloud tops, at a latitude of about 5 degrees north of the equator.

Citizen scientist Gerald Eichstädt made these images using raw data from the JunoCam instrument, applying processing techniques to enhance the clarity of the images.

JunoCam’s raw images are available for the public to peruse and process into image products at https://missionjuno.swri.edu/junocam/processing. More information about NASA citizen science can be found at https://science.nasa.gov/citizenscience and https://www.nasa.gov/solve/opportunities/citizenscience.

More information about Juno is at https://www.nasa.gov/juno and https://missionjuno.swri.edu. For more about this finding and other science results, see https://www.missionjuno.swri.edu/science-findings.

Image credit:
Image data: NASA/JPL-Caltech/SwRI/MSSS
Image processing by Gerald Eichstädt

Share Details Last Updated May 13, 2024 Related Terms

Explore More 3 min read NASA’s New Mobile Launcher Stacks Up for Future Artemis Missions  Article 3 days ago 4 min read NASA Selects Students for Europa Clipper Intern Program

NASA has selected 40 undergraduate students for the first year of its Europa ICONS (Inspiring…

Article 2 weeks ago
9 min read Orbits and Kepler’s Laws

Kepler’s Laws of Planetary Motion The story of how we understand planetary motion could not…

Article 2 weeks ago
Categories: NASA

See Photos of the Widespread Aurorae Last Weekend

Sky & Telescope Magazine - Mon, 05/13/2024 - 1:20pm

An extreme (G5) geomagnetic storm hit Earth last weekend, delighting viewers as far south as Florida with green and red curtains of light.

The post See Photos of the Widespread Aurorae Last Weekend appeared first on Sky & Telescope.

Categories: Astronomy

SpaceX Starlink satellites doing just fine after weekend solar storm, company says

Space.com - Mon, 05/13/2024 - 1:15pm
SpaceX's Starlink fleet of nearly 6,000 satellites remains healthy after weekend solar storms sparked auroras across the world.
Categories: Astronomy

How an audacious sonic survey could help revive damaged rainforests

New Scientist Space - Cosmology - Mon, 05/13/2024 - 1:00pm
The world’s largest "ecoacoustic" survey, listening to Costa Rican rainforests, could pave the way for a network of sensors listening to the planet’s biodiversity in real time
Categories: Astronomy

How an audacious sonic survey could help revive damaged rainforests

New Scientist Space - Space Headlines - Mon, 05/13/2024 - 1:00pm
The world’s largest "ecoacoustic" survey, listening to Costa Rican rainforests, could pave the way for a network of sensors listening to the planet’s biodiversity in real time
Categories: Astronomy