It is clear to everyone that astronomy at all events compels the soul to look upwards, and draws it from the things of this world to the other.

— Plato

Feed aggregator

Rubin Observatory takes its 1st look at the night skies | Space photo of the day for June 26, 2025

Space.com - Thu, 06/26/2025 - 10:00am
The telescope, working with the world's largest digital camera, scans the night sky in search of dark matter.
Categories: Astronomy

New ESA gravity mission to detect weakening ocean conveyor

ESO Top News - Thu, 06/26/2025 - 9:15am

At the Living Planet Symposium, attendees have been hearing how ESA’s Next Generation Gravity Mission could provide the first opportunity to directly track a vital ocean circulation system that warms our planet – but is now weakening, risking a possible collapse with far-reaching consequences.

Categories: Astronomy

Cosmic images from the world's largest digital camera are so big they require a 'data butler'

Space.com - Thu, 06/26/2025 - 9:00am
The amount of data generated by the Rubin Observatory is going to blow all previous cosmic datasets out of the water, but handling that much information poses a severe challenge.
Categories: Astronomy

NASA, Australia Team Up for Artemis II Lunar Laser Communications Test

NASA - Breaking News - Thu, 06/26/2025 - 8:46am
An artist’s concept of NASA’s Orion spacecraft orbiting the Moon while using laser communications technology through the Orion Artemis II Optical Communications System.Credit: NASA/Dave Ryan

As NASA prepares for its Artemis II mission, researchers at the agency’s Glenn Research Center in Cleveland are collaborating with The Australian National University (ANU) to prove inventive, cost-saving laser communications technologies in the lunar environment.

Communicating in space usually relies on radio waves, but NASA is exploring laser, or optical, communications, which can send data 10 to 100 times faster to the ground. Instead of radio signals, these systems use infrared light to transmit high-definition video, picture, voice, and science data across vast distances in less time. NASA has proven laser communications during previous technology demonstrations, but Artemis II will be the first crewed mission to attempt using lasers to transmit data from deep space.

To support this effort, researchers working on the agency’s Real Time Optical Receiver (RealTOR) project have developed a cost-effective laser transceiver using commercial-off-the-shelf parts. Earlier this year, NASA Glenn engineers built and tested a replica of the system at the center’s Aerospace Communications Facility, and they are now working with ANU to build a system with the same hardware models to prepare for the university’s Artemis II laser communications demo.

“Australia’s upcoming lunar experiment could showcase the capability, affordability, and reproducibility of the deep space receiver engineered by Glenn,” said Jennifer Downey, co-principal investigator for the RealTOR project at NASA Glenn. “It’s an important step in proving the feasibility of using commercial parts to develop accessible technologies for sustainable exploration beyond Earth.”

During Artemis II, which is scheduled for early 2026, NASA will fly an optical communications system aboard the Orion spacecraft, which will test using lasers to send data across the cosmos. During the mission, NASA will attempt to transmit recorded 4K ultra-high-definition video, flight procedures, pictures, science data, and voice communications from the Moon to Earth.

An artist’s concept of the optical communications ground station at Mount Stromlo Observatory in Canberra, Australia, using laser communications technology.Credit: The Australian National University

Nearly 10,000 miles from Cleveland, ANU researchers working at the Mount Stromlo Observatory ground station hope to receive data during Orion’s journey around the Moon using the Glenn-developed transceiver model. This ground station will serve as a test location for the new transceiver design and will not be one of the mission’s primary ground stations. If the test is successful, it will prove that commercial parts can be used to build affordable, scalable space communication systems for future missions to the Moon, Mars, and beyond.

“Engaging with The Australian National University to expand commercial laser communications offerings across the world will further demonstrate how this advanced satellite communications capability is ready to support the agency’s networks and missions as we set our sights on deep space exploration,” said Marie Piasecki, technology portfolio manager for NASA’s Space Communications and Navigation (SCaN) Program.

As NASA continues to investigate the feasibility of using commercial parts to engineer ground stations, Glenn researchers will continue to provide critical support in preparation for Australia’s demonstration.

Strong global partnerships advance technology breakthroughs and are instrumental as NASA expands humanity’s reach from the Moon to Mars, while fueling innovations that improve life on Earth. Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.

The Real Time Optical Receiver (RealTOR) team poses for a group photo in the Aerospace Communications Facility at NASA’s Glenn Research Center in Cleveland on Friday, Dec. 13, 2024. From left to right: Peter Simon, Sarah Tedder, John Clapham, Elisa Jager, Yousef Chahine, Michael Marsden, Brian Vyhnalek, and Nathan Wilson.Credit: NASA

The RealTOR project is one aspect of the optical communications portfolio within NASA’s SCaN Program, which includes demonstrations and in-space experiment platforms to test the viability of infrared light for sending data to and from space. These include the LCOT (Low-Cost Optical Terminal) project, the Laser Communications Relay Demonstration, and more. NASA Glenn manages the project under the direction of agency’s SCaN Program at NASA Headquarters in Washington.

The Australian National University’s demonstration is supported by the Australian Space Agency Moon to Mars Demonstrator Mission Grant program, which has facilitated operational capability for the Australian Deep Space Optical Ground Station Network.

To learn how space communications and navigation capabilities support every agency mission, visit:

https://www.nasa.gov/communicating-with-missions

Explore More 3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing Article 1 week ago 2 min read NASA Seeks Commercial Feedback on Space Communication Solutions Article 2 weeks ago 4 min read NASA, DoD Practice Abort Scenarios Ahead of Artemis II Moon Mission Article 2 weeks ago
Categories: NASA

NASA, Australia Team Up for Artemis II Lunar Laser Communications Test

NASA News - Thu, 06/26/2025 - 8:46am
An artist’s concept of NASA’s Orion spacecraft orbiting the Moon while using laser communications technology through the Orion Artemis II Optical Communications System.Credit: NASA/Dave Ryan

As NASA prepares for its Artemis II mission, researchers at the agency’s Glenn Research Center in Cleveland are collaborating with The Australian National University (ANU) to prove inventive, cost-saving laser communications technologies in the lunar environment.

Communicating in space usually relies on radio waves, but NASA is exploring laser, or optical, communications, which can send data 10 to 100 times faster to the ground. Instead of radio signals, these systems use infrared light to transmit high-definition video, picture, voice, and science data across vast distances in less time. NASA has proven laser communications during previous technology demonstrations, but Artemis II will be the first crewed mission to attempt using lasers to transmit data from deep space.

To support this effort, researchers working on the agency’s Real Time Optical Receiver (RealTOR) project have developed a cost-effective laser transceiver using commercial-off-the-shelf parts. Earlier this year, NASA Glenn engineers built and tested a replica of the system at the center’s Aerospace Communications Facility, and they are now working with ANU to build a system with the same hardware models to prepare for the university’s Artemis II laser communications demo.

“Australia’s upcoming lunar experiment could showcase the capability, affordability, and reproducibility of the deep space receiver engineered by Glenn,” said Jennifer Downey, co-principal investigator for the RealTOR project at NASA Glenn. “It’s an important step in proving the feasibility of using commercial parts to develop accessible technologies for sustainable exploration beyond Earth.”

During Artemis II, which is scheduled for early 2026, NASA will fly an optical communications system aboard the Orion spacecraft, which will test using lasers to send data across the cosmos. During the mission, NASA will attempt to transmit recorded 4K ultra-high-definition video, flight procedures, pictures, science data, and voice communications from the Moon to Earth.

An artist’s concept of the optical communications ground station at Mount Stromlo Observatory in Canberra, Australia, using laser communications technology.Credit: The Australian National University

Nearly 10,000 miles from Cleveland, ANU researchers working at the Mount Stromlo Observatory ground station hope to receive data during Orion’s journey around the Moon using the Glenn-developed transceiver model. This ground station will serve as a test location for the new transceiver design and will not be one of the mission’s primary ground stations. If the test is successful, it will prove that commercial parts can be used to build affordable, scalable space communication systems for future missions to the Moon, Mars, and beyond.

“Engaging with The Australian National University to expand commercial laser communications offerings across the world will further demonstrate how this advanced satellite communications capability is ready to support the agency’s networks and missions as we set our sights on deep space exploration,” said Marie Piasecki, technology portfolio manager for NASA’s Space Communications and Navigation (SCaN) Program.

As NASA continues to investigate the feasibility of using commercial parts to engineer ground stations, Glenn researchers will continue to provide critical support in preparation for Australia’s demonstration.

Strong global partnerships advance technology breakthroughs and are instrumental as NASA expands humanity’s reach from the Moon to Mars, while fueling innovations that improve life on Earth. Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.

The Real Time Optical Receiver (RealTOR) team poses for a group photo in the Aerospace Communications Facility at NASA’s Glenn Research Center in Cleveland on Friday, Dec. 13, 2024. From left to right: Peter Simon, Sarah Tedder, John Clapham, Elisa Jager, Yousef Chahine, Michael Marsden, Brian Vyhnalek, and Nathan Wilson.Credit: NASA

The RealTOR project is one aspect of the optical communications portfolio within NASA’s SCaN Program, which includes demonstrations and in-space experiment platforms to test the viability of infrared light for sending data to and from space. These include the LCOT (Low-Cost Optical Terminal) project, the Laser Communications Relay Demonstration, and more. NASA Glenn manages the project under the direction of agency’s SCaN Program at NASA Headquarters in Washington.

The Australian National University’s demonstration is supported by the Australian Space Agency Moon to Mars Demonstrator Mission Grant program, which has facilitated operational capability for the Australian Deep Space Optical Ground Station Network.

To learn how space communications and navigation capabilities support every agency mission, visit:

https://www.nasa.gov/communicating-with-missions

Explore More 3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing Article 1 week ago 2 min read NASA Seeks Commercial Feedback on Space Communication Solutions Article 1 week ago 4 min read NASA, DoD Practice Abort Scenarios Ahead of Artemis II Moon Mission Article 2 weeks ago
Categories: NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Thu, 06/26/2025 - 8:00am


Categories: Astronomy, NASA

New Theory Explains Why So Many Exoplanets Crowd Close to Their Stars

Universe Today - Thu, 06/26/2025 - 7:23am

The observed exoplanet population contains a large number of solar systems where multiple exoplanets follow short orbital periods. The most well-known example of a compact solar system is the TRAPPIST-1 system. There are many others, and exoplanet scientists are trying to understand how they form. Scientists at the Southwest Research Institute (SwRI) may have figured it out.

Categories: Astronomy

Mercury - The Tiny Planet That's Been Baffling Scientists Everywhere

Universe Today - Thu, 06/26/2025 - 7:23am

Mercury doesn't give up its secrets easily. The smallest planet in our Solar System is also one of the most extreme, a sun-scorched, metal-rich world with a puzzling magnetic field and lavas unlike anything found on Earth. Now, groundbreaking laboratory experiments are finally beginning to unlock these mysteries, revealing how this planetary oddball could hold the key to understanding rocky planets throughout the universe.

Categories: Astronomy

Pulsars Could Have Tiny Mountains

Universe Today - Thu, 06/26/2025 - 7:23am

Pulsars are spinning neutron stars, with several times the mass of the Sun compressed into a sphere just 10 km across. They have a theoretical "death line,” a point where pulsars should stop emitting radio waves as they slow down. But researchers have detected two pulsars still beaming radio signals despite being below this death line. One explanation is that there are tiny irregularities on their surfaces, mountains just 1 cm tall. These peaks amplify local electric fields, making it easier for the pulsars to accelerate particles and produce radio emissions that should be impossible.

Categories: Astronomy

NASA’s LRO Views ispace HAKUTO-R Mission 2 Moon Lander Impact Site

Universe Today - Thu, 06/26/2025 - 7:23am

The Japanese ispace HAKUTO-R Mission 2 was supposed to touch down gently on the Moon on June 5, 2025. Unfortunately, communications with the RESILIENCE lander were lost about 90 seconds before it should have landed, and it was assumed to have crashed on the lunar surface. Now, NASA's Lunar Reconnaissance Orbiter has captured the crash site from orbit at an altitude of 80 km and confirmed where it smashed into the Moon.

Categories: Astronomy

We're Finally Seeing the Sun's Mixed Up Magnetism at its Poles

Universe Today - Thu, 06/26/2025 - 7:23am

Since 2025, Solar Orbiter is the first Sun-watching spacecraft to ever get a clear look at the Sun's poles. It discovered that at the south pole, the Sun’s magnetic field is currently a mess.  This image shows a magnetic field map from Solar Orbiter's Polarimetric and Helioseismic Imager (PHI) instrument, centred on the Sun's south pole. Blue indicates positive magnetic field, pointing towards the spacecraft, and red indicates negative magnetic field.  There are clear blue and red patches vi...

Categories: Astronomy

LISA Construction Begins

Universe Today - Thu, 06/26/2025 - 7:23am

After years of research, and a completed pathfinder mission, the European Space Agency has officially begun the construction of the Laser Interferometer Space Antenna (LISA). This will consist of three spacecraft flying in formation, sending laser signals back and forth to detect passing gravitational waves - including previously undetected supermassive black hole mergers. ESA has chosen OHB System AG to construct the spacecraft, which are due to launch in 2035 on an Ariane 6 rocket.

Categories: Astronomy

The First Pictures from Vera Rubin are Here!

Universe Today - Thu, 06/26/2025 - 7:23am

I can recall the excitement of waiting for the first CCD Image I had taken to download, THAT was exciting. I was using a Starlight Express MX716 for those who can remember. This however is far more exciting. The Vera C. Rubin Observatory has officially come online and now we're looking at its first pictures. The telescope has completed ten hours of test observations, viewing millions of galaxies and Milky Way stars. It found thousands of new asteroids in just a few hours of observations, and took incredible pictures of the Triffid and Lagoon Nebulae. Over the course of its 10-year primary mission, it'll capture 800 images of every spot in the southern sky.

Categories: Astronomy

Math Enthusiasts Unite to Have Rover Calculate Pi on the Moon

Scientific American.com - Thu, 06/26/2025 - 6:45am

Later this year a tiny rover will carry out an unusual lunar task

Categories: Astronomy

Watch MTG-S1 and Sentinel-4 launch live

ESO Top News - Thu, 06/26/2025 - 6:31am

The second of the Meteosat Third Generation (MTG) satellites and the first instrument for the Copernicus Sentinel-4 mission are ready for liftoff at Cape Canaveral in Florida, US. Live coverage of this launch will be shown on ESA WebTV, on Tuesday, 1 July.

Categories: Astronomy

NASA's been pulling out of major astronomy meetings — and scientists are feeling the effects

Space.com - Thu, 06/26/2025 - 6:00am
"We are given rules by our own institutions about what we can and cannot say."
Categories: Astronomy

Earth tones on Mars

ESO Top News - Thu, 06/26/2025 - 5:00am

The European Space Agency’s Mars Express has captured a swirl of colour on the Red Planet, with yellows and rust-oranges meeting deep reds and browns. Lurking within this martian palette are not one but four dust devils, each snaking their way across the surface.

Categories: Astronomy

Satellite records expose fire driving Gran Chaco transformation

ESO Top News - Thu, 06/26/2025 - 4:30am

At ESA’s Living Planet Symposium, scientists have unveiled how the combination of different long-term, high-resolution satellite datasets from ESA’s Climate Change Initiative is shedding new light on the South American Gran Chaco – one of the world’s most endangered dry forest ecosystems. These data reveal, in remarkable clarity, that fire is the primary driver of widespread, accelerating deforestation across the region. 

Categories: Astronomy