"I never think about the future. It comes soon enough."

— Albert Einstein

Feed aggregator

Propellant leak delays SpaceX launch of private Ax-4 astronaut mission to the ISS

Space.com - Wed, 06/11/2025 - 12:13am
SpaceX is standing down from the planned June 11 launch of the Ax-4 private astronaut mission due to a liquid oxygen leak in its Falcon 9 rocket. No new target date has been announced.
Categories: Astronomy

Titan May be the Liveliest Place in the Solar System

Universe Today - Tue, 06/10/2025 - 10:14pm

Titan has no liquid water whatsoever on its surface. But it does have liquids. Seas, lakes, streams, rivers…of methane and ethane.

Categories: Astronomy

This Massive Gas Giant Orbiting a Tiny Red Dwarf Tests Our Planet Formation Theories

Universe Today - Tue, 06/10/2025 - 10:14pm

The discovery of a Saturn-sized gas giant orbiting a small red dwarf is urging astronomers to reconsider their theories of planet formation. Core accretion theory is the most widely accepted explanation for planetary formation. It describes how planet formation begins with tiny dust grains gathering together and forming planetary cores that grow larger through accretion. It explains much of what we see in our Solar System and others. This discovery introduces some doubt.

Categories: Astronomy

NASA’s CODEX Captures Unique Views of Sun’s Outer Atmosphere

NASA News - Tue, 06/10/2025 - 6:15pm
For the first time, scientists can observe temperature changes in the Sun’s outer atmosphere thanks to new technology introduced by NASA’s CODEX instrument. This animated, color-coded heat map shows temperature changes over the course of a couple days, where red indicates hotter regions and purple indicates cooler ones. NASA/KASI/INAF/CODEX Key Points:
  • NASA’s CODEX investigation captured images of the Sun’s outer atmosphere, the corona, showcasing new aspects of its gusty, uneven flow.
  • The CODEX instrument, located on the International Space Station, is a coronagraph — a scientific tool that creates an artificial eclipse with physical disks — that measures the speed and temperature of solar wind using special filters.
  • These first-of-their-kind measurements will help scientists improve models of space weather and better understand the Sun’s impact on Earth.

Scientists analyzing data from NASA’s CODEX (Coronal Diagnostic Experiment) investigation have successfully evaluated the instrument’s first images, revealing the speed and temperature of material flowing out from the Sun. These images, shared at a press event Tuesday at the American Astronomical Society meeting in Anchorage, Alaska, illustrate the Sun’s outer atmosphere, or corona, is not a homogenous, steady flow of material, but an area with sputtering gusts of hot plasma. These images will help scientists improve their understanding of how the Sun impacts Earth and our technology in space.

“We really never had the ability to do this kind of science before,” said Jeffrey Newmark, a heliophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the principal investigator for CODEX. “The right kind of filters, the right size instrumentation — all the right things fell into place. These are brand new observations that have never been seen before, and we think there’s a lot of really interesting science to be done with it.”

The Sun continuously radiates material in the form of the solar wind. The Sun’s magnetic field shapes this material, sometimes creating flowing, ray-like formations called coronal streamers. In this view from NASA’s CODEX instrument, large dark spots block much of the bright light from the Sun. Blocking this light allows the instrument’s sensitive equipment to capture the faint light of the Sun’s outer atmosphere. NASA/KASI/INAF/CODEX

NASA’s CODEX is a solar coronagraph, an instrument often employed to study the Sun’s faint corona, or outer atmosphere, by blocking the bright face of the Sun. The instrument, which is installed on the International Space Station, creates artificial eclipses using a series of circular pieces of material called occulting disks at the end of a long telescope-like tube. The occulting disks are about the size of a tennis ball and are held in place by three metal arms.

Scientists often use coronagraphs to study visible light from the corona, revealing dynamic features, such as solar storms, that shape the weather in space, potentially impacting Earth and beyond.

NASA missions use coronagraphs to study the Sun in various ways, but that doesn’t mean they all see the same thing. Coronagraphs on the joint NASA-ESA Solar and Heliospheric Observatory (SOHO) mission look at visible light from the solar corona with both a wide field of view and a smaller one. The CODEX instrument’s field of view is somewhere in the middle, but looks at blue light to understand temperature and speed variations in the background solar wind.
 
In this composite image of overlapping solar observations, the center and left panels show the field-of-view coverage of the different coronagraphs with overlays and are labeled with observation ranges in solar radii. The third panel shows a zoomed-in, color-coded portion of the larger CODEX image. It highlights the temperature ratios in that portion of the solar corona using CODEX 405.0 and 393.5 nm filters. NASA/ESA/SOHO/KASI/INAF/CODEX

“The CODEX instrument is doing something new,” said Newmark. “Previous coronagraph experiments have measured the density of material in the corona, but CODEX is measuring the temperature and speed of material in the slowly varying solar wind flowing out from the Sun.”

These new measurements allow scientists to better characterize the energy at the source of the solar wind.

The CODEX instrument uses four narrow-band filters — two for temperature and two for speed — to capture solar wind data. “By comparing the brightness of the images in each of these filters, we can tell the temperature and speed of the coronal solar wind,” said Newmark.

Understanding the speed and temperature of the solar wind helps scientists build a more accurate picture of the Sun, which is necessary for modeling and predicting the Sun’s behaviors.

“The CODEX instrument will impact space weather modeling by providing constraints for modelers to use in the future,” said Newmark. “We’re excited for what’s to come.”

by NASA Science Editorial Team
NASA’s Goddard Space Flight Center, Greenbelt, Md

CODEX is a collaboration between NASA Goddard Space Flight Center and the Korea Astronomy and Space Science Institute (KASI) with additional contribution from Italy’s National Institute for Astrophysics (INAF).

Share

Details

Last Updated

Jun 10, 2025

Related Terms
Categories: NASA

NASA’s CODEX Captures Unique Views of Sun’s Outer Atmosphere

NASA - Breaking News - Tue, 06/10/2025 - 6:15pm
For the first time, scientists can observe temperature changes in the Sun’s outer atmosphere thanks to new technology introduced by NASA’s CODEX instrument. This animated, color-coded heat map shows temperature changes over the course of a couple days, where red indicates hotter regions and purple indicates cooler ones. NASA/KASI/INAF/CODEX Key Points:
  • NASA’s CODEX investigation captured images of the Sun’s outer atmosphere, the corona, showcasing new aspects of its gusty, uneven flow.
  • The CODEX instrument, located on the International Space Station, is a coronagraph — a scientific tool that creates an artificial eclipse with physical disks — that measures the speed and temperature of solar wind using special filters.
  • These first-of-their-kind measurements will help scientists improve models of space weather and better understand the Sun’s impact on Earth.

Scientists analyzing data from NASA’s CODEX (Coronal Diagnostic Experiment) investigation have successfully evaluated the instrument’s first images, revealing the speed and temperature of material flowing out from the Sun. These images, shared at a press event Tuesday at the American Astronomical Society meeting in Anchorage, Alaska, illustrate the Sun’s outer atmosphere, or corona, is not a homogenous, steady flow of material, but an area with sputtering gusts of hot plasma. These images will help scientists improve their understanding of how the Sun impacts Earth and our technology in space.

“We really never had the ability to do this kind of science before,” said Jeffrey Newmark, a heliophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the principal investigator for CODEX. “The right kind of filters, the right size instrumentation — all the right things fell into place. These are brand new observations that have never been seen before, and we think there’s a lot of really interesting science to be done with it.”

The Sun continuously radiates material in the form of the solar wind. The Sun’s magnetic field shapes this material, sometimes creating flowing, ray-like formations called coronal streamers. In this view from NASA’s CODEX instrument, large dark spots block much of the bright light from the Sun. Blocking this light allows the instrument’s sensitive equipment to capture the faint light of the Sun’s outer atmosphere. NASA/KASI/INAF/CODEX

NASA’s CODEX is a solar coronagraph, an instrument often employed to study the Sun’s faint corona, or outer atmosphere, by blocking the bright face of the Sun. The instrument, which is installed on the International Space Station, creates artificial eclipses using a series of circular pieces of material called occulting disks at the end of a long telescope-like tube. The occulting disks are about the size of a tennis ball and are held in place by three metal arms.

Scientists often use coronagraphs to study visible light from the corona, revealing dynamic features, such as solar storms, that shape the weather in space, potentially impacting Earth and beyond.

NASA missions use coronagraphs to study the Sun in various ways, but that doesn’t mean they all see the same thing. Coronagraphs on the joint NASA-ESA Solar and Heliospheric Observatory (SOHO) mission look at visible light from the solar corona with both a wide field of view and a smaller one. The CODEX instrument’s field of view is somewhere in the middle, but looks at blue light to understand temperature and speed variations in the background solar wind.
 
In this composite image of overlapping solar observations, the center and left panels show the field-of-view coverage of the different coronagraphs with overlays and are labeled with observation ranges in solar radii. The third panel shows a zoomed-in, color-coded portion of the larger CODEX image. It highlights the temperature ratios in that portion of the solar corona using CODEX 405.0 and 393.5 nm filters. NASA/ESA/SOHO/KASI/INAF/CODEX

“The CODEX instrument is doing something new,” said Newmark. “Previous coronagraph experiments have measured the density of material in the corona, but CODEX is measuring the temperature and speed of material in the slowly varying solar wind flowing out from the Sun.”

These new measurements allow scientists to better characterize the energy at the source of the solar wind.

The CODEX instrument uses four narrow-band filters — two for temperature and two for speed — to capture solar wind data. “By comparing the brightness of the images in each of these filters, we can tell the temperature and speed of the coronal solar wind,” said Newmark.

Understanding the speed and temperature of the solar wind helps scientists build a more accurate picture of the Sun, which is necessary for modeling and predicting the Sun’s behaviors.

“The CODEX instrument will impact space weather modeling by providing constraints for modelers to use in the future,” said Newmark. “We’re excited for what’s to come.”

by NASA Science Editorial Team
NASA’s Goddard Space Flight Center, Greenbelt, Md

CODEX is a collaboration between NASA Goddard Space Flight Center and the Korea Astronomy and Space Science Institute (KASI) with additional contribution from Italy’s National Institute for Astrophysics (INAF).

Share

Details

Last Updated

Jun 10, 2025

Related Terms
Categories: NASA

Jiawen Galaxy Projector Light review

Space.com - Tue, 06/10/2025 - 5:00pm
It's more of an ambient light projector than a star projector, but the Jiawen Galaxy Projector Light is seriously impressive given its budget price.
Categories: Astronomy

Summer Game Fest 2025: The biggest space & sci-fi game reveals and announcements

Space.com - Tue, 06/10/2025 - 5:00pm
Another summer, another series of hot gaming showcases. These are the space and sci-fi video games that caught our attention during this year's events.
Categories: Astronomy

How RFK, Jr.’s Dismissal of CDC’s Advisory Committee on Immunization Practices Will Affect U.S. Vaccine Access

Scientific American.com - Tue, 06/10/2025 - 4:50pm

U.S. Secretary of Health and Human Services Robert F. Kennedy, Jr., abruptly removes all 17 sitting members of the CDC’s Advisory Committee on Immunization Practices (ACIP). An epidemiologist explains how this will affect people’s health and vaccine access

Categories: Astronomy

'I was a good, visible target': Jared Isaacman on why Trump pulled his NASA chief nomination

Space.com - Tue, 06/10/2025 - 4:00pm
Jared Isaacman has opened up on why he believes his nomination to be NASA administrator was abruptly withdrawn by the White House.
Categories: Astronomy

White House Launches Another Assault on Science Funding, Targeting NSF, EPA

Scientific American.com - Tue, 06/10/2025 - 3:30pm

The Trump administration is targeting still more federal science funding, this time more than $30 billion at the Environmental Protection Agency, the National Science Foundation and other agencies

Categories: Astronomy

2nd launch of Blue Origin's powerful New Glenn rocket delayed to Aug. 15 at the earliest

Space.com - Tue, 06/10/2025 - 3:00pm
Blue Origin is now targeting Aug. 15 at the earliest for the second-ever launch of its New Glenn rocket, a slip of several months.
Categories: Astronomy

High Above the World

NASA Image of the Day - Tue, 06/10/2025 - 2:24pm
Astronaut Franklin R. Chang-Diaz works with a grapple fixture during a June 2002 spacewalk – the first spacewalk of the STS-111 mission.
Categories: Astronomy, NASA

High Above the World

NASA News - Tue, 06/10/2025 - 2:22pm
NASA

NASA astronaut Franklin Chang-Diaz works with a grapple fixture during a June 2002 spacewalk outside of the International Space Station. He was partnered with CNES (Centre National d’Etudes Spatiales)  astronaut Philippe Perrin for the spacewalk – one of three that occurred during the STS-111 mission. Chang-Diaz was part of NASA’s ninth class of astronaut candidates. He became the first Hispanic American to fly in space.

Image credit: NASA

Categories: NASA

High Above the World

NASA - Breaking News - Tue, 06/10/2025 - 2:22pm
NASA

NASA astronaut Franklin Chang-Diaz works with a grapple fixture during a June 2002 spacewalk outside of the International Space Station. He was partnered with CNES (Centre National d’Etudes Spatiales)  astronaut Philippe Perrin for the spacewalk – one of three that occurred during the STS-111 mission. Chang-Diaz was part of NASA’s ninth class of astronaut candidates. He became the first Hispanic American to fly in space.

Image credit: NASA

Categories: NASA

Frigid Exoplanet in Strange Orbit Imaged by NASA’s Webb

NASA News - Tue, 06/10/2025 - 2:15pm
Explore Webb

6 Min Read Frigid Exoplanet in Strange Orbit Imaged by NASA’s Webb

This image of exoplanet 14 Herculis c was taken by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera). A star symbol marks the location of the host star 14 Herculis, whose light has been blocked by a coronagraph on NIRCam (shown here as a dark circle outlined in white).

Credits:
NASA, ESA, CSA, STScI, W. Balmer (JHU), D. Bardalez Gagliuffi (Amherst College)

A planetary system described as abnormal, chaotic, and strange by researchers has come into clearer view with NASA’s James Webb Space Telescope. Using Webb’s NIRCam (Near-Infrared Camera), researchers have successfully imaged one of two known planets surrounding the star 14 Herculis, located 60 light-years away from Earth in our own Milky Way galaxy.

The exoplanet, 14 Herculis c, is one of the coldest imaged to date. While there are nearly 6,000 exoplanets that have been discovered, only a small number of those have been directly imaged, most of those being very hot (think hundreds or even thousands of degrees Fahrenheit). The new data suggests 14 Herculis c, which weighs about 7 times the planet Jupiter, is as cool as 26 degrees Fahrenheit (minus 3 degrees Celsius).

Image: 14 Herculis c (NIRCam) This image of exoplanet 14 Herculis c was taken by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera). A star symbol marks the location of the host star 14 Herculis, whose light has been blocked by a coronagraph on NIRCam (shown here as a dark circle outlined in white). NASA, ESA, CSA, STScI, W. Balmer (JHU), D. Bardalez Gagliuffi (Amherst College)

The team’s results covering 14 Herculis c have been accepted for publication in The Astrophysical Journal Letters and were presented in a press conference Tuesday at the 246th meeting of the American Astronomical Society in Anchorage, Alaska.

“The colder an exoplanet, the harder it is to image, so this is a totally new regime of study that Webb has unlocked with its extreme sensitivity in the infrared,” said William Balmer, co-first author of the new paper and graduate student at Johns Hopkins University. “We are now able to add to the catalog of not just hot, young exoplanets imaged, but older exoplanets that are far colder than we’ve directly seen before Webb.”

Webb’s image of 14 Herculis c also provides insights into a planetary system unlike most others studied in detail with Webb and other ground- and space-based `observatories. The central star, 14 Herculis, is almost Sun-like – it is similar in age and temperature to our own Sun, but a little less massive and cooler.

There are two planets in this system – 14 Herculis b is closer to the star, and covered by the coronagraphic mask in the Webb image. These planets don’t orbit the host star on the same plane like our solar system. Instead, they cross each other like an ‘X’, with the star being at the center. That is, the orbital planes of the two planets are inclined relative to one another at an angle of about 40 degrees. The planets tug and pull at one another as they orbit the star.

This is the first time an image has ever been snapped of an exoplanet in such a mis-aligned system.

Scientists are working on several theories for just how the planets in this system got so “off track.” One of the leading concepts is that the planets scattered after a third planet was violently ejected from the system early in its formation.

“The early evolution of our own solar system was dominated by the movement and pull of our own gas giants,” added Balmer. “They threw around asteroids and rearranged other planets. Here, we are seeing the aftermath of a more violent planetary crime scene. It reminds us that something similar could have happened to our own solar system, and that the outcomes for small planets like Earth are often dictated by much larger forces.”

Understanding the Planet’s Characteristics With Webb

Webb’s new data is giving researchers further insights into not just the temperature of 14 Herculis c, but other details about the planet’s orbit and atmosphere.

Findings indicate the planet orbits around 1.4 billion miles from the host star in a highly elliptical, or football-shaped orbit, closer in than previous estimates. This is around 15 times farther from the Sun than Earth. On average, this would put 14 Herculis c between Saturn and Uranus in our solar system.

The planet’s brightness at 4.4 microns measured using Webb’s coronagraph, combined with the known mass of the planet and age of the system, hints at some complex atmospheric dynamics at play.

“If a planet of a certain mass formed 4 billion years ago, then cooled over time because it doesn’t have a source of energy keeping it warm, we can predict how hot it should be today,” said Daniella C. Bardalez Gagliuffi of Amherst College, co-first author on the paper with Balmer. “Added information, like the perceived brightness in direct imaging, would in theory support this estimate of the planet’s temperature.”

However, what researchers expect isn’t always reflected in the results. With 14 Herculis c, the brightness at this wavelength is fainter than expected for an object of this mass and age. The research team can explain this discrepancy, though. It’s called carbon disequilibrium chemistry, something often seen in brown dwarfs.

“This exoplanet is so cold, the best comparisons we have that are well-studied are the coldest brown dwarfs,” Bardalez Gagliuffi explained. “In those objects, like with 14 Herculis c, we see carbon dioxide and carbon monoxide existing at temperatures where we should see methane. This is explained by churning in the atmosphere. Molecules made at warmer temperatures in the lower atmosphere are brought to the cold, upper atmosphere very quickly.”

Researchers hope Webb’s image of 14 Herculis c is just the beginning of a new phase of investigation into this strange system.

While the small dot of light obtained by Webb contains a plethora of information, future spectroscopic studies of 14 Herculis could better constrain the atmospheric properties of this interesting planet and help researchers understand the dynamics and formation pathways of the system.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

To learn more about Webb, visit:

https://science.nasa.gov/webb

Downloads

Click any image to open a larger version.

View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.

Media Contacts

Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Hannah Braunhbraun@stsci.edu
Space Telescope Science Institute, Baltimore, Md.

Christine Pulliamcpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.

Related Information

Video: Eclipse/Coronagraph Animation

Webb Blog: How Webb’s Coronagraphs Reveal Exoplanets in the Infrared

Read more about Webb’s Impact on Exoplanet Research

More Webb News

More Webb Images

Webb Science Themes

Webb Mission Page

Related For Kids

What is the Webb Telescope?

SpacePlace for Kids

En Español

Ciencia de la NASA

NASA en español 

Space Place para niños

Keep Exploring Related Topics

James Webb Space Telescope

Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


Exoplanets


Exoplanet Stories


Universe

Share

Details

Last Updated

Jun 10, 2025

Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov

Related Terms
Categories: NASA

Frigid Exoplanet in Strange Orbit Imaged by NASA’s Webb

NASA - Breaking News - Tue, 06/10/2025 - 2:15pm
Explore Webb

6 Min Read Frigid Exoplanet in Strange Orbit Imaged by NASA’s Webb

This image of exoplanet 14 Herculis c was taken by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera). A star symbol marks the location of the host star 14 Herculis, whose light has been blocked by a coronagraph on NIRCam (shown here as a dark circle outlined in white).

Credits:
NASA, ESA, CSA, STScI, W. Balmer (JHU), D. Bardalez Gagliuffi (Amherst College)

A planetary system described as abnormal, chaotic, and strange by researchers has come into clearer view with NASA’s James Webb Space Telescope. Using Webb’s NIRCam (Near-Infrared Camera), researchers have successfully imaged one of two known planets surrounding the star 14 Herculis, located 60 light-years away from Earth in our own Milky Way galaxy.

The exoplanet, 14 Herculis c, is one of the coldest imaged to date. While there are nearly 6,000 exoplanets that have been discovered, only a small number of those have been directly imaged, most of those being very hot (think hundreds or even thousands of degrees Fahrenheit). The new data suggests 14 Herculis c, which weighs about 7 times the planet Jupiter, is as cool as 26 degrees Fahrenheit (minus 3 degrees Celsius).

Image: 14 Herculis c (NIRCam) This image of exoplanet 14 Herculis c was taken by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera). A star symbol marks the location of the host star 14 Herculis, whose light has been blocked by a coronagraph on NIRCam (shown here as a dark circle outlined in white). NASA, ESA, CSA, STScI, W. Balmer (JHU), D. Bardalez Gagliuffi (Amherst College)

The team’s results covering 14 Herculis c have been accepted for publication in The Astrophysical Journal Letters and were presented in a press conference Tuesday at the 246th meeting of the American Astronomical Society in Anchorage, Alaska.

“The colder an exoplanet, the harder it is to image, so this is a totally new regime of study that Webb has unlocked with its extreme sensitivity in the infrared,” said William Balmer, co-first author of the new paper and graduate student at Johns Hopkins University. “We are now able to add to the catalog of not just hot, young exoplanets imaged, but older exoplanets that are far colder than we’ve directly seen before Webb.”

Webb’s image of 14 Herculis c also provides insights into a planetary system unlike most others studied in detail with Webb and other ground- and space-based `observatories. The central star, 14 Herculis, is almost Sun-like – it is similar in age and temperature to our own Sun, but a little less massive and cooler.

There are two planets in this system – 14 Herculis b is closer to the star, and covered by the coronagraphic mask in the Webb image. These planets don’t orbit the host star on the same plane like our solar system. Instead, they cross each other like an ‘X’, with the star being at the center. That is, the orbital planes of the two planets are inclined relative to one another at an angle of about 40 degrees. The planets tug and pull at one another as they orbit the star.

This is the first time an image has ever been snapped of an exoplanet in such a mis-aligned system.

Scientists are working on several theories for just how the planets in this system got so “off track.” One of the leading concepts is that the planets scattered after a third planet was violently ejected from the system early in its formation.

“The early evolution of our own solar system was dominated by the movement and pull of our own gas giants,” added Balmer. “They threw around asteroids and rearranged other planets. Here, we are seeing the aftermath of a more violent planetary crime scene. It reminds us that something similar could have happened to our own solar system, and that the outcomes for small planets like Earth are often dictated by much larger forces.”

Understanding the Planet’s Characteristics With Webb

Webb’s new data is giving researchers further insights into not just the temperature of 14 Herculis c, but other details about the planet’s orbit and atmosphere.

Findings indicate the planet orbits around 1.4 billion miles from the host star in a highly elliptical, or football-shaped orbit, closer in than previous estimates. This is around 15 times farther from the Sun than Earth. On average, this would put 14 Herculis c between Saturn and Uranus in our solar system.

The planet’s brightness at 4.4 microns measured using Webb’s coronagraph, combined with the known mass of the planet and age of the system, hints at some complex atmospheric dynamics at play.

“If a planet of a certain mass formed 4 billion years ago, then cooled over time because it doesn’t have a source of energy keeping it warm, we can predict how hot it should be today,” said Daniella C. Bardalez Gagliuffi of Amherst College, co-first author on the paper with Balmer. “Added information, like the perceived brightness in direct imaging, would in theory support this estimate of the planet’s temperature.”

However, what researchers expect isn’t always reflected in the results. With 14 Herculis c, the brightness at this wavelength is fainter than expected for an object of this mass and age. The research team can explain this discrepancy, though. It’s called carbon disequilibrium chemistry, something often seen in brown dwarfs.

“This exoplanet is so cold, the best comparisons we have that are well-studied are the coldest brown dwarfs,” Bardalez Gagliuffi explained. “In those objects, like with 14 Herculis c, we see carbon dioxide and carbon monoxide existing at temperatures where we should see methane. This is explained by churning in the atmosphere. Molecules made at warmer temperatures in the lower atmosphere are brought to the cold, upper atmosphere very quickly.”

Researchers hope Webb’s image of 14 Herculis c is just the beginning of a new phase of investigation into this strange system.

While the small dot of light obtained by Webb contains a plethora of information, future spectroscopic studies of 14 Herculis could better constrain the atmospheric properties of this interesting planet and help researchers understand the dynamics and formation pathways of the system.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

To learn more about Webb, visit:

https://science.nasa.gov/webb

Downloads

Click any image to open a larger version.

View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.

Media Contacts

Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Hannah Braunhbraun@stsci.edu
Space Telescope Science Institute, Baltimore, Md.

Christine Pulliamcpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.

Related Information

Video: Eclipse/Coronagraph Animation

Webb Blog: How Webb’s Coronagraphs Reveal Exoplanets in the Infrared

Read more about Webb’s Impact on Exoplanet Research

More Webb News

More Webb Images

Webb Science Themes

Webb Mission Page

Related For Kids

What is the Webb Telescope?

SpacePlace for Kids

En Español

Ciencia de la NASA

NASA en español 

Space Place para niños

Keep Exploring Related Topics

James Webb Space Telescope

Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


Exoplanets


Exoplanet Stories


Universe

Share

Details

Last Updated

Jun 10, 2025

Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov

Related Terms
Categories: NASA

Meta's AI memorised books verbatim – that could cost it billions

New Scientist Space - Cosmology - Tue, 06/10/2025 - 2:00pm
Many AI models were trained on the text of books, but a new test found at least one model has directly memorised nearly the entirety of some books, including Harry Potter and the Philosopher’s Stone, which could complicate ongoing legal battles over copyright infringement
Categories: Astronomy

Meta's AI memorised books verbatim – that could cost it billions

New Scientist Space - Space Headlines - Tue, 06/10/2025 - 2:00pm
Many AI models were trained on the text of books, but a new test found at least one model has directly memorised nearly the entirety of some books, including Harry Potter and the Philosopher’s Stone, which could complicate ongoing legal battles over copyright infringement
Categories: Astronomy

Ancient humans’ extraordinary journey to South America

New Scientist Space - Cosmology - Tue, 06/10/2025 - 2:00pm
Humans first arrived in South America through a series of extraordinary migrations – and genetic studies now reveal more about how they settled and then split into four distinct groups on the continent
Categories: Astronomy

Ancient humans’ extraordinary journey to South America

New Scientist Space - Space Headlines - Tue, 06/10/2025 - 2:00pm
Humans first arrived in South America through a series of extraordinary migrations – and genetic studies now reveal more about how they settled and then split into four distinct groups on the continent
Categories: Astronomy