Feed aggregator
SpaceX aiming for record-breaking 170 orbital launches in 2025
Did a Large Impact on the Moon Make its Rocks Magnetic?
We've been gazing at the Moon for a long time, yet it's still mysterious. We've sent numerous orbiters and landers to our satellite, and even brought some of it back to our labs. Those rocks only presented more mysteries, in some ways. Lunar rocks are magnetic, yet the Moon doesn't have a magnetosphere. How did this happen?
See a lunar scar darken the crescent moon tonight
How to Handle Resource Waste from ISRU on the Moon
In-situ resource utilization (ISRU) is commonly cited as being a critical step towards a sustainable human presence in space, especially on the Moon. Just how crucial it is, and how much its by-products will affect other uses of the Moon, is still up for debate. A new paper from Evangelia Gkaravela and Hao Chen of the Stevens Institute of Technology dives into those questions and comes up with a promising answer - ISRU is absolutely worth it, if we can control the waste products.
Who is the best Doctor? Every 'Doctor Who' ranked
Oil Industry Asks Trump Administration to Kill Heat Safety Rule
Oil industry opposition to a planned OSHA rule to limit heat deaths comes as oil and gas workers face increasingly dangerous conditions
Behind the camera: Astronauts talk with students from space station | Space photo of the day for May 29, 2025
Did Inhaling Xenon Gas Really Help Mount Everest Climbers Reach the Summit in Record Time?
British climbers recently reached the top of Mount Everest in record time. They inhaled xenon gas before the trip. But was that the decisive factor?
Dust devil on Mars photobombs NASA Perseverance rover's selfie (photo)
Integrated Testing on Horizon for Artemis II Launch Preparations
Teams responsible for preparing and launching Artemis II at NASA’s Kennedy Space Center in Florida are set to begin a series of integrated tests to get ready for the mission. With the upper stage of the agency’s SLS (Space Launch System) integrated with other elements of the rocket, engineers are set to start the tests to confirm rocket and ground systems are working and communicating as planned.
While similar to the integrated testing campaign conducted for NASA’s uncrewed Artemis I test flight, engineers have added tests ahead of Artemis II to prepare for NASA’s first crewed flight under the Artemis campaign – an approximately 10-day journey by four astronauts around the Moon and back. The mission is another step toward missions on the lunar surface and helping the agency prepare for future astronaut missions to Mars.
Interface Verification TestingVerifies the functionality and interoperability of interfaces across elements and systems. Teams will conduct this test from the firing room in the Launch Control Center and perform health and status checks of various systems and interfaces between the SLS core stage, the solid rocket boosters, and the ground systems. It will ensure different systems, including core stage engines and booster thrust control, work as planned. Teams also will perform the same series of tests with the interim cryogenic propulsion stage and Orion before conducting a final interface test with all segments.
Program Specific Engineering TestTeams will conduct separate engineering tests for the core stage, rocket boosters, and upper stage following the interface verification tests for each part of the rocket.
End-to-End Communications TestingIntegrated test of SLS core and upper stages, and Orion command and telemetry radio frequencies with mission control at NASA’s Johnson Space Center in Houston to demonstrate flight controllers’ ability to communicate with the ground systems and infrastructure. This test uses a radio frequency antenna in the Vehicle Assembly Building (VAB), another near the launch pad that will cover the first few minutes of launch, as well as a radio frequency that use the Tracking Data Relay Satellite and the Deep Space Network. Teams will do two versions of this test – one with the ground equipment communicating with a radio and telemetry station for checkouts, and one with all the hardware and equipment communicating with communications infrastructure like it will on launch day.
Countdown Demonstration TestTeams will conduct a launch day demonstration with the Artemis II astronauts to test launch countdown procedures and make any final necessary adjustments ahead of launch. This test will be divided into two parts. The first will be conducted while SLS and Orion are in the VAB and include the Artemis II crew departing their crew quarters after suiting up at the Neil A. Armstrong Operations and Checkout Building and driving to the VAB where they will enter Orion like they will on launch day and practice getting strapped in. Part two will be completed once the rocket is at the launch pad and will allow the astronauts and Artemis launch team to practice how to use the emergency egress system, which would be used in the event of an unlikely emergency at the launch pad during launch countdown.
Flight Termination System End-to-End TestTest to ensure the rocket’s flight termination system can be activated in the event of an emergency. For public safety, all rockets are required to have a flight termination system. This test will be divided into two parts inside the VAB. The first will take place ahead of Orion getting stacked atop SLS and the second will occur before the rocket and spacecraft roll out to the launch pad.
Wet Dress RehearsalTeams will practice loading cryogenic liquid propellant inside SLS once it’s at the launch pad and run through the launch countdown sequences just prior to engine ignition. The rehearsal will run the Artemis II launch team through operations to load liquid hydrogen and liquid oxygen into the rocket’s tanks, conduct a full launch countdown, demonstrate the ability to recycle the countdown clock, and also drain the tanks to give them an opportunity to practice the timelines and procedures they will use for launch.
Teams will load more than 700,000 gallons of cryogenic, or super cold, propellants into the rocket at the launch pad on the mobile launcher according to the detailed timeline they will use on the actual launch day. They will practice every phase of the countdown, including weather briefings, pre-planned holds in the countdown, conditioning and replenishing the propellants as needed, and validation checks. The Artemis II crew will not participate in the rehearsal.
Integrated Testing on Horizon for Artemis II Launch Preparations
Teams responsible for preparing and launching Artemis II at NASA’s Kennedy Space Center in Florida are set to begin a series of integrated tests to get ready for the mission. With the upper stage of the agency’s SLS (Space Launch System) integrated with other elements of the rocket, engineers are set to start the tests to confirm rocket and ground systems are working and communicating as planned.
While similar to the integrated testing campaign conducted for NASA’s uncrewed Artemis I test flight, engineers have added tests ahead of Artemis II to prepare for NASA’s first crewed flight under the Artemis campaign – an approximately 10-day journey by four astronauts around the Moon and back. The mission is another step toward missions on the lunar surface and helping the agency prepare for future astronaut missions to Mars.
Interface Verification TestingVerifies the functionality and interoperability of interfaces across elements and systems. Teams will conduct this test from the firing room in the Launch Control Center and perform health and status checks of various systems and interfaces between the SLS core stage, the solid rocket boosters, and the ground systems. It will ensure different systems, including core stage engines and booster thrust control, work as planned. Teams also will perform the same series of tests with the interim cryogenic propulsion stage and Orion before conducting a final interface test with all segments.
Program Specific Engineering TestTeams will conduct separate engineering tests for the core stage, rocket boosters, and upper stage following the interface verification tests for each part of the rocket.
End-to-End Communications TestingIntegrated test of SLS core and upper stages, and Orion command and telemetry radio frequencies with mission control at NASA’s Johnson Space Center in Houston to demonstrate flight controllers’ ability to communicate with the ground systems and infrastructure. This test uses a radio frequency antenna in the Vehicle Assembly Building (VAB), another near the launch pad that will cover the first few minutes of launch, as well as a radio frequency that use the Tracking Data Relay Satellite and the Deep Space Network. Teams will do two versions of this test – one with the ground equipment communicating with a radio and telemetry station for checkouts, and one with all the hardware and equipment communicating with communications infrastructure like it will on launch day.
Countdown Demonstration TestTeams will conduct a launch day demonstration with the Artemis II astronauts to test launch countdown procedures and make any final necessary adjustments ahead of launch. This test will be divided into two parts. The first will be conducted while SLS and Orion are in the VAB and include the Artemis II crew departing their crew quarters after suiting up at the Neil A. Armstrong Operations and Checkout Building and driving to the VAB where they will enter Orion like they will on launch day and practice getting strapped in. Part two will be completed once the rocket is at the launch pad and will allow the astronauts and Artemis launch team to practice how to use the emergency egress system, which would be used in the event of an unlikely emergency at the launch pad during launch countdown.
Flight Termination System End-to-End TestTest to ensure the rocket’s flight termination system can be activated in the event of an emergency. For public safety, all rockets are required to have a flight termination system. This test will be divided into two parts inside the VAB. The first will take place ahead of Orion getting stacked atop SLS and the second will occur before the rocket and spacecraft roll out to the launch pad.
Wet Dress RehearsalTeams will practice loading cryogenic liquid propellant inside SLS once it’s at the launch pad and run through the launch countdown sequences just prior to engine ignition. The rehearsal will run the Artemis II launch team through operations to load liquid hydrogen and liquid oxygen into the rocket’s tanks, conduct a full launch countdown, demonstrate the ability to recycle the countdown clock, and also drain the tanks to give them an opportunity to practice the timelines and procedures they will use for launch.
Teams will load more than 700,000 gallons of cryogenic, or super cold, propellants into the rocket at the launch pad on the mobile launcher according to the detailed timeline they will use on the actual launch day. They will practice every phase of the countdown, including weather briefings, pre-planned holds in the countdown, conditioning and replenishing the propellants as needed, and validation checks. The Artemis II crew will not participate in the rehearsal.
Venus Shows Why Ozone Isn't a Good Biosignature
Just because we can find ozone in the atmosphere of other planets doesn't mean there's life. Ozone is a sign of life on Earth, but its detection on Venus shows that it can also be produced abiotically. This indicates that there are different pathways for its creation, not only on Venus but also on other Venus-like exoplanets.
NASA’s MAVEN Makes First Observation of Atmospheric Sputtering at Mars
After a decade of searching, NASA’s MAVEN (Mars Atmosphere Volatile Evolution) mission has, for the first time, reported a direct observation of an elusive atmospheric escape process called sputtering that could help answer longstanding questions about the history of water loss on Mars.
Scientists have known for a long time, through an abundance of evidence, that water was present on Mars’ surface billions of years ago, but are still asking the crucial question, “Where did the water go and why?”
Early on in Mars’ history, the atmosphere of the Red Planet lost its magnetic field, and its atmosphere became directly exposed to the solar wind and solar storms. As the atmosphere began to erode, liquid water was no longer stable on the surface, so much of it escaped to space. But how did this once thick atmosphere get stripped away? Sputtering could explain it.
Sputtering is an atmospheric escape process in which atoms are knocked out of the atmosphere by energetic charge particles.
“It’s like doing a cannonball in a pool,” said Shannon Curry, principal investigator of MAVEN at the Laboratory for Atmospheric and Space Physics at the University of Colorado Boulder and lead author of the study. “The cannonball, in this case, is the heavy ions crashing into the atmosphere really fast and splashing neutral atoms and molecules out.”
While scientists had previously found traces of evidence that this process was happening, they had never observed the process directly. The previous evidence came from looking at lighter and heavier isotopes of argon in the upper atmosphere of Mars. Lighter isotopes sit higher in the atmosphere than their heavier counterparts, and it was found that there were far fewer lighter isotopes than heavy argon isotopes in the Martian atmosphere. These lighter isotopes can only be removed by sputtering.
“It is like we found the ashes from a campfire,” said Curry. “But we wanted to see the actual fire, in this case sputtering, directly.”
To observe sputtering, the team needed simultaneous measurements in the right place at the right time from three instruments aboard the MAVEN spacecraft: the Solar Wind Ion Analyzer, the Magnetometer, and the Neutral Gas and Ion Mass Spectrometer. Additionally, the team needed measurements across the dayside and the nightside of the planet at low altitudes, which takes years to observe.
The combination of data from these instruments allowed scientists to make a new kind of map of sputtered argon in relation to the solar wind. This map revealed the presence of argon at high altitudes in the exact locations that the energetic particles crashed into the atmosphere and splashed out argon, showing sputtering in real time. The researchers also found that this process is happening at a rate four times higher than previously predicted and that this rate increases during solar storms.
The direct observation of sputtering confirms that the process was a primary source of atmospheric loss in Mars’ early history when the Sun’s activity was much stronger.
“These results establish sputtering’s role in the loss of Mars’ atmosphere and in determining the history of water on Mars,” said Curry.
The finding, published this week in Science Advances, is critical to scientists’ understanding of the conditions that allowed liquid water to exist on the Martian surface, and the implications that it has for habitability billions of years ago.
The MAVEN mission is part of NASA’s Mars Exploration Program portfolio. MAVEN’s principal investigator is based at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder, which is also responsible for managing science operations and public outreach and communications. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the MAVEN mission. Lockheed Martin Space built the spacecraft and is responsible for mission operations. NASA’s Jet Propulsion Laboratory in Southern California provides navigation and Deep Space Network support.
More information on NASA’s MAVEN mission
By Willow Reed
Laboratory for Atmospheric and Space Physics, University of Colorado Boulder
Media Contacts:
Nancy N. Jones
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
NASA’s MAVEN Makes First Observation of Atmospheric Sputtering at Mars
After a decade of searching, NASA’s MAVEN (Mars Atmosphere Volatile Evolution) mission has, for the first time, reported a direct observation of an elusive atmospheric escape process called sputtering that could help answer longstanding questions about the history of water loss on Mars.
Scientists have known for a long time, through an abundance of evidence, that water was present on Mars’ surface billions of years ago, but are still asking the crucial question, “Where did the water go and why?”
Early on in Mars’ history, the atmosphere of the Red Planet lost its magnetic field, and its atmosphere became directly exposed to the solar wind and solar storms. As the atmosphere began to erode, liquid water was no longer stable on the surface, so much of it escaped to space. But how did this once thick atmosphere get stripped away? Sputtering could explain it.
Sputtering is an atmospheric escape process in which atoms are knocked out of the atmosphere by energetic charge particles.
“It’s like doing a cannonball in a pool,” said Shannon Curry, principal investigator of MAVEN at the Laboratory for Atmospheric and Space Physics at the University of Colorado Boulder and lead author of the study. “The cannonball, in this case, is the heavy ions crashing into the atmosphere really fast and splashing neutral atoms and molecules out.”
While scientists had previously found traces of evidence that this process was happening, they had never observed the process directly. The previous evidence came from looking at lighter and heavier isotopes of argon in the upper atmosphere of Mars. Lighter isotopes sit higher in the atmosphere than their heavier counterparts, and it was found that there were far fewer lighter isotopes than heavy argon isotopes in the Martian atmosphere. These lighter isotopes can only be removed by sputtering.
“It is like we found the ashes from a campfire,” said Curry. “But we wanted to see the actual fire, in this case sputtering, directly.”
To observe sputtering, the team needed simultaneous measurements in the right place at the right time from three instruments aboard the MAVEN spacecraft: the Solar Wind Ion Analyzer, the Magnetometer, and the Neutral Gas and Ion Mass Spectrometer. Additionally, the team needed measurements across the dayside and the nightside of the planet at low altitudes, which takes years to observe.
The combination of data from these instruments allowed scientists to make a new kind of map of sputtered argon in relation to the solar wind. This map revealed the presence of argon at high altitudes in the exact locations that the energetic particles crashed into the atmosphere and splashed out argon, showing sputtering in real time. The researchers also found that this process is happening at a rate four times higher than previously predicted and that this rate increases during solar storms.
The direct observation of sputtering confirms that the process was a primary source of atmospheric loss in Mars’ early history when the Sun’s activity was much stronger.
“These results establish sputtering’s role in the loss of Mars’ atmosphere and in determining the history of water on Mars,” said Curry.
The finding, published this week in Science Advances, is critical to scientists’ understanding of the conditions that allowed liquid water to exist on the Martian surface, and the implications that it has for habitability billions of years ago.
The MAVEN mission is part of NASA’s Mars Exploration Program portfolio. MAVEN’s principal investigator is based at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder, which is also responsible for managing science operations and public outreach and communications. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the MAVEN mission. Lockheed Martin Space built the spacecraft and is responsible for mission operations. NASA’s Jet Propulsion Laboratory in Southern California provides navigation and Deep Space Network support.
More information on NASA’s MAVEN mission
By Willow Reed
Laboratory for Atmospheric and Space Physics, University of Colorado Boulder
Media Contacts:
Nancy N. Jones
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Sampling a 'quasi-moon': What's next for China's newly launched Tianwen 2 asteroid-sampling mission
The Biggest Ideas in the Universe – Quanta and Fields
What happens when you see something that just doesn’t make sense? Perhaps you rub your eyes and consider it an anomaly. But what if you see it in an experiment? Say, travelling electrons that make different patterns depending upon whether they were detected? Then, you might want to change your sense of reality. Now, if you can develop a theory for the observations, then maybe you can start a new field of science. It has happened. Quantum mechanics is the name given to this relatively new field and it’s the topic that Sean Carroll writes in his book, “The Biggest Ideas in the Universe – Quanta and Fields”. In his book, there’s much ado about particles, fields, groups and diagrams; all with the aim of enabling any reader to make sense of it.
NASA Langley Uses Height, Gravity to Test Long, Flexible Booms
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) Researchers look at a bend that occurred in the 94-foot triangular, rollable and collapsible boom during an off-axis compression test.NASA/David C. BowmanResearchers at NASA’s Langley Research Center in Hampton, Virginia, have developed a technique to test long, flexible, composite booms for use in space in such a way that gravity helps, rather than hinders, the process. During a recent test campaign inside a 100-foot tower at a NASA Langley lab, researchers suspended a 94-foot triangular, rollable, and collapsible boom manufactured by Florida-based aerospace company, Redwire, and applied different forces to the boom to see how it would respond.
Having a facility tall enough to accommodate vertical testing is advantageous because horizontal tests require extra equipment to keep gravity from bending the long booms, but this extra equipment in turn affects how the boom responds. These mechanical tests are important because NASA and commercial space partners could use long composite booms for several functions including deployable solar sails and deployable structures, such as towers for solar panels, that could support humans living and working on the Moon.
Redwire will be able to compare the results of the physical testing at NASA Langley to their own numerical models and get a better understanding of their hardware. NASA’s Game Changing Development program in the agency’s Space Technology Mission Directorate funded the tests.
Researchers conducted the tests inside a 100-foot tower at NASA Langley.NASA/Mark Knopp Share Details Last Updated May 29, 2025 Related Terms Explore More 2 min read NASA Tech Gives Treadmill Users a ‘Boost’Creators of the original antigravity treadmill continue to advance technology with new company.
Article 3 hours ago 6 min read NASA Tests New Ways to Stick the Landing in Challenging Terrain Article 4 hours ago 3 min read Autonomous Tritium Micropowered Sensors Article 2 days ago Keep Exploring Discover More Topics From NASAMissions
Humans in Space
Climate Change
Solar System
NASA Langley Uses Height, Gravity to Test Long, Flexible Booms
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) Researchers look at a bend that occurred in the 94-foot triangular, rollable and collapsible boom during an off-axis compression test.NASA/David C. BowmanResearchers at NASA’s Langley Research Center in Hampton, Virginia, have developed a technique to test long, flexible, composite booms for use in space in such a way that gravity helps, rather than hinders, the process. During a recent test campaign inside a 100-foot tower at a NASA Langley lab, researchers suspended a 94-foot triangular, rollable, and collapsible boom manufactured by Florida-based aerospace company, Redwire, and applied different forces to the boom to see how it would respond.
Having a facility tall enough to accommodate vertical testing is advantageous because horizontal tests require extra equipment to keep gravity from bending the long booms, but this extra equipment in turn affects how the boom responds. These mechanical tests are important because NASA and commercial space partners could use long composite booms for several functions including deployable solar sails and deployable structures, such as towers for solar panels, that could support humans living and working on the Moon.
Redwire will be able to compare the results of the physical testing at NASA Langley to their own numerical models and get a better understanding of their hardware. NASA’s Game Changing Development program in the agency’s Space Technology Mission Directorate funded the tests.
Researchers conducted the tests inside a 100-foot tower at NASA Langley.NASA/Mark Knopp Share Details Last Updated May 29, 2025 Related Terms Explore More 2 min read NASA Tech Gives Treadmill Users a ‘Boost’Creators of the original antigravity treadmill continue to advance technology with new company.
Article 3 hours ago 6 min read NASA Tests New Ways to Stick the Landing in Challenging Terrain Article 4 hours ago 3 min read Autonomous Tritium Micropowered Sensors Article 2 days ago Keep Exploring Discover More Topics From NASAMissions
Humans in Space
Climate Change
Solar System