Feed aggregator
Gravity Poppers: Hopping Probes for the Interior Mapping of Small Solar System Bodies
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of Gravity Poppers: Hopping Probes for the Interior Mapping of Small Solar System Bodies concept.NASA/Benjamin HockmanBenjamin Hockman
NASA Jet Propulsion Laboratory
The goal of this effort is to develop a robust and affordable mission architecture that enables the gravimetric density reconstruction of small body interiors to unprecedented precision. Our architecture relies on the novel concept of “Gravity Poppers,” which are small, minimalistic probes that are deployed to the surface of a small body and periodically “pop” so as to perpetuate a random hopping motion around the body. By tracking a large swarm of poppers from orbit, a mother spacecraft can precisely estimate their trajectories and continuously refine a high-resolution map of the body’s gravity field, and thus, its internal mass distribution. Hopping probes are also equipped with minimalistic in-situ sensors to measure the surface temperature (when landed) and strength (when bouncing) in order to complement the gravity field and build a more accurate picture of the interior. The Phase I study focused on feasibility assessment of three core technologies that enable such a mission: (1) the mechanical design of hopping probes to be small, simple, robust, and “visible” to a distant spacecraft, (2) the tracking strategy for detecting and estimating the trajectories of a large number of ballistic probes, and (3) the algorithmic framework by which such measurements can be used to iteratively refine a gravity model of the body. The key finding was that the concept is feasible, and demonstrated to have the potential to resolve extremely accurate gravity models, allowing scientists to localize density anomalies such as “weighing” large boulders on the surface. This Phase II Proposal aims to further develop these three core technologies through continued mission trade studies and sensitivity analysis, case studies for simulated missions, and hardware prototypes demonstrating both hopping behavior and tracking performance.
Facebook logo @NASATechnology @NASA_Technology Share Details Last Updated May 27, 2025 EditorLoura Hall Related Terms Keep Exploring Discover More NIAC TopicsSpace Technology Mission Directorate
NASA Innovative Advanced Concepts
NIAC Funded Studies
About NIAC
Gravity Poppers: Hopping Probes for the Interior Mapping of Small Solar System Bodies
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater) Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of Gravity Poppers: Hopping Probes for the Interior Mapping of Small Solar System Bodies concept.NASA/Benjamin HockmanBenjamin Hockman
NASA Jet Propulsion Laboratory
The goal of this effort is to develop a robust and affordable mission architecture that enables the gravimetric density reconstruction of small body interiors to unprecedented precision. Our architecture relies on the novel concept of “Gravity Poppers,” which are small, minimalistic probes that are deployed to the surface of a small body and periodically “pop” so as to perpetuate a random hopping motion around the body. By tracking a large swarm of poppers from orbit, a mother spacecraft can precisely estimate their trajectories and continuously refine a high-resolution map of the body’s gravity field, and thus, its internal mass distribution. Hopping probes are also equipped with minimalistic in-situ sensors to measure the surface temperature (when landed) and strength (when bouncing) in order to complement the gravity field and build a more accurate picture of the interior. The Phase I study focused on feasibility assessment of three core technologies that enable such a mission: (1) the mechanical design of hopping probes to be small, simple, robust, and “visible” to a distant spacecraft, (2) the tracking strategy for detecting and estimating the trajectories of a large number of ballistic probes, and (3) the algorithmic framework by which such measurements can be used to iteratively refine a gravity model of the body. The key finding was that the concept is feasible, and demonstrated to have the potential to resolve extremely accurate gravity models, allowing scientists to localize density anomalies such as “weighing” large boulders on the surface. This Phase II Proposal aims to further develop these three core technologies through continued mission trade studies and sensitivity analysis, case studies for simulated missions, and hardware prototypes demonstrating both hopping behavior and tracking performance.
Facebook logo @NASATechnology @NASA_Technology Share Details Last Updated May 27, 2025 EditorLoura Hall Related Terms Keep Exploring Discover More NIAC TopicsSpace Technology Mission Directorate
NASA Innovative Advanced Concepts
NIAC Funded Studies
About NIAC
Was Planet Nine exiled from the solar system as a baby?
Was Planet Nine exiled from the solar system as a baby?
Your imagination doesn’t get worse as you age – but it does change
Your imagination doesn’t get worse as you age – but it does change
How to watch SpaceX's Starship Flight 9 launch and Elon Musk's Mars update today
The sun is killing off SpaceX's Starlink satellites
The sun is killing off SpaceX's Starlink satellites
Best wide-angle camera lenses 2025: Discover the ideal wide-angle for your camera
NASA satellites show Antarctica has gained ice despite rising global temperatures. How is that possible?
How fast you age is dictated by your sex, ethnicity and education
How fast you age is dictated by your sex, ethnicity and education
Prostheses fit to Fly!
The performance of a lower limb prosthesis has been evaluated in microgravity conditions for the first time during the latest ESA parabolic flight campaign on the ‘Zero G’ aircraft.
One Star Once Orbited Inside the Other in this Bizarre Binary System.
Astronomers have spotted a pulsar in a binary system, taking about 3.6 hours for the stars to orbit one another. Their orbit is so close that, from our vantage point, the pulsar’s radio signals vanish for roughly one-sixth of each cycle—blocked by the companion’s interference. Researchers think that the more massive star died first, exploding as a supernova and collapsing into a neutron star, passing within the atmosphere of the other. It took about 1,000 years to blow away the envelope of material.
Astronomers Identified the Lost Star of 1408…Or Have They?
Over the past 90 years, astronomers have successfully matched several Chinese historical records of "guest stars" with known supernovae. However, identifying historical novae (smaller stellar explosions) has proven to be far more challenging, with many proposed candidates later turning out to be comets or meteors instead. One particularly debated case involves a guest star recorded in 1408 CE by Chinese astronomers. A team of astronomers now think they may have finally been able to identify the event, a rare nova that could potentially solve this centuries old astronomical mystery.
Perseverance Photobombed by a Passing Dust Devil
On May 10th, while striking a selfie to mark its 1,500th day on Mars, NASA’s Perseverance Rover got an unexpected guest star—a towering dust devil swirling in the distance photobombed the shot. The rover was on Witch Hazel Hill, an area on the rim of Jezero Crater that it has been exploring for the last 5 months. The dust devil on the other hand was sneaking into the background from a distance of 5 km away. The selfie image was made up of 59 separate photos taken by the rover using its WATSON camera.
Johnson’s Paige Whittington Builds a Symphony of Simulations
What do music ensembles and human spaceflight have in common? They require the harmonization of different elements to create an inspiring opus.
NASA’s Paige Whittington has experience with both.
As a principal flutist for Purdue University’s Wind Ensemble, Whittington helped fellow flutists play beautiful music together while pursuing her graduate degree. Now, as a space exploration simulation architect at Johnson Space Center in Houston, she strives for a cross-team harmony that can inform the agency’s Moon to Mars exploration approach.
“Simulation often sits at the intersection of several teams because we integrate various designs and mission requirements,” she said. “We have to learn how to best fit those teams and their priorities together to enable cutting-edge human exploration.”
Official NASA portrait of Paige Whittington.NASA/Josh ValcarcelWhittington is part of the NASA Exploration Systems Simulations (NExSyS) team, which develops physics-based simulations to evaluate various vehicles and mission concepts. Her role includes working with lunar and Mars architecture teams within NASA’s Strategy and Architecture Office to assess current and potential future elements of vehicle design, logistics, and planning.
“Our simulations help inform engineers, astronauts, and managers about the new, challenging environments that await us on the Moon and Mars,” she said.
One of the most challenging and rewarding projects she is working on is the Artemis Distributed Simulation. “NExSyS develops and maintains several individual simulations such as rovers, landers, and habitats. However, human exploration on other planetary bodies requires careful integration and coordination of these individual pieces,” she explained.
The distributed simulation brings those pieces together to enable agency teams to envision a complete Artemis mission to the lunar surface. Different elements can be added or removed to create a wide variety of scenarios. The simulation can run automatically with predetermined settings or be responsive to real-time and randomized changes. Participants can operate the team’s video walls, mock-up mission control console, virtual reality platforms, and lander piloting facility to interact together within the chosen Artemis mission scenario.
Paige Whittington standing in front of the Video Wall used for human-in-the-loop simulations located inside the Systems Engineering Simulator facility at NASA’s Johnson Space Center. Image courtesy of Paige Whittington“I am very proud to know that the simulations I help develop have impacted some of the decisions being made by NASA’s architecture teams,” she said.
She is excited to take on a new responsibility, as well. Whittington recently became project manager of the JSC Engineering Orbital Dynamics software package. Also known as JEOD, this open-source tool was created by NASA to model spacecraft trajectories, such as proposed flight paths for a lunar lander. JEOD calculates gravitational and other environmental forces acting on spacecraft to simulate the position and orientation of those vehicles over time, whether they are orbiting a cosmic body or traveling between planets.
Whittington’s family moved frequently during her childhood, calling five different states home as she grew up. Their time in Florida would have a life-long impact.
“My parents drove me and my sister across the state to visit NASA’s Kennedy Space Center. It was mesmerizing, awe-inspiring, and seemingly a whole different world from where my 8-year-old self thought I was living,” she said. Her love of space never waned, and a high school physics teacher encouraged her to study aerospace engineering in college. “That was the turning point when I realized space exploration didn’t have to stay in my dreams – it was a career field I could actually work in.”
Whittington took her teacher’s advice, earning a bachelor’s degree in aerospace engineering from the University of Texas at Austin. She also completed two internships at Johnson through the Universities Space Research Association and interned with a NASA contractor after graduation. While pursuing a master’s degree in Aeronautics and Astronautics at Purdue, Whittington was accepted to NASA’s Pathways Program and did two rotations with the Simulation and Graphics Branch before joining the team as a full-time employee in June 2022.
Paige Whittington celebrating the launch of Artemis I at Johnson Space Center in 2022. Image courtesy of Paige WhittingtonWhittington has learned several key lessons during her five years with NASA, including the essential part open, regular communication plays in understanding an individual’s or team’s core needs and limitations. She also stressed the importance of adaptability.
“The path that you planned for may not be the path you end up choosing. But that planning enabled you to be who you are now and to make different choices,” she said. “I did not anticipate working in simulations when I started my aerospace engineering degree, but I took the opportunity when it was presented, and I am so happy that I did.”
Explore More 9 min read Station Nation: Meet Megan Harvey, Utilization Flight Lead and Capsule Communicator Article 6 days ago 4 min read Andrea Harrington’s Vision Paves the Way for Lunar Missions Article 1 week ago 4 min read Aubrie Henspeter: Leading Commercial Lunar Missions Article 2 weeks ago