Feed aggregator
Amateur Astronomy Outreach in Saint Lucia with LUNAA Journeys
LUNAA Journeys (St. LUcia National Astronomy Association) is looking to address an all too common problem in the global astronomical community. Too often, participation in astronomy is seen as cost prohibitive, the sole pursuit of large universities or organizations that can afford to build a large modern observatory, or launch the Hubble Space Telescope. This is unfortunate, as there’s never been an era of more readily accessible information, out there in terms of astronomy and skywatching.
NASA's PUNCH Mission Captured Images of a Huge Solar Eruption
During its commissioning phase, NASA's [*Polarimeter to Unify the Corona and Heliosphere*](https://science.nasa.gov/blogs/punch/) (PUNCH) mission captured high-resolution images of a [Coronal Mass Ejection](https://www.swpc.noaa.gov/phenomena/coronal-mass-ejections) (CME) in greater detail than was previously possible.
A Better Way to Turn Solar Sails
Solar sails are space's ultimate free ride, they get their propulsion from the Sun, so they don't need to carry propellant, but they come with their own challenges. A sail has a large surface area but a low mass, which creates a huge moment of inertia and makes it difficult to control, especially with reaction wheels. A team of engineers have cracked it though with "smart mirrors" that can instantly switch their reflectivity on command, transforming sunlight from an unruly force into a precision steering tool.
Webb Sees the Galaxies that Cleared Out the Cosmic Fog
The early universe was shrouded in darkness. Just hundreds of millions of years after the Big Bang, a thick fog of hydrogen gas choked the cosmos, blocking light from traveling far. At some point, this gas became ionized, stripped of its electrons. Thanks to the James Webb Space Telescope, astronomers have identified the culprit: low-mass starburst galaxies emitting huge amounts of ultraviolet light. In just one patch of sky. They discovered 83 of these galactic powerhouses in one part of the sky at a time when the Universe was only 800 million years old.
Telescopes in Chile Capture Images of the Earliest Galaxies in the Universe
An international team of astronomers using the [*Cosmology Large Angular Scale Surveyor*](https://sites.krieger.jhu.edu/class/) (CLASS) [reported the first-ever measurement](https://hub.jhu.edu/2025/06/11/telescopes-look-at-cosmic-dawn/) announced the first-ever detection of radiation from the cosmic microwave background (CMB) interacting with the first stars in the Universe.
The Universe is Filled With Natural Telescope Lenses. Roman Will Use Them to Study Dark Matter
We don't know what dark matter is, but that doesn't stop astronomers from using it to their advantage. Dark matter is part of what makes gravitational lensing so effective. Astronomers expect the Roman Space Telescope to find 160,000 gravitational lenses, and dark matter makes a crucial contribution to these lenses.
How Bubble Muscles Could Help Astronauts Get Their Space Legs
When astronauts finally reach Mars, they'll face a unique challenge: walking and working in gravity that's only 37% as strong as Earth's. After spending months in the weightlessness of space, their weakened muscles and bones will struggle to cope with even this reduced gravity. Now, researchers at the University of Bristol have developed a promising solution; a soft, wearable exosuit powered by inflatable "bubble muscles."
The Moon is Covered in Tiny Orange Glass Beads. Now We Know Why.
When the Apollo astronauts landed on the Moon, they discovered drifts of tiny brilliant orange glass beads glittering across the surface. Each one less than 1 mm across and formed about 3.6 billion years ago. These microscopic treasures, each smaller than a pinhead, had been hiding their secrets for billions of years. Now, cutting edge technology has finally cracked the mystery: they're perfect time capsules from the Moon's explosive volcanic past, frozen droplets of ancient lava that solidified instantly in the airless void recording the history of the Moon.
1000 Hours with the Square Kilometre Array is Our Best Hope to Finally See Cosmic Dawn.
The Hubble Deep Field revolutionised astronomy by staring at a seemingly empty patch of sky for thousands of hours, unveiling a cosmos teeming with distant galaxies. But even Hubble can't peer back far enough to witness the universe's first moment of illumination; the Cosmic Dawn, when primordial darkness gave way to starlight. Now, the Square Kilometre Array promises to shatter that barrier. In a groundbreaking simulation, researchers have modelled 1000 hours of SKA observations, creating astronomy's next great deep field, one designed to capture the universe's very first sunrise.
The Solar Orbiter is Giving Us an Unprecedented Look at the Sun's Poles
The ecliptic is the apparent path that the Sun follows during a year. It's an imaginary line that the planets follow, with some small deviations, around the Sun. Spacecraft find it easier to follow the ecliptic because it's generally more energy efficient. However, the Solar Orbiter isn't on the ecliptic and it's giving us our first up-close looks at the Sun's poles.
Distant Galaxy Has Similar Icy Dust to the Milky Way. So, Similar Planets?
For most of us, dust is just something we have to clean up. For astronomers, interstellar dust is a hindrance when they want to study distant objects. However, recent James Webb Space Telescope (JWST) observations of a distant galaxy are changing that. This infrared-sensitive observatory is letting them find a way to use dust to understand the evolution of early galaxies. In addition, it uncovered a special property of that galaxy's ice-covered dust, indicating it could be similar to the materials that formed our Solar System.
Supernova Explosions Changed Earth's Climate and Shaped Humanity's History
Most scientists agree that supernova explosions have affected Earth's climate, though the details are not all clear. They likely cooled the climate several times in the last several thousand years, just as humanity was becoming established around the world. The evidence is in telescopes and tree rings.
Webb Shows Another Jupiter Forming in Real Time
Astronomers have used JWST to study a fascinating planetary system that's only 16.7 million years old, with two bizarre giant exoplanets. Designated YSES-1, its closer planet, YSES-1b seems to be surrounded by a disk of material that could be the birthplace of moons, similar to what might have happened at Jupiter billions of years ago. The other, YSES-1c, has a layer of silicate particles in its upper atmosphere—clouds of sand.
You're Looking at a Newly Forming Planet
Astronomers have discovered the site of a newly forming exoplanet, probably with several times the mass of Jupiter. The image was captured by ESO's Very Large Telescope, seeing the young star system 2MASS 1612 in infrared light. The disk extends about 130 astronomical units from the star, but you can see a bright ring followed by a gap at about 50 AU. It's believed there's a new planet forming in that gap, pulling in material from the disk of gas and dust around it.
Would a Planetary Sunshade Help Cool the Planet? This Mission Could Find Out
As worldwide temperatures continue to rise and conventional solutions aren't working fast enough, governments may turn to geoengineering solutions. One idea is to place a giant sunshade somewhat like an umbrella between the Earth and the Sun to block some of the sunlight that reaches our planet. A new mission proposes sending an 81 m² sail to Earth-Sun L1 to measure the effect of blocking a tiny fraction of solar energy.
Nat Geo documentary 'SALLY,' about the 1st US woman in space, now streaming on Disney+ & Hulu
NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
Better understanding the lunar lighting environment will help NASA prepare astronauts for the harsh environment Artemis III Moonwalkers will experience on their mission. NASA’s Artemis III mission will build on earlier test flights and add new capabilities with the human landing system and advanced spacesuits to send the first astronauts to explore the lunar South Pole and prepare humanity to go to Mars.
Using high-intensity lighting and low-fidelity mock-ups of a lunar lander, lunar surface, and lunar rocks, NASA engineers are simulating the Moon’s environment at the Flat Floor Facility to study and experience the extreme lighting condition. The facility is located at NASA’s Marshall Space Flight Center in Huntsville, Alabama.
NASA engineers inside the Flat Floor Facility at Marshall Space Flight Center in Huntsville, Alabama, mimic lander inspection and assessment tasks future Artemis astronauts may do during Artemis III. Lights are positioned at a low angle to replicate the strong shadows that are cast across the lunar South Pole. NASA/Charles Beason“The goal is really to understand how shadows will affect lander visual inspection and assessment efforts throughout a future crewed mission,” said Emma Jaynes, test engineer at the facility. “Because the Flat Floor Facility is similar to an inverted air hockey table, NASA and our industry partners can rearrange large, heavy structures with ease – and inspect the shadows’ effects from multiple angles, helping to ensure mission success and astronaut safety for Artemis III.”
Data and analysis from testing at NASA are improving models Artemis astronauts will use in preparation for lander and surface operations on the Moon during Artemis III. The testing also is helping cross-agency teams evaluate various tools astronauts may use.
The 86-foot-long by 44-foot-wide facility at NASA is one of the largest, flattest, and most stable air-bearing floors in the world, allowing objects to move across the floor without friction on a cushion of air.
Test teams use large, 12-kilowatt and 6-kilowatt lights to replicate the low-angle, high contrast conditions of the lunar South Pole. Large swaths of fabric are placed on top of the epoxy floor to imitate the reflective properties of lunar regolith. All the mock-ups are placed on air bearings, allowing engineers to easily move and situate structures on the floor.
The Flat Floor Facility is an air-bearing floor, providing full-scale simulation capabilities for lunar surface systems by simulating zero gravity in two dimensions. Wearing low-fidelity materials, test engineers can understand how the extreme lighting of the Moon’s South Pole could affect surface operations during Artemis III. NASA/Charles Beason“The Sun is at a permanent low angle at the South Pole of the Moon, meaning astronauts will experience high contrasts between the lit and shadowed regions,” Jaynes said. “The color white can become blinding in direct sunlight, while the shadows behind a rock could stretch for feet and ones behind a lander could extend for miles.”
The laboratory is large enough for people to walk around and experience this phenomenon with the naked eye, adding insight to what NASA calls ‘human in-the-loop testing.
NASA is working with SpaceX to develop the company’s Starship Human Landing System to safely send Artemis astronauts to the Moon’s surface and back to lunar orbit for Artemis III.
Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.
For more information about Artemis missions, visit:
News Media ContactCorinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256.544.0034
corinne.m.beckinger@nasa.gov
Artemis III
Gateway Lunar Space StationBuilt with international and industry partners, Gateway will be humanity’s first space station around the Moon. It will support a…
Space Launch System (SLS)
Humans In Space
China's next-gen astronaut capsule for moon missions aces crucial pad-abort test (video)
Training for the Moo(n)
A curious cow watches as NASA astronauts Andre Douglas and Kate Rubins perform a simulated moonwalk in the San Francisco Volcanic Field in Northern Arizona on May 14, 2024, in preparation for NASA’s historic Artemis III Moon landing mission. Flight controllers and scientists guided activities during the week-long simulation from mission control at NASA’s Johnson Space Center in Houston.
Tests like this are critical for NASA’s Artemis science teams because they provide an opportunity to test integration with mission control. In the Science Evaluation Room at NASA’s Johnson Space Center, lunar scientists, geologists, and experts in image analysis and sample science direct and evaluate lunar surface science and geologic observations. They assess and adapt moonwalk traverses, communicating any feedback or changes with the science officer on the flight control team. The science officer conveys those messages to the Capcom officer, who then shares insights and recommendations with the crew during missions.
Learn why training like this is critical to mission success.
Image credit: NASA/Josh Valcarcel