Behold, directly overhead, a certain strange star was suddenly seen...
Amazed, and as if astonished and stupefied, I stood still.

— Tycho Brahe

Feed aggregator

Can you see Earth's new 'mini-moon' with the naked eye?

Space.com - Thu, 10/03/2024 - 1:00pm
On Sunday, Sept. 29, Earth captured a new "mini-moon" called 2024 PT5. The bus-size asteroid is expected to orbit our planet for 57 days, but is too small to be visible to amateur skywatchers.
Categories: Astronomy

Hurricane Helene Survivors Face a Second Disaster—Insurance Woes

Scientific American.com - Thu, 10/03/2024 - 12:45pm

Only 2 percent of households in parts of Georgia, North Carolina and South Carolina that were flooded by Hurricane Helene can get insurance payments

Categories: Astronomy

Stem cell transplant gives hope for treating age-related sight loss

New Scientist Space - Space Headlines - Thu, 10/03/2024 - 12:08pm
A monkey that performed poorly on vision tests did much better after having a stem cell transplant to patch up holes in its retina
Categories: Astronomy

Stem cell transplant gives hope for treating age-related sight loss

New Scientist Space - Cosmology - Thu, 10/03/2024 - 12:08pm
A monkey that performed poorly on vision tests did much better after having a stem cell transplant to patch up holes in its retina
Categories: Astronomy

BepiColombo spacecraft's flyby of Mercury begins unraveling the planet's magnetic mystery

Space.com - Thu, 10/03/2024 - 12:00pm
The secrets of Mercury's strange magnetic bubble are gradually being unlocked by the BepiColombo spacecraft as it makes its rapid flybys of the world.
Categories: Astronomy

Biggest solar flare since 2017 erupts from sun and Earth is in the firing line (video)

Space.com - Thu, 10/03/2024 - 11:35am
On Oct. 3, the sun released the most powerful solar flare this solar cycle, a colossal X9.05 eruption — and it's heading for Earth.
Categories: Astronomy

Cobertura de la NASA del lanzamiento de Europa Clipper a una luna de Júpiter

NASA - Breaking News - Thu, 10/03/2024 - 11:11am
Concepto artístico de la nave espacial Europa Clipper de la NASA.

Créditos: NASA/JPL-Caltech.

Read this release in English here.

La NASA ofrecerá cobertura en directo, en inglés y en español, de las actividades previas al lanzamiento y del lanzamiento de Europa Clipper, la misión de la agencia para explorar Europa, una luna helada de Júpiter. La cobertura del lanzamiento se ofrecerá también en español. La NASA prevé que el lanzamiento se dé a las 12:31 p.m. EDT (hora del este) del jueves, 10 de octubre, a bordo de un cohete SpaceX Falcon Heavy desde el Complejo de Lanzamiento 39A en el Centro Espacial Kennedy de la NASA en Florida.

Más allá de la Tierra, Europa, una luna de Júpiter, es considerada uno de los entornos con más potencial para la habitabilidad del sistema solar. Tras un viaje de aproximadamente 1.800 millones de millas (unos 2.900 millones de kilómetros), Europa Clipper entrará en órbita alrededor de Júpiter en abril de 2030. Desde ahí, la nave espacial llevará a cabo un estudio detallado de Europa para determinar si este mundo helado podría presentar condiciones adecuadas para la vida. Europa Clipper es la mayor nave espacial que la NASA ha desarrollado para una misión planetaria. Transporta un conjunto de nueve instrumentos y un experimento gravitatorio, los cuales investigarán un océano bajo la superficie de Europa que los científicos creen que contiene el doble de agua líquida que los océanos de la Tierra.

Para consultar el calendario de eventos en directo y las plataformas en las que se retransmitirán, visita:

https://go.nasa.gov/europaclipperlive

El plazo para la acreditación de los medios de comunicación para la cobertura presencial de este lanzamiento ya finalizó. La política de acreditación de medios de la NASA está disponible en línea (en inglés). Si tienes preguntas sobre la acreditación de los medios de comunicación, envía un correo electrónico a: ksc-media-accreditat@mail.nasa.gov.

La cobertura de la misión de la NASA es la siguiente (todas las horas son del este y están sujetas a cambios en función de las operaciones a tiempo real):

Martes, 8 de octubre

1 p.m. – Entrevistas presenciales, abiertas a los medios de comunicación acreditados para este lanzamiento.

3:30 p.m. – Sesión informativa científica de Europa Clipper de la NASA con los siguientes participantes:

  • Gina DiBraccio, directora en funciones, División de Ciencias Planetarias, Sede de la NASA
  • Robert Pappalardo, científico de proyecto, Europa Clipper, Laboratorio de Propulsión a Chorro de la NASA (NASA JPL)
  • Haje Korth, científico adjunto de proyecto, Europa Clipper, Laboratorio de Física Aplicada de la Universidad Johns Hopkins
  • Cynthia Phillips, científica de proyecto, Europa Clipper, NASA JPL

La cobertura de la conferencia de prensa científica se retransmitirá en directo en NASA+ y en el sitio web de la agencia, Aprende cómo ver contenidos de la NASA a través de diversas plataformas, incluidas las redes sociales.

Los representantes de los medios de comunicación podrán formular preguntas tanto presencialmente como por teléfono. El espacio disponible en el auditorio para la participación en persona será limitado. Para obtener el número de teléfono y el código de acceso a la conferencia, los medios de comunicación deberán ponerse en contacto con la sala de prensa de la NASA en Kennedy a más tardar una hora antes del comienzo del acto: ksc-newsroom@mail.nasa.gov.

Miércoles, 9 de octubre

2 p.m. – Panel social del NASA Social en el centro Kennedy, con los siguientes participantes:

  • Kate Calvin, científica jefe y asesora principal sobre el clima, sede de la NASA
  • Caley Burke, analista de diseño de vuelos, Programa de Servicios de Lanzamiento de la NASA
  • Erin Leonard, científica del proyecto Europa Clipper, NASA JPL
  • Juan Pablo León, ingeniero de banco de pruebas de sistemas, Europa Clipper, NASA JPL (León es hispanohablante)
  • Elizabeth Turtle, investigadora principal, instrumento de sistema de imágenes de Europa, Europa Clipper, APL

Esta mesa redonda se transmitirá en directo a través de las cuentas de la NASA en YouTube, X y Facebook. Los miembros del público pueden hacer preguntas en línea publicando en las transmisiones en vivo de YouTube, X y Facebook o usando el hashtag #AskNASA.

3:30 p.m. – Conferencia de prensa de la NASA previa al lanzamiento de Europa Clipper (tras la finalización de la revisión del estado de preparación para el lanzamiento), con los siguientes participantes:

  • Administrador asociado de la NASA Jim Free
  • Sandra Connelly, administradora adjunta, Dirección de Misiones Científicas, Sede de la NASA
  • Tim Dunn, director de lanzamiento, Programa de Servicios de Lanzamiento de la NASA
  • Julianna Scheiman, directora para misiones científicas de la NASA, SpaceX
  • Jordan Evans, gerente de proyecto, Europa Clipper, NASA JPL
  • Mike McAleenan, meteorólogo de lanzamiento, 45º Escuadrón Meteorológico, Fuerza Espacial de EE.UU.

La conferencia de prensa previa al lanzamiento se retransmitirá en directo en NASA+, el sitio web de la agencia, la aplicación de la NASA, y YouTube.

Los representantes de los medios de comunicación podrán formular preguntas tanto presencialmente como por teléfono. El espacio disponible en el auditorio para la participación en persona será limitado. Para obtener el número de teléfono y el código de acceso a la conferencia, los medios de comunicación deberán ponerse en contacto con la sala de prensa de la NASA en Kennedy a más tardar una hora antes del comienzo del acto: ksc-newsroom@mail.nasa.gov.

5:30 p.m. – Transmisión del despliegue de Europa Clipper de la NASA a la plataforma de lanzamiento. La retransmisión en vivo (en inglés) estará disponible en NASA+, el sitio web de la agencia, la aplicación de la NASA, y YouTube.

Jueves, 10 de octubre

11:30 a.m. – La cobertura en inglés del lanzamiento empezará en NASA+ y el el sitio web de la agencia.

11:30 a.m. – La cobertura en español del lanzamiento empezará en NASA+ y el canal de YouTube en español de la NASA.

12:31 p.m. – Lanzamiento.

Cobertura de audio

El audio de las conferencias de prensa y de la cobertura del lanzamiento, ambos en inglés, se transmitirá por los circuitos «V» de la NASA, a los que se puede acceder marcando 321-867-1220, -1240 o -7135. El día del lanzamiento, el «audio de la misión», es decir, las actividades de la cuenta atrás sin los comentarios de los medios de NASA+ sobre el lanzamiento, se retransmitirá por el 321-867-7135.

Cobertura de vídeo en directo previa al lanzamiento
La NASA proporcionará una conexión de vídeo en directo del Complejo de Lanzamiento 39A aproximadamente 18 horas antes del despegue previsto de la misión en el canal de YouTube de la sala de prensa de la NASA en Kennedy. La transmisión será ininterrumpida hasta que comience la emisión del lanzamiento en NASA+.

Cobertura del lanzamiento en el sitio web de la NASA
La cobertura de la misión el día del lanzamiento estará disponible en el sitio web de la agencia. La cobertura incluirá enlaces a retransmisiones en directo (en español e inglés) y actualizaciones del blog que comenzarán no antes de las 10 a.m. del 10 de octubre, a medida que se cumplan los hitos de la cuenta regresiva. Poco después del despegue se podrá acceder a vídeos y fotos del lanzamiento en streaming a demanda.

Siga la cobertura de la cuenta regresiva en el blog de Europa Clipper (en inglés). Si tiene alguna pregunta sobre la cobertura de la cuenta atrás, póngase en contacto con la sala de prensa Kennedy llamando al 321-867-2468.

Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con María José Viñas: maria-jose.vinasgarcia@nasa.gov, Antonia Jaramillo: antonia.jaramillobotero@nasa.gov o Messod Bendayan: messod.c.bendayan@nasa.gov

Asistencia virtual al lanzamiento

Los miembros del público pueden registrarse para asistir virtualmente a este lanzamiento. El programa de invitados virtuales (en inglés) de la NASA para esta misión también incluye recursos curados de lanzamiento, notificaciones sobre oportunidades o cambios relacionados, y un sello para el pasaporte de invitado virtual de la NASA después del lanzamiento.

Observación y participación en redes sociales

Haz que la gente sepa que estás siguiendo la misión en X, Facebook e Instagram utilizando los hashtags #EuropaClipper y #NASASocial. También puedes mantenerte conectado siguiendo y etiquetando estas cuentas:

X: @NASA, @EuropaClipper, @NASASolarSystem, @NASAJPL, @NASAKennedy, @NASA_LSP, @NASA_ES (en español)

Facebook: NASA, NASA’s Europa Clipper, NASA’s JPL, NASA’s Launch Services Program, NASA en español

Instagram: @NASA, @nasasolarsystem, @NASAKennedy@NASAJPL, @NASA_ES (en español)

Para más información en español sobre la misión:

https://ciencia.nasa.gov/europaclipper

-fin-

Karen Fox / Molly Wasser/ María José Viñas
Sede, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser.nasa.gov  / maria-jose.vinasgarcia@nasa.gov

Leejay Lockhart
Centro Espacial Kennedy, Florida
321-747-8310
leejay.lockhart@nasa.gov

Share Details Last Updated Oct 03, 2024 LocationKennedy Space Center Related Terms
Categories: NASA

NASA Sets Coverage for Europa Clipper Launch to Jupiter Moon

NASA - Breaking News - Thu, 10/03/2024 - 11:11am
An artist’s concept of NASA’s Europa Clipper spacecraft. Credits: NASA/JPL-Caltech

Lee esta nota de prensa en español aquí.

NASA will provide live coverage of prelaunch and launch activities for Europa Clipper, the agency’s mission to explore Jupiter’s icy moon Europa. NASA is targeting launch at 12:31 p.m. EDT Thursday, Oct. 10, on a SpaceX Falcon Heavy rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

Beyond Earth, Jupiter’s moon Europa is considered one of the solar system’s most promising potentially habitable environments. After an approximately 1.8-billion-mile journey, Europa Clipper will enter orbit around Jupiter in April 2030, where the spacecraft will conduct a detailed survey of Europa to determine whether the icy world could have conditions suitable for life. Europa Clipper is the largest spacecraft NASA has ever developed for a planetary mission. It carries a suite of nine instruments along with a gravity experiment that will investigate an ocean beneath Europa’s surface, which scientists believe contains twice as much liquid water as Earth’s oceans.

For a schedule of live events and the platforms they’ll stream on, visit:

https://go.nasa.gov/europaclipperlive

The deadline for media accreditation for in-person coverage of this launch has passed. NASA’s media credentialing policy is available online. For questions about media accreditation, please email: ksc-media-accreditat@mail.nasa.gov.

NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):

Tuesday, Oct. 8

1 p.m. – In-person, one-on-one interviews, open to media credentialed for this launch.

3:30 p.m. – NASA’s Europa Clipper science briefing with the following participants:

  • Gina DiBraccio, acting director, Planetary Science Division, NASA Headquarters
  • Robert Pappalardo, project scientist, Europa Clipper, NASA JPL
  • Haje Korth, deputy project scientist, Europa Clipper, Applied Physics Laboratory (APL)
  • Cynthia Phillips, project staff scientist, Europa Clipper, NASA JPL

Coverage of the science news conference will stream live on NASA+ and the agency’s website, Learn how to stream NASA content through a variety of platforms, including social media.

Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the NASA Kennedy newsroom no later than one hour before the start of the event at: ksc-newsroom@mail.nasa.gov.

Wednesday, Oct. 9

2 p.m. – NASA Social panel at NASA Kennedy with the following participants:

  • Kate Calvin, chief scientist and senior climate advisor, NASA Headquarters
  • Caley Burke, Flight Design Analyst, NASA’s Launch Services Program
  • Erin Leonard, project staff scientist, Europa Clipper, NASA JPL
  • Juan Pablo León, systems testbed engineer, Europa Clipper, NASA JPL
  • Elizabeth Turtle, principal investigator, Europa Imaging System instrument, Europa Clipper, APL

The panel will stream live on NASA Kennedy’s YouTube, X, and Facebook accounts. Members of the public may ask questions online by posting to the YouTube, X, and Facebook live streams or using #AskNASA.

3:30 p.m. – NASA’s Europa Clipper prelaunch news conference (following completion of the Launch Readiness Review), with the following participants:

  • NASA Associate Administrator Jim Free
  • Sandra Connelly, deputy associate administrator, Science Mission Directorate, NASA Headquarters
  • Tim Dunn, launch director, NASA’s Launch Services Program
  • Julianna Scheiman, director, NASA Science Missions, SpaceX
  • Jordan Evans, project manager, Europa Clipper, NASA JPL
  • Mike McAleenan, launch weather officer, 45th Weather Squadron, U.S. Space Force

Coverage of the prelaunch news conference will stream live on NASA+, the agency’s website, the NASA app, and YouTube.

Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the NASA Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov.

5:30 p.m. – NASA’s Europa Clipper rollout show. Coverage will stream live on NASA+, the agency’s website, the NASA app, and YouTube.

Thursday, Oct. 10

11:30 a.m. – NASA launch coverage in English begins on NASA+ and the agency’s website.

11:30 a.m. – NASA launch coverage in Spanish begins on NASA+, the agency’s website and NASA’s Spanish YouTube channel.

12:31 p.m. – Launch

Audio Only Coverage

Audio only of the news conferences and launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, -1240 or -7135. On launch day, “mission audio,” countdown activities without NASA+ media launch commentary, is carried on 321-867-7135.

Live Video Coverage Prior to Launch

NASA will provide a live video feed of Launch Complex 39A approximately 18 hours prior to the planned liftoff of the mission on the NASA Kennedy newsroom YouTube channel. The feed will be uninterrupted until the launch broadcast begins on NASA+.

NASA Website Launch Coverage

Launch day coverage of the mission will be available on the agency’s website. Coverage will include links to live streaming and blog updates beginning no earlier than 10 a.m., Oct. 10, as the countdown milestones occur. On-demand streaming video and photos of the launch will be available shortly after liftoff.

Follow countdown coverage on the Europa Clipper blog. For questions about countdown coverage, contact the Kennedy newsroom at 321-867-2468.

Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: antonia.jaramillobotero@nasa.gov o Messod Bendayan: messod.c.bendayan@nasa.gov

Attend the Launch Virtually

Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch.

Watch, Engage on Social Media

Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtags #EuropaClipper and #NASASocial. You can also stay connected by following and tagging these accounts:

X: @NASA, @EuropaClipper, @NASASolarSystem, @NASAJPL, @NASAKennedy, @NASA_LSP 

Facebook: NASA, NASA’s Europa Clipper, NASA’s JPL, NASA’s Launch Services Program

Instagram: @NASA, @nasasolarsystem, @NASAKennedy@NASAJPL

For more information about the mission, visit:

https://science.nasa.gov/mission/europa-clipper

-end-

Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser.nasa.gov  

Leejay Lockhart
Kennedy Space Center, Florida
321-747-8310
leejay.lockhart@nasa.gov

Share Details Last Updated Oct 03, 2024 LocationKennedy Space Center Related Terms
Categories: NASA

Signals from exotic new stars could hide in gravitational wave data

New Scientist Space - Cosmology - Thu, 10/03/2024 - 11:00am
A computer simulation suggests that some collisions between exotic, hypothetical stars would make space-time ripple with detectable waves
Categories: Astronomy

Signals from exotic new stars could hide in gravitational wave data

New Scientist Space - Space Headlines - Thu, 10/03/2024 - 11:00am
A computer simulation suggests that some collisions between exotic, hypothetical stars would make space-time ripple with detectable waves
Categories: Astronomy

Where Did All the Thalidomide Pills Distributed in the U.S. Go?

Scientific American.com - Thu, 10/03/2024 - 11:00am

 FDA medical examiner Frances Oldham Kelsey saved American lives by refusing to approve thalidomide. But millions of pills had been sent to doctors in the U.S. for so-called clinical trials

Categories: Astronomy

NASA’s Laser Comms Demo Makes Deep Space Record, Completes First Phase

NASA - Breaking News - Thu, 10/03/2024 - 10:54am

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA’s Psyche spacecraft is depicted receiving a laser signal from the Deep Space Optical Communications uplink ground station at JPL’s Table Mountain Facility in this artist’s concept. The DSOC experiment consists of an uplink and downlink station, plus a flight laser transceiver flying with Psyche.NASA/JPL-Caltech

The Deep Space Optical Communications tech demo has completed several key milestones, culminating in sending a signal to Mars’ farthest distance from Earth.

NASA’s Deep Space Optical Communications technology demonstration broke yet another record for laser communications this summer by sending a laser signal from Earth to NASA’s Psyche spacecraft about 290 million miles (460 million kilometers) away. That’s the same distance between our planet and Mars when the two planets are farthest apart.

Soon after reaching that milestone on July 29, the technology demonstration concluded the first phase of its operations since launching aboard Psyche on Oct. 13, 2023.

“The milestone is significant. Laser communication requires a very high level of precision, and before we launched with Psyche, we didn’t know how much performance degradation we would see at our farthest distances,” said Meera Srinivasan, the project’s operations lead at NASA’s Jet Propulsion Laboratory in Southern California. “Now the techniques we use to track and point have been verified, confirming that optical communications can be a robust and transformative way to explore the solar system.”

Managed by JPL, the Deep Space Optical Communications experiment consists of a flight laser transceiver and two ground stations. Caltech’s historic 200-inch (5-meter) aperture Hale Telescope at Caltech’s Palomar Observatory in San Diego County, California, acts as the downlink station to which the laser transceiver sends its data from deep space. The Optical Communications Telescope Laboratory at JPL’s Table Mountain facility near Wrightwood, California, acts as the uplink station, capable of transmitting 7 kilowatts of laser power to send data to the transceiver.

This visualization shows Psyche’s position on July 29 when the uplink station for NASA’s Deep Space Optical Communications sent a laser signal about 290 million miles to the spacecraft. See an interactive version of the Psyche spacecraft in NASA’s Eyes on the Solar System.NASA/JPL-Caltech

By transporting data at rates up to 100 times higher than radio frequencies, lasers can enable the transmission of complex scientific information as well as high-definition imagery and video, which are needed to support humanity’s next giant leap when astronauts travel to Mars and beyond.

As for the spacecraft, Psyche remains healthy and stable, using ion propulsion to accelerate toward a metal-rich asteroid in the main asteroid belt between Mars and Jupiter.

Exceeding Goals

The technology demonstration’s data is sent to and from Psyche as bits encoded in near-infrared light, which has a higher frequency than radio waves. That higher frequency enables more data to be packed into a transmission, allowing far higher rates of data transfer.

Even when Psyche was about 33 million miles (53 million kilometers) away — comparable to Mars’ closest approach to Earth — the technology demonstration could transmit data at the system’s maximum rate of 267 megabits per second. That bit rate is similar to broadband internet download speeds. As the spacecraft travels farther away, the rate at which it can send and receive data is reduced, as expected.

On June 24, when Psyche was about 240 million miles (390 million kilometers) from Earth — more than 2½ times the distance between our planet and the Sun — the project achieved a sustained downlink data rate of 6.25 megabits per second, with a maximum rate of 8.3 megabits per second. While this rate is significantly lower than the experiment’s maximum, it is far higher than what a radio frequency communications system using comparable power can achieve over that distance.

This Is a Test

The goal of Deep Space Optical Communications is to demonstrate technology that can reliably transmit data at higher speeds than other space communication technologies like radio frequency systems. In seeking to achieve this goal, the project had an opportunity to test unique data sets like art and high-definition video along with engineering data from the Psyche spacecraft. For example, one downlink included digital versions of Arizona State University’s “Psyche Inspired” artwork, images of the team’s pets, and a 45-second ultra-high-definition video that spoofs television test patterns from the previous century and depicts scenes from Earth and space.

This 45-second ultra-high-definition video was streamed via laser from deep space by NASA’s Deep Space Optical Communications technology demonstration on June 24, when the Psyche spacecraft was 240 million miles from Earth. NASA/JPL-Caltech

The technology demonstration beamed the first ultra-high-definition video from space, featuring a cat named Taters, from the Psyche spacecraft to Earth on Dec. 11, 2023, from 19 million miles away. (Artwork, images, and videos were uploaded to Psyche and stored in its memory before launch.)

“A key goal for the system was to prove that the data-rate reduction was proportional to the inverse square of distance,” said Abi Biswas, the technology demonstration’s project technologist at JPL. “We met that goal and transferred huge quantities of test data to and from the Psyche spacecraft via laser.” Almost 11 terabits of data have been downlinked during the first phase of the demo.

The flight transceiver is powered down and will be powered back up on Nov. 4. That activity will prove that the flight hardware can operate for at least a year.

“We’ll power on the flight laser transceiver and do a short checkout of its functionality,” said Ken Andrews, project flight operations lead at JPL. “Once that’s achieved, we can look forward to operating the transceiver at its full design capabilities during our post-conjunction phase that starts later in the year.”

More About Deep Space Optical Communications

This demonstration is the latest in a series of optical communication experiments funded by the Space Technology Mission Directorate’s Technology Demonstration Missions Program managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, and the agency’s SCaN (Space Communications and Navigation) program within the Space Operations Mission Directorate. Development of the flight laser transceiver is supported by MIT Lincoln Laboratory, L3 Harris, CACI, First Mode, and Controlled Dynamics Inc. Fibertek, Coherent, Caltech Optical Observatories, and Dotfast support the ground systems. Some of the technology was developed through NASA’s Small Business Innovation Research program.

For more information about the laser communications demo, visit:

https://www.jpl.nasa.gov/missions/deep-space-optical-communications-dsoc

NASA’s Optical Comms Demo Transmits Data Over 140 Million Miles The NASA Cat Video Explained 5 Things to Know About NASA’s Deep Space Optical Communications News Media Contacts

Ian J. O’Neill
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-2649
ian.j.oneill@jpl.nasa.gov

2024-130

Share Details Last Updated Oct 03, 2024 Related Terms Explore More 3 min read How NASA Astronauts Vote from Space Aboard International Space Station  Article 1 hour ago 2 min read The Science of the Perfect Cup for Coffee 

Material research is behind the design of a temperature-regulating mug

Article 6 days ago
1 min read Let It Go: (After Latching) Challenge Article 1 week ago Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

How NASA Astronauts Vote from Space Aboard International Space Station 

NASA - Breaking News - Thu, 10/03/2024 - 10:42am

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) The American flag inside the cupola of the International Space Station (Credits: NASA).Credit: NASA

NASA astronauts aboard the International Space Station have the opportunity to vote in general elections through absentee ballots or early voting in coordination with the county clerk’s office where they live.  

So, how is voting from space possible? Through NASA’s Space Communication and Navigation (SCaN) Program

Similar to most data transmitted between the space station and the Mission Control Center at NASA’s Johnson Space Center in Houston, votes cast in space travel through the agency’s Near Space Network, managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. The network connects missions within 1.2 million miles of Earth with communications and navigation services – including the space station. 

NASA astronauts Loral O’Hara and Jasmin Moghbeli (from left) give a thumbs up after voting as Texas residents from the International Space Station. The duo filled out electronic absentee ballots in March 2024 and downlinked them to Mission Control at NASA’s Johnson Space Center in Houston, which relayed the votes to the county clerk’s office.Credit: NASA

Just like any other American away from home, astronauts may fill out a Federal Post Card Application to request an absentee ballot. After an astronaut fills out an electronic ballot aboard the orbiting laboratory, the document flows through NASA’s Tracking and Data Relay Satellite System to a ground antenna at the agency’s White Sands Test Facility in Las Cruces, New Mexico.

From New Mexico, NASA transfers the ballot to the Mission Control Center at NASA Johnson and then on to the county clerk responsible for casting the ballot. To preserve the vote’s integrity, the ballot is encrypted and accessible only by the astronaut and the clerk.

NASA’s Near Space Network enables astronauts on the International Space Station to communicate with Earth and electronically deliver ballots from space. Credit: NASA

Astronauts have voted in U.S. elections since 1997 when the Texas Legislature passed a bill that allowed NASA astronauts to cast ballots from orbit. That year, NASA astronaut David Wolf became the first American to vote from space while aboard the Mir Space Station. NASA astronaut Kate Rubins became the latest astronaut to vote in a presidential election, as she voted aboard the International Space Station in November 2020. 

Astronauts forego many of the comforts afforded to those back on Earth as they embark on their journeys to space for the benefit of humanity. Though they are far from home, NASA’s networks connect them with their friends and family and give them the opportunity to participate in democracy and society while in orbit. While astronauts come from all over the United States, they make their homes in Texas so they can be near NASA Johnson’s training and mission support facilities. 

For more than two decades, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory stay connected with Earth and their civilian lives back home by communicating with mission control through the Near Space Network. This development in communication ultimately can benefit humanity and lay the groundwork for other agency missions, like NASA’s Artemis campaign, and future human exploration of Mars. 

Learn more about the International Space Station online: 

https://www.nasa.gov/station

About the AuthorDominique V. Crespo

Share Details Last Updated Oct 03, 2024 Related Terms Explore More 5 min read NASA’s Laser Comms Demo Makes Deep Space Record, Completes First Phase Article 57 mins ago 1 min read Gateway Stands Tall for Stress Test

Gateway space station’s Habitation and Logistics Outpost has successfully completed static load testing in Turin,…

Article 3 hours ago
5 min read NASA’s LRO: Lunar Ice Deposits are Widespread

Deposits of ice in lunar dust and rock (regolith) are more extensive than previously thought,…

Article 3 hours ago
Keep Exploring Discover More Topics From NASA

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

GPM Celebrates Ten Years of Observing Precipitation for Science and Society

NASA - Breaking News - Thu, 10/03/2024 - 10:25am
Earth Observer

40 min read

GPM Celebrates Ten Years of Observing Precipitation for Science and Society

Introduction

On February 27, 2014, the four-ton Global Precipitation Measurement (GPM) Core Observatory (CO) spacecraft launched aboard a Japanese H-IIA rocket from Tanegashima Space Center in southern Japan. On that day, the GPM mission, a joint Earth-observing mission between NASA and the Japan Aerospace Exploration Agency (JAXA), began its journey to provide the world with an unprecedented picture of global precipitation (i.e., rain and snow). GPM continues to observe important precipitation characteristics and gain physical insights into precipitation processes using an advanced radar and passive microwave (PMW) radiometer on the GPM–CO along with leveraging a constellation of satellites. (The Earth Observer reported on the GPM–CO launch and plans for the mission in its November–December 2013 issue – see GPM Core Observatory: Advancing Precipitation Instruments and Expanding Coverage.)

As GPM is now well into its 10th year in orbit, the time is fitting to reflect on and celebrate what this mission has accomplished and showcase its contributions to science and society. While occasionally dealing with equipment malfunction, the GPM–CO has operated nearly continuously over its lifetime and recently was put into a higher orbit to conserve station-keeping fuel. As a result, GPM remains in extended operations and continues its observations after 10 years, making significant advances in the precipitation field through improving sensor calibration, retrieval algorithms, and ground validation measurements. GPM data continues to further our understanding of the characteristics of liquid and frozen precipitation around the world and improving our scientific knowledge of Earth’s water and energy cycles. These advances have extended to numerous societal benefits related to operational weather prediction, situational awareness and prediction of extreme events, hydrological and climate model development, water resource and crop management activities, and public health alerts. Additionally, this information has informed the K–12 and post-secondary audiences, influencing the next generation of scientists. More information is available at NASA’s GPM website.

Advancing Precipitation Measurements: The Need for the GPM Mission

Precipitation is a vital component of global water and energy cycles and crucially impactful to life on Earth. The distribution, frequency, and extremes in precipitation affect everything from agriculture to the insurance industry, to travel and your weekend plans. Prior to the meteorological satellite era, precipitation observations were limited to populated areas leaving wide swaths of land and almost the entirety of the oceans (70% of Earth’s surface) unobserved. GPM builds on decades of advances in satellite precipitation observations.

Early precipitation observations from space (e.g., from the Nimbus series) used visible and infrared measurements that gave the first, approximate estimates. PMW radiometers, however, gave a next generation of more direct and improved precipitation measurement. The NASA–JAXA Tropical Rainfall Measuring Mission (TRMM), launched in November 1997, significantly advanced the field with the addition of a Precipitation Radar (PR) alongside a wider-swath PMW radiometer. This was groundbreaking for precipitation research and advancement of measurement techniques, but was limited to the tropics and a single satellite in low Earth orbit. To move toward the goal of a globally distributed, high-frequency, physically consistent satellite precipitation product a new mission design was conceived in GPM.

The GPM Mission: Science Requirements, Objectives, and Instruments

The GPM–CO spacecraft is an advanced successor to the TRMM spacecraft, providing additional channels on both the Dual-frequency Precipitation Radar (DPR) and the GPM Microwave Imager (GMI) to enhance capabilities to sense light rain and falling snow. The GPM–CO, another NASA–JAXA partnership, operates in an inclined, non-Sun synchronous orbit that allows the spacecraft to sample precipitation across all hours of the day, as did TRMM. However, TRMM only covered tropical and subtropical regions, while the GPM–CO also covers middle and sub-polar latitudes.

The GPM mission has several key scientific objectives, including:

  1. advancing precipitation measurements from space;
  2. improving our knowledge of precipitation systems, water cycle variability, and freshwater availability;
  3. improving climate modeling and prediction;
  4. improving weather forecasting and four-dimensional [4D – i.e., three-dimensional (3D) spatial plus temporal] reanalysis; and
  5. improving hydrological modeling and prediction.

GPM Core Observatory Instruments

The GMI and DPR instruments together provide a powerful synergistic tool to assess precipitation structure, intensity, and phase globally at relatively high (regional) spatial resolutions. The DPR’s Ku-band (13.6 GHz) and Ka-band (35.5 GHz) channels provide 3D retrievals of precipitation structure with a vertical resolution of 250 m (~820 ft) and a horizontal resolution of ~5 km (~3 mi) across a swath up to 245 km (152 mi). The GMI is a 13-channel conically scanning PMW radiometer providing observations across a wide swath [885 km (~550 mi)] to estimate precipitation estimates at resolutions as fine as 5 km – see Figure 1.

When scientists and engineers collaborated on the design of GMI, they knew it would need to meet exacting requirements so that its data could be used both to support development of precipitation retrieval algorithms and to provide a calibration standard for the partner sensors in the GPM constellation. The attention to detail has paid off. To this day, GMI is deemed to be one of the best calibrated conically scanning PMW radiometers in space.

Together, these two well-calibrated GPM–CO instruments gather scientifically advanced observations of precipitation between 68°N and 68°S – which covers where the majority of the Earth’s population falls. This coverage allows opportunities to observe both surface precipitation rates and 3D precipitation structure and allows observations of diverse weather systems, including hurricanes and typhoons (e.g., from formation to their transition from the tropics to midlatitudes), severe convection, falling snow, light rain, and frontal systems over both land and ocean.

Figure 1. Schematic diagram of the GPM Core Observatory’s Dual-frequency Precipitation Radar (DPR) and GPM Microwave Imager (GMI) instruments. Figure credit: GPM website

GPM Constellation

While the GPM–CO is a key component of the GPM mission, another fundamental component is the constellation of national and international partner satellites known as the GPM Constellation, which has numbers ~10 at any given time – with the current members listed at the link referenced above. Each GPM Constellation partner designed and operated the satellites for their own particular missions, but they agreed to share the data from their missions to enable the next-generation of unified global precipitation estimates. The combination of these partner satellites and the GPM–CO allow frequent intersections of their orbits, permitting colocated and cotemporal observations to be made, which are crucial to ensure effective intercalibration.

The GPM–CO serves as the “calibrator” to unify precipitation estimates across these different partners’ satellite sensors, ensuring that the observed microwave brightness temperatures (TB) are consistent among the sensors with expected differences after accounting for variations in the observing frequencies, bandwidths, polarizations, and view angles. The advanced calibration across the sensors is a remarkable achievement, and it allows the project to focus on the precipitation products rather than TB uncertainties. This careful calibration enables high-quality datasets that support and enable detailed investigations on the distribution of precipitation and how these patterns change over days, seasons, and years, enabling a breadth of science and societal applications at local and global scales.

Ground Validation Activities: Significant Contributions to the GPM Mission

An integral part of a successful satellite mission is a robust and active ground validation (GV) program. During the TRMM era, the TRMM PR, and/or the TRMM PMW radiometer instruments limited GV to simple comparisons of rain rates to surface measurements from radars and/or rain gauges, which is referred to as statistical validation. It soon became obvious that a more robust GV program would be needed to better aid future satellite algorithm developers to improve the physics of their algorithms rather than just justifying tweaking their outputs. As a result, unlike TRMM, GPM’s GV program has been part of the mission concept from its inception. The GPM team developed a three-tiered approach that uses:  statistical validation, as done during TRMM; physical validation, where the emphasis is on better understanding of the physics and microphysics of different precipitating systems; and hydrological validation, which emphasizes improving precipitation retrievals over large-scale areas (e.g., watersheds).

To address these goals, there have been several pre- and post-launch field campaigns conducted. In chronological order, these include the:

Each of these field campaigns were designed to provide insight into different precipitation regimes and types to improve GPM satellite observations. For example, MC3E allowed for comprehensive observations of intense convection over continental regions. The researchers deployed an extensive network of ground instruments (e.g., radars, disdrometers, rain gauges), in coordination with flights of NASA’s ER-2 and University of North Dakota’s Cessna Citation II research aircrafts, to sample varied precipitation types (e.g., severe thunderstorms, Mesoscale Convective Systems (MCS)). Data from MC3E allowed for improvement of both active (DPR) and passive (GMI) retrievals over land. GCPEx has allowed for sampling of snowing systems. During this campaign, NASA’s ER-2 flew high above the clouds in coordination with NASA’s DC-3 aircraft flying within the clouds. Here again, GCPEx participants deployed a vast network of ground instruments (e.g., snow gauges, disdrometers). The goal for GCPEx was to formulate and validate frozen/mixed precipitation retrievals from the GPM satellite. (Note that from 2011–2015, The Earth Observer published articles on five of the six GV campaigns described in this section; the reader can locate these articles on The Earth Observer Archives Page. Scroll down to the “Bibliography of Articles with Historical Context Published in The Earth Observer” listicle and look for Field Campaigns.)

While these large-scale campaigns were extremely beneficial for achieving GPM science objectives, the costs of deploying instruments and personnel in these remote regions can be substantial. In order to provide long-term measurements at reasonable costs, the GPM GV established the Precipitation Research Facility (PRF) at the Wallops Flight Facility (WFF). The goal of this facility was to provide long-term measurements from the myriad instruments that have been deployed at the various field campaigns and manage them with full-time GV personnel. The linchpin of the PRF is NASA’s S-band, Dual-Polarimetric Radar (NPOL) – see Photo 1. NPOL was deployed in a farm field about 38 km (~24 mi) northeast of WFF to provide areal estimates of surface precipitation as well as profiles of precipitating systems above other GV surface instruments (e.g., profiling radars, disdrometers, and rain gauges). To add to this effort, the PRF staff established a network of rain gauges and disdrometers, which are deployed over the eastern shore of Maryland. These data are telemetered so that an added benefit to this effort is that the GPM GV data provide valuable, near-real-time data to many of the numerous farmers on the Delmarva Peninsula. The PRF’s principal activity is to design new GV instruments, test new validation methods, and assess instrument uncertainties using the abundant infrastructure of the GPM GV validation program. This coordination between GPM GV instruments, WFF-based staff, and regional data collection, quality control, and analysis are the core components of the PRF.

Photo 1. The NASA S-Band Dual Polarimetric Radar (NPOL) deployed in central Iowa in support of the IFloodS field campaign in Iowa during the spring of 2013. The radar, when disassembled, fits within the five, white sea-containers located around the radar in this photo; it can be transported via 18-wheelers. In addition to IFloodS, NPOL has also been deployed for field campaigns in Oklahoma (MC3E), North Carolina (IPHEx), and Washington (OLYMPEX) – all of which are mentioned in the text above. Photo credit: David Wolff/WFF

GPM Data Products

GPM data products and services have played an important role in research, applications, and education. The Precipitation Processing System (PPS) housed at NASA’s Goddard Space Flight Center (GSFC) produces and distributes GPM products that are archived and distributed at the Goddard Earth Sciences Data and Information Services Center (GES DISC) as well.

GES DISC is one of a dozen discipline-oriented Distributed Active Archive Centers (DAACs) that NASA operates for processing the terabytes of data returns from its satellites, aircraft, field campaigns, and other sources. (To learn more about Earth Science Data Operations, which includes the DAACs, see Earth Science Data Operations: Acquiring, Distributing, and Delivering NASA Data for the Benefit of Society. The Earth Observer, Mar–Apr 2017, 29:2, 4–18.  A chart listing all the DAACs appears on pp. 7–8 of this article.)

In addition to precipitation estimates, users can access variables, such as calibrated TB, radar reflectivity, latent heating, and hydrometeor profiles in GPM products. See the Table 1 below for a listing of NASA GPM data products. 

Table 1. Overview of GPM data collection.

Product Level Products and Description Level 1 (L1)1 1A – Reconstructed, unprocessed instrument data at full resolution for GPM GMI; TRMM TMI 1B – Brightness temperatures (Tb) for GPM GMI; and TRMM TMI, PR, and VIRS1C – Calibrated Tb for GPM GMI, TRMM TMI, and a constellation of PMW radiometers. Level 2 (L2)2 2A Radar – Single-orbit radar rainfall estimates for GPM DPR, Ka, Ku; TRMM PR2A Radiometer (GPROF & PRPS) – Single-orbit PMW rainfall estimates from GPM GMI, TRMM TMI, and constellation radiometers; 2B Combined – Single-orbit rainfall estimates from combined radar/radiometer data (e.g., GPM GMI & DPR; and TRMM TMI & PR); and 2H CSH – Single-orbit cloud (latent) heating estimates from combined radar/radiometer data (GPM GMI & DPR, TRMM TMI & PR). Level 3 (L3)3 IMERG Early Run – Near real-time, low-latency gridded global multi-satellite precipitation estimates; IMERG Late Run – Near real-time, gridded global multi-satellite precipitation estimates with quasi-Lagrangian time interpolation; and IMERG Final Run – Research-quality, gridded global multisatellite precipitation estimates with quasi-Lagrangian time interpolation, gauge data, and climatological adjustment. 3A Radar – Gridded rainfall estimates from radar data (GPM DPR, TRMM PR). 3A Radiometer (GPROF) – Gridded rainfall estimates from GPM GMI, TRMM TMI, and constellation PMW radiometers; 3B Combined – Gridded rainfall estimates from combined radar/radiometer data (GPM GMI & DPR, TRMM TMI & PR); 3G CSH – Gridded cloud (latent) heating estimates from combined radar/radiometer data (GPM GMI & DPR, TRMM TMI & PR). Product Definitions: 1 Level 1 (L1): L1A data are reconstructed, unprocessed instrument data at full resolution, time referenced, and annotated with ancillary information, including radiometric and geometric calibration coefficients and georeferencing parameters (i.e., platform ephemeris), computed and appended – but not applied, to Level-0 (L0) data; L1B data are radiometrically corrected and geolocated L1A data that have been processed to sensor units; and L1C data are common intercalibrated brightness temperature (Tb) products that use the GPM Microwave Imager (GMI) L1B data as a reference standard. 2Level 2 (L2) products are derived geophysical parameters at the same resolution and location as those of the L1 data. 3Level 3 (L3) products are geophysical parameters that have been spatially and/or temporally resampled from L1 or L2 data.

List of acronyms used in Table (in order of occurrence): GPM Microwave Imager (GMI); TRMM Microwave Imager (MI); TRMM Precipitation Radar (PR); Visible and Infrared Scanner (VIRS); Dual-frequency Precipitation Radar (DPR); Ku-band and Ka-band channels; GPM Profiling Algorithm (GPROF); Precipitation Retrieval and Profiling Scheme Algorithm (PRPS); Integrated Multi-satellitE Retrievals for GPM (IMERG); Goddard Convective-Stratiform (CSH) (Latent) Heating Algorithm.

Detailed information of each product and links for data access and visualizations are available on NASA GPM Data Directory.

From the beginning, GPM was conceptualized as incorporating all available satellite data – not as a single-satellite mission. One of the key mission requirements of the PPS was to ensure that processing and reprocessing always include data from the TRMM era (starting in December 1997). Algorithm development would ensure that the same algorithm would be used to process both TRMM- and GPM-era data collected from the TRMM and GPM spacecrafts and the GPM constellation. As a result, an important part of this cross-mission processing is the intercalibration of PMW radiometers using GMI. Using data from the overlap period of GMI and TMI, TMI is intercalibrated to GMI and is then used to intercalibrate the radiometer data during the TRMM era. This intercalibration manifests itself in the intercalibrated brightness temperatures (Tc) provided in the Level 1C (L1C) product for each radiometer. The GPM Profiling Algorithm (GPROF) retrieval uses these intercalibrated L1C products and guarantees consistent mission intercalibrated precipitation retrievals. For example, the L2 product stage that converts TB into precipitation estimates applies the same GPROF to the GPM constellation of PMW radiometers.

Continued Improvement of GPM Algorithms

One important achievement of GPM is the continued improvements in GPM’s algorithms that produce the immense amount of precipitation data that are used by scientific researchers and stakeholders alike. GPM’s five algorithms – DPR-, GPROF-, Combined-, Convective-Stratiform Heating-, and Multisatellite – have all undergone version updates several times (e.g., Version 01–07), with additional updates planned for the next 1–4 years. Each update entails a tremendous amount of work behind the scenes from GPM’s algorithm developers to ensure that quality data are available to the public.

Each new version provides a complete reprocessing of the entire data record using the improved retrieval algorithms, based on validation against reliable GV data, feedback from users, new understanding of the processes, and improved techniques. This not only helps ensure a consistent data record and fair comparisons against past events but also helps refine and improve the data to capture precipitation phenomena more exactly. Just as an original photograph capturing a past event can be reanalyzed with new technology, reprocessing revisits the observed satellite instruments’ “raw” radiances and refines the process of converting them to the end product of precipitation quantities.

“We know more now about the global rain and snowfall in, say, 2010, than we did when it actually happened.” – George Huffman [GPM Project Scientist]

This process is an inverse problem that helps determine the physical quantities (e.g., precipitation rate) given the observed signal (e.g., microwave radiance). For precipitation, this retrieval process relies on complex algorithms and is by no means straightforward. This is an underconstrained problem where different combinations of physical quantities can give the same observed signal, especially for passive instruments. Thus it requires additional information or assumptions.

The aim of each version in GPM is to have “better” estimates of the precipitation variables than the previous version. However, what better means can involve trade-offs. An excellent example is a change implemented from V06 to V07 in one of GPM’s most widely-used products – the Integrated Multi-satellitE Retrievals for GPM (IMERG) algorithm – which is NASA GPM’s multisatellite product that combines information from the GPM satellite constellation to estimate precipitation over the majority of the Earth’s surface. The resulting IMERG products provide near-global precipitation data at a resolution of 10 km (~6mi), every 30 minutes covering latitudes of 60°N–60°S, and are available at different latencies (Early, Late, and Final, as defined in Table 1) to cater to a range of end-user communities for operational and research applications. IMERG is particularly valuable over areas of Earth’s surface that lack ground-based, precipitation-measuring instruments, including oceans and remote areas. Specifically, this change to IMERG V07 resulted in improvements towards the distribution of precipitation rates, allowing for a better representation of precipitation areas and extremes. However, it reduced correlation against ground reference data. Another example is the gauge adjustment process in IMERG that offers a substantial improvement at the expense of higher random error.

The result of these intricate reprocessing cycles is a family of precipitation products that improves accuracy, a longer record, and expanding coverage, all while responding to feedback and requests from users. This is especially the case for downstream products like IMERG, which is widely used for science and applications due to its completeness and regularity, and inherits the improvements in each reprocessing cycle across the family.

Meeting User Needs

The number one requirement on PPS was to provide well-curated standard reference products with carefully curated provenience. For each data product version, a complete record is kept of spacecraft maneuvers and issues, data input issues, and data formats. This makes GPM data products a standard against which others can be compared and the standard products themselves improved.

The GPM mission also requires near-real-time (NRT) products. As a research agency, NASA does not generally specify operational NRT requirements. Instead, these NRT products are usually provided on a “best effort” basis. During its core mission (the first three years), PPS did have NRT requirements. Since then, PPS continues to fulfill these as budget permits. The half-hourly 0.1 x 0.1º L3 global IMERG products are provided in NRT with latency objectives for the IMERG Early (Late) run of 4+ (14+) hours after data collection.

To facilitate data interoperability and interdisciplinary science, the PPS and the Goddard Earth Sciences Data and Information Services Center (GES DISC) have developed value-added data services and products since the TRMM era, including data subsetting (spatial and temporal), L3 data regridding, network common data form (NetCDF) format conversion, remote data access (e.g., via Open Data Access Protocol (OPeNDAP), Grid Analysis and Display System (GrADS) Data Server [GDS]), NASA GIS translation of GPM data for various accumulation periods, GPM Applications Programming Interface (API), and data visualization tools. For example, the more technical Hierarchical Data Formats (HDF) mission IMERG products are reformatted and accumulated to GIS-friendly additions in Geographic Tagged Image File Format (geoTIFF) format for both Early and Late Run IMERG products at 30-min, 3-hour, and 1-day temporal resolution. Other value-added products include the daily products for IMERG Early, Late, and Final Runs from GES DISC. Quick visualization tools, such as the IMERG Global Viewer, are freely available to the public to access and view the latest NRT GPM IMERG global precipitation datasets at 30-minute, 1-day, and 7-day intervals, on an interactive 3D globe in a web browser. User services and tutorials (e.g., Frequently Asked Questions, How-Tos, help desk, user forum) are also available across the GPM, PPS, and GES DISC webpages.

Along with the other DAACs, GES DISC is facilitating data access and use by migrating its products and services to NASA’s Earthdata cloud. Once the migration is finished, users will be able to access all NASA’s Earth data products from the 12 DAACs in one place, which can simplify interdisciplinary science studies. Over 50% of the archived GES DISC products have been migrated to the cloud as of this writing. Users can either access them directly in the NASA Earthdata cloud environment or download data in their own computing environment. 

To broaden the GPM user community – especially for users who are either non-technical or not familiar with NASA data – GES DISC has developed an online interactive tool called Giovanni, for viewing, analyzing, and downloading multiple Earth science datasets (including GPM) from within a web browser, allowing users to circumvent downloading data and software. At present, GPM L3 precipitation products (IMERG) along with over 2000 interdisciplinary variables from other NASA missions or projects are available in Giovanni. Over 20 plot types are included in Giovanni to facilitate data exploration, product comparison, and research. Links to results and data can be shared with colleagues. Data in different formats (e.g., NetCDF, comma separated values, or CSV) can be downloaded as well. A list of referral papers utilizing Giovanni is available. 

Data services continue to evolve to meet increasing user requirements, such as the Findable, Accessible, Interoperable, and Reusable (FAIR) guiding principles, open science, data integration, interdisciplinary science, and data democratization.

Science and Societal Application Highlights from 10 Years of Observing Precipitation with GPM

As scientists and stakeholder organizations have made use of GPM datasets for analysis and research over the past decade, myriad scientific discoveries have been made leading to the emergence of a wide variety of real-time and retrospective societal applications for GPM data. These GPM user communities continue to dig into scientific questions and provide time-critical decision support to the public. This portion of the article highlights several of the scientific and application achievements made possible since the mission launched in 2014. This list is not intended to be exhaustive, but rather demonstrates GPM’s unique accomplishments and what the mission offers for science and society.

Capturing Microphysical Properties and Vertical Structure Information of Precipitating Systems

Figure 2. Seasonal average cloud latent heating at a height of 6 km (~4 mi) derived from GSFC’s Goddard Convective–Stratiform (Latent) Heating Algorithm (CSH) algorithm for the period December 2020–November 2023. Heating arises from cloud and precipitation processes making its spatial distribution highly correlated with precipitation. CSH shows deep, intense cloud heating in the tropics within the Inter Tropical Convergence Zone (ITCZ), west Pacific Ocean, and tropical land masses. Broad areas of heating at higher latitudes are associated with midlatitude storm tracks. Seasonal shifts in heating are most prominent over land. Image credit: Steven Lang /GSFC/Science Systems and Applications, Inc. (SSAI)

One of GPM’s main charges was to provide microphysical properties and vertical structure information of precipitating systems using passive and active remote sensing techniques. Measurements of the vertical structure of clouds are fundamentally important to improving our understanding of how they affect both local- and large-scale environments. Achieving this goal has required considerable enhancement of the NASA GPM algorithms – including the DPR, GPROF, Combined (CMB), and Convective–Stratiform (Latent) Heating (CSH) algorithms – from their original capabilities at the time of launch.

The advanced instrumentation of GPM’s dual-frequency, Ku/Ka-band radar added new capabilities beyond the TRMM PR’s single Ku band. As a result, the DPR algorithms provide vertical hydrometeor profiles at the radar range bin level [~5 km (~3 mi) horizontal, 125 m (~410 ft) vertical]. Such detailed measurements are critical for classifying precipitation events (e.g., convective or stratiform) and characterizing the dominant types of precipitation particles, precipitation characteristics, and freezing level height. Additionally, these DPR algorithms have played a significant role in retrieving parameters of the particle size distribution (PSD) in rain. All of these factors help support and elucidate the understanding of storm systems and their impacts at local and regional scales.

More recently falling snow microphysics have received increasing attention. Characterizing snow remains a challenging problem for precipitation measuring/modeling due to varying particle habits, shapes, and snow mass densities. The higher frequencies added on both the DPR and GMI instruments have enabled improved observations of ice and snow, not only revealing new insights into the intensity and microphysical composition of cold-season precipitation but enabling an increased understanding of precipitation, clouds, and climate feedbacks.

Another important parameter that is derived from GPM vertical profile information is latent heating (LH), which is so named because it measures the “hidden” energy when water changes phase but doesn’t impact its temperature. The vertical structure of LH is a key parameter for understanding the coupling of the Earth’s water and energy cycles. Although it cannot be directly observed, GPM-derived precipitation estimates, microphysical properties, and vertical structure provide critical information for inferring the vertical structure of LH – see Figure 2. Researchers can access this information using the U.S. Science Team’s CSH datasets as well as the Japanese Science Team’s Spectral Latent Heating (LSH) datasets. GPM’s sampling of higher latitudes – not available from TRMM ­– has resulted in estimates of the intensity and variability of 3D LH structures of precipitation systems beyond the tropics. The CSH algorithm has advanced during the GPM era due to improvements in numerical cloud models and higher accuracy vertical precipitation structure profiles.

Improve knowledge of Precipitation Systems, Water Cycle Variability, and Freshwater Availability

A key success of GPM – both from information from the GPM–CO and from combining with the information from the constellation satellites – is the expansion of knowledge of precipitation systems both in the tropics and at middle and high latitudes. In addition, the program contributes to water availability and variations in time and space. The radar and PMW instruments on the GPM–CO lead to the most accurate surface precipitation rate estimates and vertical structure of the systems, allowing researchers to study key features of these systems on an instantaneous basis and then compile precipitation statistics over time for accurate climatological determinations. The inclined orbit of the GPM–CO results in sampling the entire diurnal (day–night) cycle of precipitation, which is key information for validating numerical models. By combining the “best estimate” data from the GPM–CO with more frequent precipitation estimates from GPM constellation satellites results in the IMERG analyses (30-min resolution), which has allowed for the examination of fine-scale variations in all types of systems, the application of the IMERG NRT analyses for monitoring precipitation systems, and the use in a multitude of applications  (e.g., hydrology, agriculture, and health) that depend on fresh water availability information.

In the tropics, the GPM–CO data have been combined with similar data from TRMM for a 25-year total observational record to study the rainfall structure and variations of tropical cyclones, the Intertropical Convergence Zone (ITCZ), and the mean rainfall climate of the tropics. Tropical mesoscale systems have been tracked with the 30-minute IMERG data to understand their life cycles and contributions to climatological rainfall. Tropical cyclone precipitation has been analyzed to understand storm initiation and variations with time over various ocean basins. Hailstorms have been studied with specifically developed hail algorithms over various continents, with particular focus on the extremely intense storms over South America.

In midlatitudes, the structure of large-scale cyclonic systems, including atmospheric rivers (ARs), have been examined, as well as their relation to moisture source regions and impact in driving heavy precipitation events. At higher latitudes, GPM’s focus on better precipitation retrievals – especially related to snow detection and estimation – has led to improved knowledge of storm systems in this important, changing environment.

Looking across the globe, extreme precipitation events – often with accompanying flood and landslide events – have also been examined and cataloged, both on a local and regional basis, but with increasing ability on a quasi-global basis as the time record extends forward.

On longer timescales, the GPM–CO (and TRMM) data have contributed to our knowledge and estimates of mean climatological precipitation providing different estimates (from different products) for intercomparison and through “best estimate” ocean climatological values using combined radar data and passive microwave information from GPM, TRMM, and CloudSat. This best estimate is used to calibrate a new, long-term Global Precipitation Climatology Project (GPCP) monthly analysis (1983–present), which has resulted in a refined estimate of the mean ocean climatological value, that fits global water and energy budget studies better – see Figure 3. The GPM IMERG analyses are also now used as a key input to the GPCP global daily analyses, enabling finer-resolution climatological studies.

Figure 3. Example of Global Precipitation Climatology Project (GPCP) Daily Climate Data Record (CDR) for January 28, 2018. GPCP incorporates GPM–CO and IMERG information to produce maps like the one shown here. Image credit: Bob Adler/University of Maryland, College Park, Earth System Science Interdisciplinary Center (ESSIC)]

GPM Precipitation Estimates Improving Climate Models and Constraining Predictions

The multifaceted, multiscale physical processes that affect precipitation locally and globally continue to be a challenge for climate models to accurately represent. Ongoing research and analysis reveals that the process-level representation is a much stronger constraint on climate model prediction fidelity than mean state climatological skill. Though high-quality climate models, such as the Coupled Model Intercomparison Project (CMIP), are currently not run at the resolution of GPM observations, they are increasingly simulating cloud and thunderstorm-scale rainfall as subcomponents within their lower-resolution grid boxes. This allows for the model-simulated rain intensity over thunderstorm areas to be compared with GPM precipitation estimates that are averaged over the equivalent GPM DPR-identified convective cloud types. This evaluation inevitably involves assessing extremes, and with 10 years and counting of GPM data now avaiable, such extremes in different weather regimes will be increasingly useful to study – see Figure 4.

Figure 4. Average rainfall patterns from 2014–2020 in January using the NASA Goddard Institute for Space Studies’ (GISS) – E3 climate model [top] and precipitation estimates derived from GPM’s multisatellite product, IMERG [bottom]. Climate models such as the GISS-E3 must accurately simulate seasonal cycles observed by GPM for their predictions to be more reliable. Using the GPM rainfall magnitudes as benchmarks, new model equations are being developed to improve this area of rainfall simulation and improve climate projections. Image credit: Greg Elsaesser/GISS

Additionally, the diurnal cycle of precipitation – another challenge for climate models to simulate – remains an important focus. Recent studies have suggested that the systematic differences in cloud occurrence across the diurnal cycle are crucially important for atmospheric water vapor changes as well as cloud feedbacks and their role in climate change. This expanded understanding provides even more motivation for improving diurnal cycle representation in models. With the long GPM record, diurnal precipitation composites can be made in varying weather or climate states (e.g., El Niño/Southern Oscillation), and additional novel analyses of regime-dependent diurnal cycle composites will be important for constraining processes.

Figure 5. Schematic of GPM observed latent heating in convective cores (i.e., thunderstorms) relative to a larger thunderstorm complex (i.e., mesoscale convective system). Image credit: Greg Elsaesser; model is from a May 2022 paper published in Journal of Geophysical Research: Atmospheres

Availability of and improvements in GPM estimated stratiform rainfall will progressively enable addressing the longstanding deficiencies in simulating mesoscale convective systems – see Figure 5. Alongside use of “process-relevant” precipitation diagnostics, new efforts seek to use machine learning techniques to ensure that numerous climatological water and energy cycle diagnostics remain in good agreement with GPM and other satellite estimates. These joint efforts that leverage both mean-state global precipitation estimates plus the process-oriented precipitation diagnostics will ensure that coarser-resolution climate models that support numerous CMIP experiments will increase in predictive capability.

GPM Applications: Continuing to Grow and Enable Communities Across Local and Global Scales

As noted above, one GPM focus is the application of satellite precipitation estimates for societal decision-making. As a result, GPM data have supported applications such as weather forecasting, water resource management, agriculture and food security monitoring, public health, animal migration, tropical cyclone location and intensity estimation, hydropower management, flood and landslide monitoring and forecasting, and land system modeling – see Figure 6.

Figure 6. GPM Applications icon highlights six thematic and primary societal application areas supported by GPM data: ecological management, water resources and agriculture, energy, disasters monitoring and response, public health, and weather and climate modeling. Image credit: GPM website; Mike Marosy/GSFC/Global Science and Technology Inc. (GST)

To support this focus, the GPM Applications team strives to focus on engaging users through trainings and interviews, workshops, webinars, and programs, with the objective of guiding new and existing users to integrate GPM data into their systems and processes to drive actions that positively impact society. These activities help elucidate data needs and identify data barriers faced by stakeholders. The team also helps identify opportunities and gaps to create effective engagement and outreach resources and help facilitate the use of GPM data to support decision making and improve situational awareness across different sectors. All of these efforts have helped increase the visibility of GPM and attract new users from federal and state partners, academic institutions, international agencies and non-governmental organizations (NGOs), and private and non-profit companies. A few examples of GPM Application engagement activities since launch include:

  • three GPM Mentorship Programs that bridge the gap between GPM scientists and application communities to promote operational applications;
  • seventeen GPM trainings to support new and existing users on data access and use for applications;
  • six GPM stakeholder-driven application workshops to facilitate discussions between scientists and end users of GPM data about how NASA data could be better leveraged to inform decision making for societal applications; and
  • three white papers that articulate and identify user needs and data requirements across communities.

The GPM Applications team has tabulated over 10,000+ unique users across 130 countries who have accessed or routinely access GPM data from NASA data archives. Additionally, the value of these activities can be seen in over 175 GPM case study application examples that have been publicized at NASA, featured on social media and posted at NASA GPM Applications webpage, over the last 5 years alone – see sampling of applications in Figure 7.

Figure 7. Collage of GPM case study examples enabling societal applications, including weather forecasting, nowcasting of extremes, agricultural and drought monitoring, weather index insurance, and data management platforms. Image credit: Andrea Portier /GSFC/ SSAI

Over the past decade of GPM observations, several themes have emerged with these efforts across the applications community. One key component of enabling GPM applications is the ability to access and download NRT data products that meet applications needs. About 40% of GPM end users rely on NRT GPM products for time-sensitive applications. Additionally, GPM’s global-gridded IMERG product plays a significant role for applications. It is used nearly 17 times more for research and applications compared to other GPM products, with ~30% of users accessing and downloading IMERG Early and Late NRT data and applying them towards operational uses. As noted earlier, the reprocessing of all TRMM precipitation-era data using the IMERG algorithm ensured a longer, continuous precipitation data record with consistent retrievals that are available from June 2000 to the present. The longer precipitation record has enabled new science research and data applications to benefit society across a diverse range of end-users, helping them to compare and contrast past and present data to support and develop more accurate climate and weather models, understand normal and anomalous extreme precipitation events, and strengthen the baseline information and situational awareness for applications, such as disasters, agriculture and food security, water resources, and energy production. Table 2 presents several broader examples of how these GPM data products are used for societal applications. The subsections that follow demonstrate the value of GPM data to facilitate research and applications even more through case studies.

Table 2. The table includes examples of user communities, by organizational sectors, that highlight how GPM data products are being used for situational awareness and decision-making. Application description includes type of GPM level products. For more information on level product definitions, see NASA Data Product Levels and GPM Data Directory.

User Community Topic Application of GPM Data Meteorological agencies and organizations Numerical weather prediction Assimilation of Level 1 (L1) PMW TBs for initializing numerical weather prediction model runs to improve weather forecasts Tropical cyclones Improved characterization of tropical cyclone track and intensity using GPM L1 and L2 products to improve weather forecasts and provide more accurate hurricane warnings Subseasonal to seasonal and climate modeling Verification and validation of seasonal and climate modeling using L2 LH products and IMERG (Final) to improve understanding and predictability of climate behavior Data-driven agriculture organizations Agricultural forecasting and food security Integration of IMERG (Early, Late) precipitation estimates within agricultural models to estimate growing season onset and crop productivity Disaster risk management organizations Flooding Incorporation of IMERG (Early, Late) in hydrologic routing models for flood estimation Disaster response and recovery Situational awareness of extreme precipitation using IMERG (Early, Late) in potentially affected areas to support disaster response and recovery efforts Disaster risk management platforms Integration of IMERG (Early, Late, Final) into models to deliver real-time weather insights to customers Energy infrastructure and management organizations Renewable energy infrastructure and management Assessment of freshwater inputs and quantification of water fluxes using IMERG (Early, Late, Final) as a precipitation data source for hydropower development, production, and flow forecasting Reinsurance companies Parametric insurance and reinsurance modeling Definition of extreme precipitation thresholds using IMERG (Early, Late, Final) for developing multiperil index-based insurance products and improve situational awareness of rainfall to trigger policy payouts Water resource management organizations and companies Water resources and drought Evaluation of precipitation anomalies using IMERG (Final) leveraging the extended temporal record, and assessment of freshwater input using IMERG (Early, Late) to basins and reservoirs to better quantify water fluxes Public health Vector- and water-borne disease monitoring Tracking of precipitation variations using IMERG (Early, Late, Final) with other environmental variables to track and predict vector or water-borne diseases and issue public health alerts

Operational Numerical Weather and Hurricane Prediction

Looking towards the application of GPM L3 products, several agencies [e.g., the U.S. Air Force’s (USAF) Weather Agency (557th Weather Wing), Environment and Climate Change Canada (ECCC), and the Australian Bureau of Meteorology] use IMERG to support reanalysis of NWP models to conduct data assimilation and validation activities and as inputs to numerical models. For example, the USAF ingests IMERG Early into its operational weather forecasts and advisories, supporting global land surface characterization capabilities. This information is then provided routinely to decision-makers across the military, agricultural, and research sectors.

Water Resources, Agricultural Forecasting and Food Security

GMI L1 TB products are operationally assimilated into numerical weather prediction (NWP) models across the globe to improve short- to long-term weather forecast quality (by tuning and developing microphysics and convection parameterizations) and correct the track forecasts for tropical cyclones. Agencies and organizations, such as NASA’s Global Modeling Assimilation Office (GMAO), the National Oceanic and Atmospheric Administration’s (NOAA) National Hurricane Center (NHC), Naval Research Laboratory (NRL), and European Centre for Medium-Range Weather Forecasts (ECMWF) ingest GMI TB data to support their operational systems. For example, the all-sky assimilation of GMI Tb over ice-free ocean surfaces helps improve initial conditions and overall forecast quality to ECMWF’s 24-hour forecasts, increasing not only the number of satellite observations assimilated but also the types of variables analyzed, such as hydrometeors (e.g., liquid cloud, ice cloud, rain, and snow).

GPM’s L2 precipitation and L3 IMERG products are used as input into hydrological and land surface models to better understand the land–atmosphere interactions and better predict and monitor water resources and agricultural output on scales ranging from days to years. For example, IMERG serves as a key component to Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System hydrology products that are designed to enhance agricultural monitoring in data-sparse regions and support humanitarian response initiatives. IMERG Early products are actively used as a data source for the U.S. Department of Agriculture’s Foreign Agricultural Service operations where IMERG estimates are routinely evaluated against World Meteorological Organization station data above 50˚N latitude for consensus to produce crop assessments in those regions and support extratropical agrometeorological crop monitoring. In the private sector, companies, such as Nutrien Ag Solutions, use IMERG Early precipitation estimates to capture and evaluate extreme precipitation events. This information is part of Nutrien’s daily delivery of weather content to the company and their clients, where these efforts help the clients prepare for potential disruptions across the global supply chain.

Disaster Response and Insurance

The IMERG spatial and temporal resolution – as well as the availability of the data across more than two decades – has been invaluable for examining precipitation extremes that may result in flooding, landslides, drought, and fires. These data provide key situational awareness for disaster response and recovery. Rainfall information has been developed in Web Map Service (WMS) and ArcGIS formats with Representational State Transfer (REST) endpoints so that they can be pulled into geospatial portals at Federal Emergency Management Agency (FEMA), the U.S. Army Geospatial Intelligence Unit and data management platform companies (e.g., CyStellar), and provided to the National Geospatial Agency, the State Department, and insurers. The IMERG product has also been critical to global disaster models, such as the near-global Landslide Hazard Assessment for Situational Awareness (LHASA) system, which uses NRT IMERG rainfall in a decision tree framework that issues a moderate or high landslide nowcast based on rainfall thresholds. The model is routinely updated with a latency of four hours. The LHASA versions are running routinely and used by U.S. agencies and international agencies and organizations, including the World Food Programme.

IMERG data are also being used at multiple reinsurance companies, including the Microinsurance Catastrophe Risk Organisation (MiCRO), to develop drought and rainfall indices using climatology data from IMERG.

Looking Across and Forward for Applications

Common themes that have emerged in stakeholder feedback include the need for continuity of data products, identifying uncertainty estimates, having easily accessible case study examples, and creating public trainings for data access and use. The Applications team works closely with GPM members and leadership to ensure that there are clear and open communication pathways across the GPM mission on engagement activities and to accelerate stakeholder feedback to GPM algorithm developers to aid in the improvement of GPM data products and services for the public. In addition, these insights can be used to formulate a framework for applications related to future mission planning, e.g., NASA’s Earth System Observatory missions.

Bridging the Gap Between Precipitation Measurements and the Public: A View into Outreach Efforts

Several years before the launch of GPM, the Education and Public Outreach (EPO) team was busy in the background, working to bring Science, Technology, Engineering, and Mathematics (STEM) into the classroom and taking advantage of the Next Generation Science Standards (NGSS) that were being implemented in curriculums across the U.S. The launch of GPM offered a perfect opportunity to showcase and amplify the incredible science and technology behind the GPM mission and the myriad of potential applications that could stem from its data.

Early in the GPM mission’s development, the GPM EPO team curated existing NASA educational resources related to the themes of Earth’s water cycle, weather and climate, technology behind Earth Observing missions, and societal applications. The EPO team created a website, entitled Precipitation Education that has been wildly successful from its launch. The team also developed a Rain EnGAUGE toolkit and engaged both formal and informal educators from around the world to host “Family Science Night” programs and implement some of the interactive activities that the team developed for these events. Thus, even before the launch of GPM, the EPO effort had momentum as team members shared the incredible ways in which NASA’s Earth observation systems were helping us to better understand and protect our home planet.

After launch, the EPO Team worked annually with international teams of “GPM Master Teachers.” This process selected teachers, who participated throughout the school year and received a small stipend for their work. They helped to align the science behind the GPM mission and other NASA Earth observation systems with the Global Learning and Observations to Benefit the Environment (GLOBE) program and developed many lessons and activities that were made available to educators around the globe.

The EPO team also worked with NASA’s Earth to Sky program, training National Park Service and other interpreters to understand the science behind the GPM mission, and to find ways to share this information in meaningful and relevant ways with their audiences across the U.S.

Newer activities have been developed to enable the general public to interact with open science as they follow a very easy “data recipe” to retrieve GPM precipitation observations since 2000 for their location. They are encouraged to use the GLOBE program’s app, GLOBE Observer, and take an observation of either a tree height or clouds. Contributors input the latitude and longitude from that location and find out how much precipitation fell for that location since 2000. This gives the participants the opportunity to collect data from the ground, and then look at satellite data for that same location to better understand the impact of precipitation in their local environment. GLOBE Participants can share their Tree Stories and Water Stories and compare their data with others around the world.

In addition to providing a wide suite of online resources, the GPM Outreach team attends many public events each year, ranging from large NASA-sponsored Earth Day events to local family STEM nights – see Photos 2 and 3. The GPM Outreach team has developed many hands-on activities that help the public explore the varied amounts of precipitation falling in locations around the world. By interacting with these activities and learning how NASA is helping us better understand and protect our home planet, participants walk away with a richer understanding of how NASA’s Earth science programs are improving life around the world.

A decade after the launch of GPM, the “Precipitation Education” website continues to be incredibly popular, with an average of 90,000 visits per month. GPM education and outreach resources are considered the state of the art among practitioners, and the team updates existing and adds new resources as opportunities arise.

Photo 2. Montgomery County’s (Maryland) Georgian Forest Family Science, Technology, Engineering, and Math (STEM) Night. Shown here is a triptych of parents and children using “Precipitation Towers” to explore precipitation patterns measured by GPM in different locations throughout the world. Photo credit: Dorian Janney/GSFC/ ADNET Systems Inc. (ADNET) Photo 3. The GPM Outreach Team engaging the public at Maryland Day 2023, hosted by the University of Maryland (UMD), College Park on Saturday, April 29, 2023. The Team represented GPM at the NASA exhibit where they interacted with hundreds of attendees and highlighted the many benefits of using GPM data for research and societal applications. Photo credit: Dorian Janney

Conclusion

In more than 10 years of operations, the GPM mission has made incredible contributions in our understanding of global precipitation, from scientific studies to real-world, societal impacts through applications of the data products. With a robust validation program and successive algorithm improvements, our knowledge of precipitation distribution across the globe continues to advance. This has had measurable effects on global modeling and weather forecasting, real-time severe weather monitoring, education, and many other areas. With hardware continuing to function – and a recent fuel-saving orbit boost – GPM continues to add to this valuable data record. The community’s experience with GPM helps illustrate what new observations or combinations of observations will be needed in coming decades to advance precipitation science and maintain needed global monitoring. GPM’s cohort of researchers, instrument specialists, mission operators, and other key personnel across the community are providing the backbone of future mission development efforts.

Acknowledgements

The authors wish to acknowledge several contributing members of the Global Precipitation Measurement Science Team who played a part in writing this anniversary article. They include: Gerald Heymsfield, Dorian Janney, Chris KiddSteven Lang, Zhong Liu, Adrian Loftus, Erich Stocker, and Jackson Tan [all at GSFC]; David Wolff [NASA’s Wallops Flight Facility (WFF)]; Gregory Elsaesser [NASA Goddard Institute for Space Studies (GISS)/ Columbia University]; and Robert Adler [University of Maryland].

Andrea Portier
NASA’s Goddard Space Flight Center/Science Systems and Applications, Inc
andrea.m.portier@nasa.gov  

Sarah Ringerud
NASA’s Goddard Space Flight Center
sarah.e.ringerud@nasa.gov

George J. Huffman
NASA’s Goddard Space Flight Center
george.j.huffman@nasa.gov

Share

Details

Last Updated

Oct 03, 2024

Related Terms
Categories: NASA

In photos: Annular solar eclipse 2024 delights with stunning 'ring of fire' display

Space.com - Thu, 10/03/2024 - 10:13am
On Oct. 2, an annular solar eclipse turned the sun into an impressive "ring of fire." Here are some of the best photos of the dramatic display.
Categories: Astronomy

First moonwalker Neil Armstrong's speech notes posted online by Purdue

Space.com - Thu, 10/03/2024 - 10:00am
Neil Armstrong is perhaps best known for saying 12 words on July 20, 1969: "That's one small step for a man, one giant leap for mankind." But there's more to his record, as his alma mater can attest.
Categories: Astronomy

Ants can be used to make yogurt – and now we know how it works

New Scientist Space - Cosmology - Thu, 10/03/2024 - 10:00am
A traditional yogurt-making practice from south-eastern Europe uses live ants as a starter, with the insects providing the bacteria and acid needed to initiate fermentation
Categories: Astronomy

Ants can be used to make yogurt – and now we know how it works

New Scientist Space - Space Headlines - Thu, 10/03/2024 - 10:00am
A traditional yogurt-making practice from south-eastern Europe uses live ants as a starter, with the insects providing the bacteria and acid needed to initiate fermentation
Categories: Astronomy

Gateway Stands Tall for Stress Test

NASA - Breaking News - Thu, 10/03/2024 - 9:17am

1 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Gateway’s Habitation and Logistics Outpost stands vertically inside a Thales Alenia Space facility in Turin, Italy, after completing static load testing. Thales Alenia Space

Major Gateway hardware recently crossed an important testing milestone on its path to launch to the Moon, where it will support new science and house astronauts in lunar orbit.

Gateway’s HALO (Habitation and Logistics Outpost) successfully completed static load testing,  a rigorous stress test of how well the structure responds to the forces encountered in deep space. Thales Alenia Space, subcontractor to Northrop Grumman, conducted the testing in Turin, Italy. Static load testing is one of the major environmental stress tests HALO will undergo, and once all phases of testing are complete, the module will be ready to move from Italy to Gilbert, Arizona, where Northrop Grumman will complete final outfitting.

HALO is one of four pressurized Gateway modules where astronauts will live, conduct science, and prepare for missions to the lunar South Pole region. It will launch with Gateway’s Power and Propulsion Element on a SpaceX Falcon Heavy rocket to lunar orbit.

Gateway is humanity’s first lunar space station supporting a new era of exploration and scientific discovery as part of NASA’s Artemis campaign that will establish a sustained presence on and around the Moon, paving the way for the first crewed mission to Mars.

Gateway’s Habitation and Logistics Outpost stands vertically inside a Thales Alenia Space facility in Turin, Italy, after completing static load testing. Thales Alenia Space Learn More About Gateway Share Details Last Updated Oct 03, 2024 ContactBriana R. Zamorabriana.r.zamora@nasa.govLocationJohnson Space Center Related Terms Explore More 2 min read Artemis IV: Gateway Gadget Fuels Deep Space Dining

Learn about the handy device NASA is developing to help astronauts rehydrate their meals aboard…

Article 4 weeks ago
2 min read Gateway: Energizing Exploration

Discover the cutting-edge technology powering Gateway, humanity's first lunar space station.

Article 1 month ago
3 min read Gateway: Up Close in Stunning Detail

Witness Gateway in stunning detail with this video that brings the future of lunar exploration…

Article 3 months ago
Keep Exploring Discover More Topics From NASA Gateway

Built with international and commercial partners, Gateway will be humanity’s first space station around the Moon as a vital component…

Orion Spacecraft

Space Launch System (SLS)

Human Landing System

Categories: NASA