Feed aggregator
Hubble Captures a Tarantula
- Hubble Home
- Overview
- Impact & Benefits
- Science
- Observatory
- Team
- Multimedia
- News
- More
2 min read
Hubble Captures a Tarantula This NASA/ESA Hubble Space Telescope image shows a portion of the Tarantula Nebula. ESA/Hubble & NASA, C. MurrayThis NASA/ESA Hubble Space Telescope image captures incredible details in the dusty clouds of a star-forming factory called the Tarantula Nebula. Most of the nebulae Hubble images are in our galaxy, but this nebula is in the Large Magellanic Cloud, a dwarf galaxy located about 160,000 light-years away in the constellations Dorado and Mensa.
The Large Magellanic Cloud is the largest of the dozens of small satellite galaxies that orbit the Milky Way. The Tarantula Nebula is the largest and brightest star-forming region, not just in the Large Magellanic Cloud, but in the entire group of nearby galaxies to which the Milky Way belongs.
The Tarantula Nebula is home to the most massive stars known, some roughly 200 times as massive as our Sun. This image is very close to a rare type of star called a Wolf–Rayet star. Wolf–Rayet stars are massive stars that have lost their outer shell of hydrogen and are extremely hot and luminous, powering dense and furious stellar winds.
This nebula is a frequent target for Hubble, whose multiwavelength capabilities are critical for capturing sculptural details in the nebula’s dusty clouds. The data used to create this image come from an observing program called Scylla, named for a multi-headed sea monster from Greek mythology. The Scylla program was designed to complement another Hubble observing program called ULLYSES (Ultraviolet Legacy Library of Young Stars as Essential Standards). ULLYSES targets massive young stars in the Small and Large Magellanic Clouds, while Scylla investigates the structures of gas and dust that surround these stars.
Explore More:Hubble’s Image Shows Turbulent Star-making Region
30 Doradus: A Massive Star-Forming Region
Large Magellanic Cloud’s Star-Forming Region, 30 Doradus
Explore the Night Sky: Caldwell 103/Tarantula Nebula
Multiple Generations of Stars in the Tarantula Nebula
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble
Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Exploring the Birth of Stars
Seeing ultraviolet, visible, and near-infrared light helps Hubble uncover the mysteries of star formation.
The Death Throes of Stars
When stars die, they throw off their outer layers, creating the clouds that birth new stars.
Hubble’s Nebulae
These ethereal veils of gas and dust tell the story of star birth and death.
What Are Light Echoes, and Why Do They Matter?
Bizarre phenomena called light echoes create strange, shifting shapes seen in some telescopic images and help astronomers chart the heavens above
Congressman Eric Sorensen on Defending Climate Science, Depoliticizing Weather and Bringing Scientific Rigor to Capitol Hill
Representative Eric Sorensen of Illinois shares how his meteorology roots drive his fight to protect climate science and push back against political interference.
What time is the August full moon?
This Week's Sky at a Glance, August 8 – 17
Set an alarm and take a peek east in early dawn to follow Venus and Jupiter through their spectacular conjunction this week.
The post This Week's Sky at a Glance, August 8 – 17 appeared first on Sky & Telescope.
Human minds, robotic hands
Last July, a team of robots explored a simulated martian landscape in Germany, guided by an astronaut aboard the International Space Station. This was the final session of the Surface Avatar experiment, a joint initiative between ESA and the German Aerospace Center (DLR) to investigate how astronauts can remotely control robotic teams.
This latest session took place at the DLR site in Oberpfaffenhofen and introduced new levels of autonomy, decision-making and realism, bringing Europe one step closer to seamless human-robot collaboration in space exploration.
Lunar Photobioreactors Could Provide Food And Oxygen On The Moon
Astronauts exploring the Moon will need all the help they can get, and scientists have spent lots of time and plenty of money coming up with different systems to do so. Two of the critical needs of any long-term lunar mission are food and oxygen, both of which are expensive to ship to the Moon from Earth. So, a research team from the Technical University of Munich spent some of their time analyzing the effectiveness of using local lunar resources to build a photobioreactor (PBR), the results of which were recently published in a paper in Acta Astronautica.
Simulating Ice Worlds in the Lab
Many objects in the outer Solar System contain large amounts of water ice, leading to a thick icy shell surrounding an ocean of liquid water. This water behaves like lava on Earth, reshaping their surfaces through a process called cryovolcanism. To better understand this process, researchers have created a low-pressure chamber that simulates the near-vacuum conditions on the surfaces of worlds like Europa and Enceladus. They could watch water create features we see across the Solar System.
Modeling Planet Formation With Water Tornadoes
Sometimes the easiest way to understand the physics of a phenomenon is to make a physical model of it. But how do you make a model of a system as large as, say, a protoplanetary disc? One technique, suggested in a recent paper in the Monthly Notices of the Royal Astronomical Society Letters by researchers at the Max Planck Institute for Astrophysics and the University of Griefswald, would be familiar to any grade schooler who took a science class - spin water around in a circle really fast.
Webb Revists Hubble's Classic Ultra Deep Field
This image from the James Webb Space Telescope revisits one of the most iconic regions of the sky, the Hubble Ultra Deep Field. The result is a detailed view of thousands of distant galaxies, some dating back to the earliest periods of cosmic history.
The biggest black hole ever seen? Scientists find one with mass of 36 billion suns
A laser-propelled mini spacecraft could travel to a nearby black hole, astrophysicist says
China's lunar lander aces touchdown and takeoff tests ahead of planned 2030 crewed moon mission (video)
Molecule's tiny quantum jiggle imaged in unprecedented detail
Molecule's tiny quantum jiggle imaged in unprecedented detail
Common asthma drug could prevent life-threatening allergic reactions
Common asthma drug could prevent life-threatening allergic reactions
'Star Wars: A New Hope' will return to theaters to celebrate its 50th anniversary, but Disney didn't say which version
Linking Local Lithologies to a Larger Landscape
- Perseverance Home
- Science
- News and Features
- Multimedia
- Mars Missions
- Mars Home
2 min read
Linking Local Lithologies to a Larger Landscape This image from NASA’s Mars Perseverance rover, taken by the Mastcam-Z instrument’s right eye, shows a collection of ridge-forming boulders. The rover acquired this image looking south along the ridge while exploring the “Westport” region of the outer crater rim on July 18, 2025 — Sol 1568, or Martian day 1,568 of the Mars 2020 mission — at the local mean solar time of 11:53:04. NASA/JPL-Caltech/ASUWritten by Margaret Deahn, Ph.D. Student at Purdue University
NASA’s Mars 2020 rover is continuing to explore a boundary visible from orbit dividing bright, fractured outcrop from darker, smoother regolith (also known as a contact). The team has called this region “Westport,” (a fitting title, as the rover is exploring the western-most rim of Jezero), which hosts a contact between the smoother, clay-bearing “Krokodillen” unit and an outcrop of olivine-bearing boulders that converge to form a ridge on the outer Jezero crater rim. To learn more about the nature of this contact, see this blog post by Dr. Melissa Rice. Piecing together geologic events like the formation of this olivine-bearing material on Jezero’s crater rim may allow us to better understand Mars’ most ancient history.
The rover has encountered several olivine-bearing rocks while traversing the rim, but it is unclear if, and how these rocks are all connected. Jezero crater is in a region of Mars known as Northeast Syrtis, which hosts the largest contiguous exposure (more than 113,000 square kilometers, or more than 43,600 square miles) of olivine-rich material identified from orbit on Mars (about the same square mileage as the state of Ohio!). The olivine-rich materials are typically found draping over older rocks, often infilling depressions, which may provide clues to their origins. Possible origins for the olivine-rich materials in Northeast Syrtis may include (but are not limited to): (1) intrusive igneous rocks (rocks that cool from magma underground), (2) melt formed and deposited during an impact event, or (3) pyroclastic ash fall or flow from a volcanic eruption.
The Perseverance rover’s investigation of the olivine-bearing materials on the rim of Jezero crater may allow us to better constrain the history of the broader volcanic units present in the Northeast Syrtis region. Olivine-rich material in Northeast Syrtis is consistently sandwiched between older, clay-rich rock and younger, more olivine-poor material (commonly referred to as the “mafic capping” unit), and may act as an important marker for recording early alteration by water, which could help us understand early habitable environments on Mars. We see potential evidence of all of these units on Jezero crater’s rim based on orbital mapping. If the olivine-bearing rocks the Perseverance rover is encountering on the rim are related to these materials, we may be able to better constrain the age of this widespread geologic unit on Mars.
Learn more about Perseverance’s science instruments
For more Perseverance blog posts, visit Mars 2020 Mission Updates
Share Details Last Updated Aug 07, 2025 Related Terms Explore More 3 min read Curiosity Blog, Sols 4622-4623: Kicking Off (Earth) Year 14 With an Investigation of Veins
Article
18 hours ago
3 min read Curiosity Blog, Sols 4618-4619: The Boxwork Structures Continue to Call to Us
Article
2 days ago
3 min read Curiosity Blog, Sols 4620-4621: Among the Hollows and the Ridges
Article
2 days ago
Keep Exploring Discover More Topics From NASA Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…